Hydrogeological Model of the Forefield Drainage System of Werenskioldbreen, Svalbard
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
3.1. Sedimentological Analyses
3.2. Other Model Input Data
3.2.1. DEM and Maps
3.2.2. Groundwater Level and Rainfall
3.3. Model Assumption
4. Groundwater Flow Model Parameterisation
4.1. Geometric Model and Finite Element Mesh
4.2. Boundary Conditions
4.3. Recharge (Water Input)
- Glacial sands and gravels: 110 mm/year (19.7% rainfall);
- Glacial sands and gravels along the glacier front: 420 mm/year (75% rainfall);
- Outcrops: 90 mm/year (16% rainfall).
4.4. Hydraulic Conductivity
4.5. Calibration and Validation
5. Results and Discussion
5.1. Sediment Properties and Hydraulic Conductivity
ID | Sediment Type (or Bedrock) | Percentage of All Samples (%) | Results for Hydraulic Conductivity (k) by Methodology Rosas et al. (2014) [65] | ||
---|---|---|---|---|---|
Average (m s−1) | Max (m s−1) | Min (m s−1) | |||
1 | Gravelly sand | 31.8 | 3.60 × 10−4 | 6.90 × 10−4 | 3.00 × 10−5 |
2 | Sandy gravel | 22.7 | 1.05 × 10−3 | 3.62 × 10−3 | 5.30 × 10−4 |
3 | Silty sand | 18.1 | 1.65 × 10−5 | 3.01 × 10−5 | 1.03 × 10−5 |
4 | Gravelly silty sand | 6.8 | 2.12 × 10−5 | 2.71 × 10−5 | 1.29 × 10−5 |
5 | Silty sandy gravel | 4.6 | 5.30 × 10−4 | 8.20 × 10−4 | 2.50 × 10−4 |
6 | Sand | 4.6 | 4.00 × 10−5 | 6.00 × 10−5 | 2.00 × 10−5 |
7 | Sandy clayey silt | 6.8 | 1.64 × 10−8 | 4.11 × 10−8 | 1.70 × 10−9 |
8 | Sandy gravelly silt | 2.3 | 1.28 × 10−5 | 2.88 × 10−5 | 4.37 × 10−6 |
9 | Silt | 2.3 | x | 1.03 × 10−5 | x |
Polygon Symbol | Type of Polygon Layer (Geomorphology) | Number of Layers: 1—2 m 2—0.30 m 3—0.20 m | Sediment | Final Hydraulic Conductivity k (m s−1) in Model |
---|---|---|---|---|
P1 | Rock outcrops | 1 | Rock outcrops | 8 × 10−6 |
2 | ||||
3 | ||||
P2 | Ground moraine and bedrock | 1 | Gravelly sand | 3.6 × 10−4 (or 4.6 × 10−4) |
2 | Weathered crystalline | 8 × 10−6 | ||
3 | 7 × 10−6 | |||
P3 | Sandur with ramparts and cones on dead ice | 1 | Sandy gravel | 1.05 × 10−3 |
2 | Sandy gravel or gravelly sand | 1.05 × 10−3 (or 3.6 × 10−4 and 4.6 × 10−4) | ||
3 | Sandy gravel | 1.05 × 10−3 | ||
P4 | Parts of terminal moraine | 1 | Gravelly sand (or parts of silty sand) | 3.6 × 10−4 (or 3 × 10−5) |
2 | Sandy clayey silt | 1.64 × 10−8 | ||
3 | ||||
P5 | Sandur fans and plains (areas flooded by rivers) | 1 | Gravelly sand or sandy gravel (locally) | 6.9 × 10−4 (or 1.6 × 10−3 locally) |
2 | ||||
3 | Weathered crystalline rock | 7 × 10−6 |
5.2. Model Structure
5.3. Hydraulic Head (Observed and Modelled)
5.4. Directions of Groundwater Flow
5.5. Groundwater Balance
5.5.1. Aquifer (Active Layer) Storage Capacity
5.5.2. Groundwater Balance
Analysed Element | Inflow | Outflow | ||
---|---|---|---|---|
(m3 d−1) | (%) | (m3 d−1) | (%) | |
The Breelva river (1st BC) | 1107.6 | 18.2 | 2401.5 | 39.5 |
Breelva—North part | 544.4 | 8.9 | 1758.2 | 28.9 |
Breelva—South part | 563.2 | 9.3 | 643.3 | 10.6 |
Other streams and lakes (3rd BC) | 3360.2 | 55.3 | 3675.4 | 60.5 |
River R1 (S) | 774.0 | 12.7 | 263.8 | 4.3 |
River R2 (S) | 221.2 | 3.6 | 139.6 | 2.3 |
River R3 (S, connection with Mewie) | 187.3 | 3.1 | 263.8 | 4.3 |
River R4 (S) | 330.0 | 5.4 | 283.7 | 4.7 |
River R5 (S) | 225.8 | 3.7 | 336.4 | 5.5 |
River R6 (N, artesian spring) | 1132.7 | 18.6 | 794.9 | 13.1 |
Lake L1 (S) | 343.2 | 5.6 | 427.6 | 7.0 |
Lake L2 (S) | 143.9 | 2.4 | 191.7 | 3.2 |
Mewie Lake (S) | 2.0 | 0.0 | 918.3 | 15.1 |
Lake L3 (N, moraine) | 0.0 | 0.0 | 55.8 | 0.9 |
Source—effective rainfall | 1609.5 | 26.5 | x | x |
Summary North part of the basin | 2619.6 | 43.1 | 2611.1 | 43.0 |
Summary South part of the basin | 3457.7 | 56.9 | 3465.8 | 57.0 |
Summary (total) | 6077.3 | 100.0 | 6076.9 | 100.0 |
Imbalance (Inflow–Outflow) | 0.4 | 0.007 | x | 0.0 |
- 2007—Estimated: 2.0% groundwater; calculated: average = 4.57% (0.11 m3/s), min = 0.98%, max = 15.05%;
- 2008—Estimated: 3.8% groundwater; calculated average = 8.42% (0.14 m3/s), min = 1.36%, max = 27.36%;
- 2009—Estimated: 3.1% groundwater; calculated average = 5.66% (0.15 m3/s), min = 1.06%, max = 13.63%.
6. Summary and Conclusions
- The sedimentological structure of the Werenskioldbreen forefield consists mainly of gravelly sand (31.8%) or sandy gravel (22.7%) and silty sand (18.1%). The calculated hydraulic conductivities are typical of glacial sediments. Nevertheless, detailed analysis of samples sometimes revealed hydraulic conductivities lower than those reported in the literature. This is most probably due to their poor sorting, as they often contain mixed finer fractions, which are the remains of tills from the outwash. The hydraulic conductivities in our sediments were: sandy gravel (1.60 × 10−3 m s−1 and 1.05 × 10−3 m s−1), gravelly sand (3.6 × 10−4 m s−1 and 4.6 × 10−4 m s−1 and 6.9 × 10−4 m s−1), silty sand (3 × 10−5 m s−1), sandy clayey silt (1.64 × 10−8 m s−1) and weathered crystalline rock (8 × 10−6 m s−1 and 7 × 10−6 m s−1).
- The groundwater table in the model area is perfectly consistent with the terrain’s morphology, typical of shallow groundwater depths from a few centimetres to 0.5 m in plains. The model’s generalisation did not take into consideration periodic changes in the river network or locally occurring flooded areas when surface water levels were high. On the other hand, these areas are shown as modelling results where the groundwater level is above the ground elevation. This indicates that the model calculations are consistent with the real environment.
- The model’s results indicate the existence of a groundwater divide in the central part of the foreland, i.e., that there are two subsystems of shallow northern and southern groundwater circulations. From the north and north-eastern zones, groundwater flows westwards towards the Breelva channel and south-westwards along the end moraine direction to the single gauging point on its southern margin. In the southern part of the basin, groundwater flows towards smaller rivers and lakes, especially Lake Mewie, which drains a significant proportion of the groundwater aquifer. Finally, groundwater also flows in a south-westerly direction towards the Breelva gauge.
- The dynamic resources of the active layer in the model area are equal to 6077 m3 d−1. The groundwater aquifer is recharged by inflow from the Breelva River (18.2%), by inflow from other watercourses and surface water bodies (55.3%), and by effective infiltration from precipitation (26.5%). Drainage from the model is to rivers and lakes. The main drainage component is the Breelva, responsible for 40% of the total outflow from the model, while the remaining rivers and lakes drain 60%.
- The model for steady-state conditions shows that the groundwater is responsible for about 2% of the total runoff from the catchment area. The authors also estimated, based on the monitoring of catchment runoff, that during the 2017 ablation season, the runoff over 85 days was 68 million m2. Assuming a 2% contribution of groundwater to the river runoff for each day, the total runoff was estimated at c. 1.36 mln m2.
- Under typical hydroclimatic conditions, the water-filled interstices in the layers of the modelled sediments, i.e., the fluid volume (1.0073 × 106 m3), make up some 50% of the void volume (2.0689 × 106 m3) in the forefield area. This demonstrates the significant capacity of sediments to accumulate and transport liquid water. If the active layer thickness is increased by 0.5 m, the groundwater capacity increases by 21%.
- The implementation of hydrogeological models can be very useful for filling the knowledge gap concerning the future evolution of groundwater flow and storage conditions in polar regions, where intense changes associated with permafrost reduction are occurring as a result of climate warming [39]. Our study contributes to improving the understanding of hydrogeological trends in cold regions. Detailed recognition of the hydrogeological conditions of the active layer of sediments provided interesting results on spatial variations in the velocity and direction of groundwater flow and in the active layer storage capacity. Such a detailed approach is still unique in model studies for the Arctic region owing to the difficulties of data availability and the high cost of such research.The hydrogeological model of a typical Svalbard glacier forefield can also be a good example of applying such models to other catchments in cold climates, as well as in glacierised catchments. This study also indicates the potential of applying this model in water management research to identify the groundwater component resource and its variability due to permafrost loss. Some regions of cold climates are also supplied with drinking water from the aquifer that forms above the permafrost [85,86]. The development of studies of hydrogeological processes and changes in the thickness of the active layer or permafrost loss, which integrate cryohydrogeology studies [39], enables better water management in these regions.
- A tool like FEFLOW [67] enables the spatial variation in hydrogeological conditions to be accounted for in a model based on detailed field and laboratory results, which significantly impacts the reliability of the results. Moreover, the mesh flexibility of the FEFLOW model reflected the spatial hydrogeological structure, where layer thicknesses are very thin and the surface morphology is complex. Although our model was only produced for steady-state conditions, the software chosen allows us to quite easily extend the model to transient conditions and to add modules responsible for heat and/or mass transport in the future once appropriate input data from the research area have been collected. The FEFLOW tool belongs to the DHI software family; therefore, it can be integrated with the hydrological Mike HydroRiver model and thus combine the modelling of surface and groundwater hydrology.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Isaksen, K.; Nordli, Ø.; Førland, E.J.; Łupikasza, E.; Eastwood, S.; Niedźwiedź, T. Recent Warming on Spitsbergen—Influence of Atmospheric Circulation and Sea Ice Cover. J. Geophys. Res. Atmos. 2016, 121, 11913–11931. [Google Scholar] [CrossRef]
- Osuch, M.; Wawrzyniak, T. Inter- and Intra-Annual Changes in Air Temperature and Precipitation in Western Spitsbergen: Changes of Air Temperature and Precipitation in Western Spitsbergen. Int. J. Climatol. 2017, 37, 3082–3097. [Google Scholar] [CrossRef]
- Wawrzyniak, T.; Osuch, M. A 40-Year High Arctic Climatological Dataset of the Polish Polar Station Hornsund (SW Spitsbergen, Svalbard). Earth Syst. Sci. Data 2020, 12, 805–815. [Google Scholar] [CrossRef] [Green Version]
- Hanssen-Bauer, I.; Førland, E.; Hisdal, H.; Mayer, S.; Sandø, A.B.; Sorteberg, A. (Eds.) Climate in Svalbard 2100—A Knowledge Base for Climate Adaptation. NCCS Report 1/2019; Norwegian Centre for Climate Services (NCCS) for Norwegian Environment Agency (Miljødirektoratet): Oslo, Norway, 2019; 208p. [Google Scholar] [CrossRef]
- Błaszczyk, M.; Jania, J.A.; Kolondra, L. Fluctuations of Tidewater Glaciers in Hornsund Fjord (Southern Svalbard) since the Beginning of the 20th Century. Pol. Polar Res. 2013, 34, 327–352. [Google Scholar] [CrossRef]
- Błaszczyk, M.; Jania, J.A.; Ciepły, M.; Grabiec, M.; Ignatiuk, D.; Kolondra, L.; Kruss, A.; Luks, B.; Moskalik, M.; Pastusiak, T.; et al. Factors Controlling Terminus Position of Hansbreen, a Tidewater Glacier in Svalbard. J. Geophys. Res. Earth Surf. 2021, 126, e2020JF005763. [Google Scholar] [CrossRef]
- Engelhardt, M.; Schuler, T.V.; Andreassen, L.M. Contribution of Snow and Glacier Melt to Discharge for Highly Glacierised Catchments in Norway. Hydrol. Earth Syst. Sci. 2014, 18, 511–523. [Google Scholar] [CrossRef] [Green Version]
- Nuth, C.; Gilbert, A.; Köhler, A.; McNabb, R.; Schellenberger, T.; Sevestre, H.; Weidle, C.; Girod, L.; Luckman, A.; Kääb, A. Dynamic Vulnerability Revealed in the Collapse of an Arctic Tidewater Glacier. Sci. Rep. 2019, 9, 5541. [Google Scholar] [CrossRef] [Green Version]
- Box, J.E.; Colgan, W.T.; Wouters, B.; Burgess, D.O.; O’Neel, S.; Thomson, L.I.; Mernild, S.H. Global Sea-Level Contribution from Arctic Land Ice: 1971–2017. Environ. Res. Lett. 2018, 13, 125012. [Google Scholar] [CrossRef] [Green Version]
- van Pelt, W.; Pohjola, V.; Pettersson, R.; Marchenko, S.; Kohler, J.; Luks, B.; Hagen, J.O.; Schuler, T.V.; Dunse, T.; Noël, B.; et al. A Long-Term Dataset of Climatic Mass Balance, Snow Conditions, and Runoff in Svalbard (1957–2018). Cryosphere 2019, 13, 2259–2280. [Google Scholar] [CrossRef] [Green Version]
- Schuler, T.V.; Kohler, J.; Elagina, N.; Hagen, J.O.M.; Hodson, A.J.; Jania, J.A.; Kääb, A.M.; Luks, B.; Małecki, J.; Moholdt, G.; et al. Reconciling Svalbard Glacier Mass Balance. Front. Earth Sci. 2020, 8, 156. [Google Scholar] [CrossRef]
- Isaksen, K.; Mühll, D.V.; Gubler, H.; Kohl, T.; Sollid, J.L. Ground Surface-Temperature Reconstruction Based on Data from a Deep Borehole in Permafrost at Janssonhaugen, Svalbard. Ann. Glaciol. 2000, 31, 287–294. [Google Scholar] [CrossRef] [Green Version]
- Isaksen, K.; Benestad, R.E.; Harris, C.; Sollid, J.L. Recent Extreme Near-Surface Permafrost Temperatures on Svalbard in Relation to Future Climate Scenarios. Geophys. Res. Lett. 2007, 34, L17502. [Google Scholar] [CrossRef]
- Biskaborn, B.K.; Smith, S.L.; Noetzli, J.; Matthes, H.; Vieira, G.; Streletskiy, D.A.; Schoeneich, P.; Romanovsky, V.E.; Lewkowicz, A.G.; Abramov, A.; et al. Permafrost Is Warming at a Global Scale. Nat Commun 2019, 10, 264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Christiansen, H.H.; Gilbert, G.L.; Demidov, N.; Guglielmin, M.; Isaksen, K.; Osuch, M.; Boike, J. Permafrost Temperatures and Active Layer Thickness in Svalbard during 2017/2018 (PermaSval). In SESS Report 2019—The State of Environmental Science in Svalbard—An Annual Report; Svalbard Integrated Arctic Earth Observing System (SIOS): Longyearbyen, Svalbard, Norway, 2020; Chapter 10; pp. 236–249. [Google Scholar] [CrossRef]
- Christiansen, H.H.; Gilbert, G.L.; Demidov, N.; Guglielmin, M.; Isaksen, K.; Osuch, M.; Boike, J. Ground Ice Content, Drilling Methods and Equipment and Permafrost Dynamics in Svalbard 2016–2019 (PermaSval). In SESS Report 2020—The State of Environmental Science in Svalbard—An Annual Report; Svalbard Integrated Arctic Earth Observing System (SIOS): Longyearbyen, Svalbard, Norway, 2021; Chapter 12; pp. 258–275. [Google Scholar] [CrossRef]
- Ziaja, W.; Dudek, J.; Ostafin, K. Landscape Transformation under the Gåsbreen Glacier Recession since 1899, Southwestern Spitsbergen. Pol. Polar Res. 2016, 37, 155–172. [Google Scholar] [CrossRef] [Green Version]
- Ewertowski, M.W.; Evans, D.J.A.; Roberts, D.H.; Tomczyk, A.M.; Ewertowski, W.; Pleksot, K. Quantification of Historical Landscape Change on the Foreland of a Receding Polythermal Glacier, Hørbyebreen, Svalbard. Geomorphology 2019, 325, 40–54. [Google Scholar] [CrossRef] [Green Version]
- Nowak, A.; Hodson, A. Hydrological Response of a High-Arctic Catchment to Changing Climate over the Past 35 Years: A Case Study of Bayelva Watershed, Svalbard. Polar Res. 2013, 32, 19691. [Google Scholar] [CrossRef] [Green Version]
- Nowak, A.; Hodgkins, R.; Nikulina, A.; Osuch, M.; Wawrzyniak, T.; Kavan, J.; Łepkowska, E.; Majerska, M.; Romashova, K.; Vasilevich, I.; et al. From Land to Fjords: The Review of Svalbard Hydrology from 1970 to 2019 (SvalHydro). In State of Environmental Science in Svalbard (SESS) Report 2020; Moreno-Ibáñez, M., Hagen, J.O., Hübner, C., Lihavainen, H., Zaborska, A., Eds.; Svalbard Integrated Arctic Earth Observing System (SIOS): Longyearbyen, Svalbard, Norway, 2021; pp. 176–201. [Google Scholar]
- Osuch, M.; Wawrzyniak, T.; Łepkowska, E. Changes in the Flow Regime of High Arctic Catchments with Different Stages of Glaciation, SW Spitsbergen. Sci. Total Environ. 2022, 817, 152924. [Google Scholar] [CrossRef]
- Etzelmüller, B.; Schuler, T.V.; Isaksen, K.; Christiansen, H.H.; Farbrot, H.; Benestad, R. Modeling the Temperature Evolution of Svalbard Permafrost during the 20th and 21st Century. Cryosphere 2011, 5, 67–79. [Google Scholar] [CrossRef] [Green Version]
- Kasprzak, M.; Szymanowski, M. Terrain Determinants of Permafrost Active Layer Thermal Conditions: A Case Study from Arctic Deglaciated Catchment (Bratteggdalen, SW Spitsbergen). PeerJ Prepr. 2018. [Google Scholar] [CrossRef]
- Woo, M.-K. Permafrost Hydrology; Springer: Berlin/Heidelberg, Germany, 2014; ISBN 9783642429743. [Google Scholar]
- Hodgkins, R.; Cooper, R.; Wadham, J.; Tranter, M. The Hydrology of the Proglacial Zone of a High-Arctic Glacier (Finsterwalderbreen, Svalbard): Atmospheric and Surface Water Fluxes. J. Hydrol. 2009, 378, 150–160. [Google Scholar] [CrossRef] [Green Version]
- Cooper, R.; Hodgkins, R.; Wadham, J.; Tranter, M. The Hydrology of the Proglacial Zone of a High-Arctic Glacier (Finsterwalderbreen, Svalbard): Sub-Surface Water Fluxes and Complete Water Budget. J. Hydrol. 2011, 406, 88–96. [Google Scholar] [CrossRef] [Green Version]
- Marszałek, H.; Staśko, A. Estimation of subsurface runoff in the Hornsund region (SW Spitsbergen). Biul. Państwowego Inst. Geol. 2013, 456, 391–396. [Google Scholar]
- Marciniak, M.; Dragon, K.; Chudziak, U. The role of groundwater flow on the Ebba polar river runoff (Petuniabukta, Central Spitsbergen). Bull. Pol. Geol. Inst. 2011, 445, 371–382. [Google Scholar]
- Marciniak, M.; Dragon, K.; Chudziak, Ł. Water Circulation within a High-Arctic Glaciated Valley (Petunia Bay, Central Spitsbergen): Recharge of a Glacial River. J. Hydrol. 2014, 513, 91–100. [Google Scholar] [CrossRef]
- Dragon, K.; Marciniak, M.; Szpikowski, J.; Szpikowska, G.; Wawrzyniak, T. The Hydrochemistry of Glacial Ebba River (Petunia Bay, Central Spitsbergen): Groundwater Influence on Surface Water Chemistry. J. Hydrol. 2015, 529, 1499–1510. [Google Scholar] [CrossRef]
- Osuch, M.; Wawrzyniak, T.; Nawrot, A. Diagnosis of the Hydrology of a Small Arctic Permafrost Catchment Using HBV Conceptual Rainfall-Runoff Model. Hydrol. Res. 2019, 50, 459–478. [Google Scholar] [CrossRef] [Green Version]
- Majchrowska, E.; Ignatiuk, D.; Jania, J.; Marszałek, H.; Wąsik, M. Seasonal and Interannual Variability in Runoff from the Werenskioldbreen Catchment, Spitsbergen. Pol. Polar Res. 2015, 36, 197–224. [Google Scholar] [CrossRef] [Green Version]
- Stachnik, Ł.; Majchrowska, E.; Yde, J.C.; Nawrot, A.P.; Cichała-Kamrowska, K.; Ignatiuk, D.; Piechota, A. Chemical Denudation and the Role of Sulfide Oxidation at Werenskioldbreen, Svalbard. J. Hydrol. 2016, 538, 177–193. [Google Scholar] [CrossRef] [Green Version]
- Łepkowska, E.; Stachnik, Ł. Which Drivers Control the Suspended Sediment Flux in a High Arctic Glacierized Basin (Werenskioldbreen, Spitsbergen)? Water 2018, 10, 1408. [Google Scholar] [CrossRef] [Green Version]
- Stachnik, Ł.; Yde, J.C.; Nawrot, A.; Uzarowicz, Ł.; Łepkowska, E.; Kozak, K. Aluminium in Glacial Meltwater Demonstrates an Association with Nutrient Export (Werenskiöldbreen, Svalbard). Hydrol. Processes 2019, 33, 1638–1657. [Google Scholar] [CrossRef]
- Decaux, L.; Grabiec, M.; Ignatiuk, D.; Jania, J. Role of Discrete Recharge from the Supraglacial Drainage System Formodelling of Subglacial Conduits Pattern of Svalbard Polythermal glaciers. Cryosphere 2019, 13, 735–752. [Google Scholar] [CrossRef] [Green Version]
- Ignatiuk, D.S.; Błaszczyk, M.; Budzik, T.; Grabiec, M.; Jania, J.A.; Kondracka, M.; Laska, M.; Małarzewski, Ł.; Stachnik, Ł. A Decade of Glaciological and Meteorological Observations in the Arctic (Werenskioldbreen, Svalbard). Earth Syst. Sci. Data Discuss 2022. preprint. [Google Scholar] [CrossRef]
- Piechota, A.M.; Sitek, A.; Ignatiuk, D.; Piotrowski, J.A. Reconstructing subglacial drainage of Werenskiold Glacier (SW Spitsbergen) based on numerical modelling. Bull. Pol. Geol. Inst. 2012, 451, 191–202. [Google Scholar]
- Lamontagne-Hallé, P.; McKenzie, J.M.; Kurylyk, B.L.; Molson, J.; Lyon, L.N. Guidelines for Cold-regions Groundwater Numerical Modeling. WIREs Water 2020, 7, e1467. [Google Scholar] [CrossRef]
- Navarro, F.J.; Martín-Español, A.; Lapazaran, J.J.; Grabiec, M.; Otero, J.; Vasilenko, E.V.; Puczko, D. Ice Volume Estimates from Ground-Penetrating Radar Surveys, Wedel Jarlsberg Land Glaciers, Svalbard. Arct. Antarct. Alp. Res. 2014, 46, 394–406. [Google Scholar] [CrossRef] [Green Version]
- Grabiec, M.; Budzik, T.; Głowacki, P. Modeling and Hindcasting of the Mass Balance of Werenskioldbreen (Southern Svalbard). Arct. Antarct. Alp. Res. 2012, 44, 164–179. [Google Scholar] [CrossRef] [Green Version]
- Ciężkowski, W.; Głowacki, T.; Grudzińska, K.K.; Kasza, D.; Zagożdżon, P.P. Front of the Werenskiold Glacier (Svalbard)—Changes in Years 1957–2013. E3S Web Conf. 2018, 29, 00030. [Google Scholar] [CrossRef] [Green Version]
- Binkenmajer, K. Geological Map of the Hornsund Fjord Region. 1990. Available online: http://geoinfo.amu.edu.pl/sgp/wgs04/06Artykuly/geol/geol.html (accessed on 31 March 2022).
- Migała, K.; Peremya, J.; Birkenmajer, K.; Ignatiuk, D.; Kabała, C.; Kasprzak, M.; Korabiewski, B.; Marszałek, H.; Matuła, J.; Migoń, P.; et al. Geographical Environment in the Vicinity of the Stanisław Baranowski Polar Station, Werenskioldbreen. In Ancient and Modern Geoecosystems of Spitsbergen; Zwoliński, Z., Kostrzewski, A., Pulina, M., Eds.; Bogucki Scientific Publishers: Poznań, Poland, 2013; pp. 101–144. [Google Scholar]
- Kieres, A.; Piestrzyński, A. Ore-Mineralization of the Hecla Hoek Succession (Precambrian) around Werenskioldbreen, South Spitsbergen. Studia Geol. Pol. 1992, 98, 115–151. [Google Scholar]
- Czerny, J.; Lipień, G.; Manecki, A.; Piestrzyński, A. Geology and Pore-Mineralization of the Hecla Hoek Succession (Precambrian) in Front of Werenskioldbreen, South Spitsbergen. Studia Geol. Pol. 1992, 98, 67–113. [Google Scholar]
- Czerny, J.; Kieres, A.; Manecki, M.; Rajchel, J. Geological Map of the SW Part of Wedel-Jarlsberg Land Spitsbergen; Institute of Geology and Mineral Deposits University of Mining and Metallurgy: Kraków, Poland, 1993. [Google Scholar]
- Błaszczyk, M.; Laska, M.; Sivertsen, A.; Jawak, S.D. Combined Use of Aerial Photogrammetry and Terrestrial Laser Scanning for Detecting Geomorphological Changes in Hornsund, Svalbard. Remote Sens. 2022, 14, 601. [Google Scholar] [CrossRef]
- Karczewski, A.; Andrzejewski, L.; Chmal, H.; Jania, J.; Kłysz, P.; Kostrzewski, A.; Linder, L.; Marks, L.; Pękala, K.; Pulina, M.; et al. Map of Hornsund, Spitsbergen—Geomorphology; University of Silesia: Katowice, Poland, 1984. [Google Scholar]
- Kabala, C.; Zapart, J. Initial Soil Development and Carbon Accumulation on Moraines of the Rapidly Retreating Werenskiold Glacier, SW Spitsbergen, Svalbard Archipelago. Geoderma 2012, 175–176, 9–20. [Google Scholar] [CrossRef]
- French, H.M. The Periglacial Environment, 3rd ed.; John Wiley and Sons: Chichester, UK; Hoboken, NJ, USA, 2007; ISBN 9780470865880. [Google Scholar]
- Kabala, C.; Zapart, J. Recent, Relic and Buried Soils in the Forefield of Werenskiold Glacier, SW Spitsbergen. Pol. Polar Res. 2009, 30, 161–178. [Google Scholar]
- Leszkiewicz, J. Characteristics of Polar Basins and an Approach to Statistical Modelling of Snowmelt and Ablation Runoff in Western Spitsbergen; Scientific Papers of the University of Silesia; University of Silesia: Katowice, Poland, 1987; Volume 920. [Google Scholar]
- Krawczyk, W.; Wach, J. Winter Outflows of Waters from Werenskiold Glacier in the Hydrological Year 1985/1986. In Proceedings of the XX Polar Symposium, Lublin, Poland, 3–5 June 1993; pp. 403–411. [Google Scholar]
- Bukowska-Jania, E. The Role of Glacier Systems in the Migration of Calcium Carbonate in the Natural Environment (with Particular Reference to Svalbard and the Late-Glacial Areas in NW Poland), 1st ed.; Scientific Papers of the University of Silesia in Katowice; University of Silesia: Katowice, Poland, 2003; ISBN 9788322612194. [Google Scholar]
- Stachnik, Ł.; Yde, J.C.; Kondracka, M.; Ignatiuk, D.; Grzesik, M. Glacier Naled Evolution and Relation to the Subglacial Drainage System Based on Water Chemistry and GPR Surveys (Werenskioldbreen, SW Svalbard). Ann. Glaciol. 2016, 57, 19–30. [Google Scholar] [CrossRef] [Green Version]
- Singh, V.P. (Ed.) Encyclopedia of Snow, Ice and Glaciers; Encyclopedia of Earth Sciences Series; Springer: Dordrecht, The Netherlands, 2011; ISBN 9789048126415. [Google Scholar]
- Obu, J.; Westermann, S.; Bartsch, A.; Berdnikov, N.; Christiansen, H.H.; Dashtseren, A.; Delaloye, R.; Elberling, B.; Etzelmüller, B.; Kholodov, A.; et al. Northern Hemisphere Permafrost Map Based on TTOP Modelling for 2000–2016 at 1 km2 Scale. Earth-Sci. Rev. 2019, 193, 299–316. [Google Scholar] [CrossRef]
- Liu, W.; Fortier, R.; Molson, J.; Lemieux, J. Three-Dimensional Numerical Modeling of Cryo-Hydrogeological Processes in a River-Talik System in a Continuous Permafrost Environment. Water Resour. Res. 2022, 58, e2021WR031630. [Google Scholar] [CrossRef]
- Liu, W.; Fortier, R.; Molson, J.; Lemieux, J. A Conceptual Model for Talik Dynamics and Icing Formation in a River Floodplain in the Continuous Permafrost Zone at Salluit, Nunavik (Quebec), Canada. Permafr. Periglac Process 2021, 32, 468–483. [Google Scholar] [CrossRef]
- Wawrzyniak, T.; Osuch, M. A Consistent High Arctic Climatological Dataset (1979–2018) of the Polish Polar Station Hornsund (SW Spitsbergen, Svalbard); Pangaea: Bremerhaven, Germany, 2019; 37 datasets. [Google Scholar] [CrossRef]
- Wawrzyniak, T.; Osuch, M. (Eds.) Annual Mean of Mean Air Temperatures (1979–2018) at the Arctic Meteorological Station Hornsund, Spitsbergen. In A consistent High Arctic Climatological Dataset (1979–2018) of the Polish Polar Station Hornsund (SW Spitsbergen, Svalbard); Pangaea: Bremerhaven, Germany, 2019. [Google Scholar] [CrossRef]
- Wawrzyniak, T.; Osuch, M. (Eds.) Daily Precipitation (1979–2018) at the Arctic Meteorological Station Hornsund, Spitsbergen. In A consistent High Arctic Climatological Dataset (1979–2018) of the Polish Polar Station Hornsund (SW Spitsbergen, Svalbard); Pangaea: Bremerhaven, Germany, 2019. [Google Scholar] [CrossRef]
- PN-EN ISO 14688-2:2006; Geotechnical Investigation and Testing—Identification and Classification of Soil. Part 2: Principles for a Classification. International Organization for Standardization: Geneva, Switzerland, 2006.
- Rosas, J.; Lopez, O.; Missimer, T.M.; Coulibaly, K.M.; Dehwah, A.H.A.; Sesler, K.; Lujan, L.R.; Mantilla, D. Determination of Hydraulic Conductivity from Grain-Size Distribution for Different Depositional Environments: J. Rosas et Al. Groundwater 2014, 52, 399–413. [Google Scholar] [CrossRef]
- Kolondra, L. 1:20 000 Werenkioldbreen Spitsbergen, Svalbard, Norway, 2018, Centre for Polar Studies, Faculty of Natural Sciences, Univeristy of Silesia in Katowice and Norwegian Polar Institute, Tromso, ISBN 978-83-61644-54-5. Available online: https://integro.ciniba.edu.pl/integro/193006909158/kolondra-leszek/s-w-wedel-jarlsberg-land?bibFilter=19 (accessed on 31 March 2022).
- Diersch, H.-J.G. FEFLOW: Finite Element Modeling of Flow, Mass and Heat Transport in Porous and Fractured Media, 1st ed.; Springer: Berlin/Heidelberg, Germany, 2014; ISBN 9783642387395. [Google Scholar]
- Kasprzak, M. High-Resolution Electrical Resistivity Tomography Applied to Patterned Ground, Wedel Jarlsberg Land, South-West Spitsbergen. Polar Res. 2015, 34, 25678. [Google Scholar] [CrossRef] [Green Version]
- Domenico, P.A.; Schwartz, F.W. Physical and Chemical Hydrogeology, 2nd ed.; Wiley: New York, NY, USA, 1998; ISBN 9780471597629. [Google Scholar]
- Jaworska-Szulc, B. Groundwater recharge estimation in Kashubian Lake District different scales studies, comparison of methods. Geol. Rev. 2015, 63, 7. [Google Scholar]
- Olszewski, A.; Szupryczyński, J. The Texture of Modern Moraine Sediments of the Werenskiöld Glacier’s Frontal Zone (Spitsbergen). Geogr. Rev. 1980, 57, 645–670. [Google Scholar]
- Staśko, S. On groundwater in crystalline rocks of the Sudetes and their foreland. Bull. Pol. Geol. Inst. 2010, 440, 135–144. [Google Scholar]
- Shevnin, V.; Delgado-Rodriguez, O.; Mousatov, A.; Ryjov, A. Estimation of Hydraulic Conductivity on Clay Content in Soil Determined from Resistivity Data. Geofis. Int. 2006, 45, 195–207. [Google Scholar] [CrossRef]
- Singhal, B.B.S.; Gupta, R.P. Applied Hydrogeology of Fractured Rocks; Springer: Dordrecht, The Netherlands, 2010; ISBN 9789048187980. [Google Scholar]
- Barnet, B.; Townley, L.R.; Post, V.; Evans, R.E.; Hunt, R.J.; Peeters, L.; Richardson, S.; Werner, A.D.; Knapton, A.; Bronkay, A. Australian Groundwater Modelling Guidelines; Sinclair Knight Merz (Firm); National Water Commission: Canberra, ACT, Australia, 2012. [Google Scholar]
- Pazdro, Z.; Kozerski, B. Hydrogeology, 4th ed.; Geological Publishing: Warszawa, Poland, 1990; ISBN 9788322003572. [Google Scholar]
- Lind, B.B.; Lundin, L. Saturated Hydraulic Conductivity of Scandinavian Tills. Hydrol. Res. 1990, 21, 107–118. [Google Scholar] [CrossRef]
- Strobel, M.L. Hydraulic Properties of Three Types of Glacial Deposits in Ohio; Water-Resource Investigations Report; U.S. Geological Survey: Columbus, OH, USA, 1993. [Google Scholar]
- Migała, K. The characteristic feautures of the active layer of the permafrost in the climate of Spitsbergen. Acta Univ. Wratislav. 1994, 1, 77–111. [Google Scholar]
- Dolnicki, P.; Grabiec, M.; Puczko, D.; Gawor, Ł.; Budzik, T.; Klementowski, J. Variability of Temperature and Thickness of Permafrost Active Layer at Coastal Sites of Svalbard. Pol. Polar Res. 2013, 34, 353–374. [Google Scholar] [CrossRef] [Green Version]
- Dolnicki, P. Characteristics of the Active Layer in Spitsbergen on the Example of the Fuglebergsletta Coastal Plain; Scientific Publishing of the Pedagogical University: Kraków, Poland, 2020; ISBN 9788380845763. [Google Scholar]
- Migała, K.; Głowacki, P.; Klementowski, J. The Dynamics of Active Layer Thawing in the Hornsund Region (SW Spitsbergen) and Its Factors. In Proceedings of the Polish Polar Studies Conference Materials; 30th International Polar Symposium: Gdynia, Poland, 2004; Volume 30, pp. 251–262. [Google Scholar]
- Wawrzyniak, T.; Osuch, M.; Napiórkowski, J.; Westermann, S. Modelling of the Thermal Regime of Permafrost during 1990–2014 in Hornsund, Svalbard. Pol. Polar Res. 2016, 37, 219–242. [Google Scholar] [CrossRef] [Green Version]
- Kosiba, A. Glacio-Hydrodynamic Processes and Changes on the Werenskiold Glacier and the Hans Glacier, SW Spitsbergen. Acta Univ. Wratislav. 1982, IV, 133–152. [Google Scholar]
- White, D.M.; Craig Gerlach, S.; Loring, P.; Tidwell, A.C.; Chambers, M.C. Food and Water Security in a Changing Arctic Climate. Environ. Res. Lett. 2007, 2, 045018. [Google Scholar] [CrossRef]
- Lemieux, J.-M.; Fortier, R.; Talbot-Poulin, M.-C.; Molson, J.; Therrien, R.; Ouellet, M.; Banville, D.; Cochand, M.; Murray, R. Groundwater Occurrence in Cold Environments: Examples from Nunavik, Canada. Hydrogeol. J. 2016, 24, 1497–1513. [Google Scholar] [CrossRef]
Field Data (Monitoring) | Modelled Data | |||||||
---|---|---|---|---|---|---|---|---|
Depth to Groundwater | ||||||||
ID | Elevation (m a.s.l.) | (A) Groundwater Level Average (m a.s.l.) | Average (m) | Max (m) | Min (m) | (B) Hydraulic Head (m a.s.l.) | Depth to Groundwater (m) | Groundwater Deviation (B − A) (m) |
P1 | 14.71 | 14.43 | 0.28 | 0.22 | 0.30 | 14.52 | 0.20 | 0.08 |
P3 | 14.92 | 14.79 | 0.13 | 0.00 | 0.33 | 14.72 | 0.20 | −0.07 |
P4 | 14.71 | 14.34 | 0.37 | 0.22 | 0.44 | 14.50 | 0.22 | 0.16 |
P5 | 15.28 | 14.90 | 0.37 | 0.29 | 0.44 | 14.90 | 0.38 | −0.01 |
P7 | 28.38 | 28.07 | 0.31 | 0.24 | 0.33 | 27.98 | 0.40 | −0.09 |
P8 | 26.64 | 26.34 | 0.30 | 0.24 | 0.31 | 26.32 | 0.33 | −0.02 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stachniak, K.; Sitek, S.; Ignatiuk, D.; Jania, J. Hydrogeological Model of the Forefield Drainage System of Werenskioldbreen, Svalbard. Water 2022, 14, 1514. https://doi.org/10.3390/w14091514
Stachniak K, Sitek S, Ignatiuk D, Jania J. Hydrogeological Model of the Forefield Drainage System of Werenskioldbreen, Svalbard. Water. 2022; 14(9):1514. https://doi.org/10.3390/w14091514
Chicago/Turabian StyleStachniak, Katarzyna, Sławomir Sitek, Dariusz Ignatiuk, and Jacek Jania. 2022. "Hydrogeological Model of the Forefield Drainage System of Werenskioldbreen, Svalbard" Water 14, no. 9: 1514. https://doi.org/10.3390/w14091514
APA StyleStachniak, K., Sitek, S., Ignatiuk, D., & Jania, J. (2022). Hydrogeological Model of the Forefield Drainage System of Werenskioldbreen, Svalbard. Water, 14(9), 1514. https://doi.org/10.3390/w14091514