Development of a Multiple-Drought Index for Comprehensive Drought Risk Assessment Using a Dynamic Naive Bayesian Classifier
Abstract
:1. Introduction
2. Overview of Method and Data
3. Dynamic Naive Bayesian Classifier (DNBC)
4. Results
4.1. Individual Drought Indices
4.2. DNBC-MDI
4.3. Bivariate Drought Frequency Analysis Using a Copula Function
4.4. Risk Analysis
4.5. Comparisons with Actual Drought Events
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pachauri, R.K.; Allen, M.R.; Barros, V.R.; Broome, J.; Cramer, W.; Christ, R.; Church, J.A.; Clarke, L.; Dahe, Q.; Dasgupta, P.; et al. Climate change 2014: Synthesis report. In Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2014; p. 151. [Google Scholar]
- Sheffield, J.; Wood, E.F.; Roderick, M.L. Little change in global drought over the past 60 years. Nature 2012, 491, 435. [Google Scholar] [CrossRef] [PubMed]
- Wilhite, D.A. Drought Monitoring and Early Warning: Concepts, Progress and Future Challenges; World Meteorological Organization (WMO): Geneva, Switzerland, 2006; p. 1006. [Google Scholar]
- World Meteorological Organization (WMO). Experts Agree on a Universal Drought Index to Cope with Climate Risks; WMO Press Release: Geneva, Switzerland, 2009; p. 872. [Google Scholar]
- Kim, B.S.; Chang, I.G.; Sung, J.H.; Han, H.J. Projection in future drought hazard of South Korea based on RCP climate change scenario 8.5 using SPEI. Adv. Meteorol. 2016, 2016, 4148710. [Google Scholar] [CrossRef] [Green Version]
- Park, B.S.; Lee, J.H.; Kim, C.J.; Jang, H.W. Projection of future drought of Korea based on probabilistic approach using multi-model and multi climate change scenarios. J. Korean Soc. Civ. Eng. 2013, 33, 1871–1885. [Google Scholar] [CrossRef] [Green Version]
- Park, M.; Lee, O.; Park, Y.; Kim, S. Future drought projection in Korea under AR5 RCP climate change scenarios. J. Korean Soc. Hazard Mitig. 2015, 15, 423–433. [Google Scholar] [CrossRef]
- Venus, V.; Bass, S.; Brill, I.; Chinyamakobvu, E.; David, E.; Dier, S.; Frydman, I.; Hess, U.; Hori, Y.; Nyberg, J.; et al. Drought Risk Reduction Framework and Practices; United Nations International Strategy for Disaster Reduction Secretariat (UNISDR): Geneva, Switzerland, 2009. [Google Scholar]
- Niemeyer, S. New drought indices. Options Mediterraneennes. Semin. Mediterr. 2008, 80, 267–274. [Google Scholar]
- Heim, R.R. Drought Indices: A Review. Drought: A Global Assessment; Routledge: London, UK, 2000; pp. 159–167. [Google Scholar]
- Heim, R.R., Jr. A review of twentieth-century drought indices used in the United States. Bull. Am. Meteorol. Soc. 2002, 83, 1149–1165. [Google Scholar] [CrossRef] [Green Version]
- Vogt, J.V.; Niemeyer, S.; Somma, F.; Beaudin, I.; Viau, A.A. Drought monitoring from space. Drought Drought Mitig. Eur. 2000, 14, 167–183. [Google Scholar]
- Ali, M.; Ghaith, M.; Wagdy, A.; Helmi, A.M. Development of a new multivariate composite drought index for the Blue Nile River Basin. Water 2022, 14, 886. [Google Scholar] [CrossRef]
- Chen, S.; Muhammad, W.; Lee, J.H.; Kim, T.W. Assessment of probabilistic multi-index drought using a dynamic naive Bayesian classifier. Water Resour. Manag. 2018, 32, 4359–4374. [Google Scholar] [CrossRef]
- Zargar, A.; Sadiq, R.; Naser, B.; Khan, F.I. A review of drought indices. Environ. Rev. 2011, 19, 333–349. [Google Scholar] [CrossRef]
- Esfahanian, E.; Nejadhashemi, A.P.; Abouali, M.; Adhikari, U.; Zhang, Z.; Daneshvar, F.; Herman, M.R. Development and evaluation of a comprehensive drought index. J. Environ. Manag. 2017, 185, 31–43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mallya, G.; Tripathi, S.; Kirshner, S.; Govindaraju, R.S. Probabilistic assessment of drought characteristics using hidden Markov model. J. Hydrol. Eng. 2012, 18, 834–845. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; Shin, J.Y.; Kim, T.W. Probabilistic forecasting of drought: A hidden Markov model aggregated with the RCP 8.5 precipitation projection. Stoch. Environ. Res. Risk Assess. 2016, 31, 1061–1076. [Google Scholar] [CrossRef]
- Palacios-Alonso, M.A.; Brizuela, C.A.; Sucar, L.E. Evolutionary learning of dynamic naive Bayesian classifiers. J. Autom. Reason. 2010, 45, 21–37. [Google Scholar] [CrossRef]
- Shin, J.Y.; Kwon, H.H.; Lee, J.H.; Kim, T.W. Bayesian networks-based probabilistic forecasting of hydrological drought considering drought propagation. J. Korea Water Resour. Assoc. 2017, 50, 769–779. [Google Scholar]
- Yoo, J.Y.; Kim, J.Y.; Kwon, H.H.; Kim, T.W. Sensitivity assessment of meteorological drought index using Bayesian network. J. Korean Soc. Civ. Eng. 2014, 34, 1787–1796. [Google Scholar] [CrossRef] [Green Version]
- Yoo, J.Y.; Shin, J.Y.; Kim, D.; Kim, T.W. Drought risk analysis using stochastic rainfall generation model and copula functions. J. Korea Water Resour. Assoc. 2013, 46, 425–437. [Google Scholar] [CrossRef] [Green Version]
- Yu, J.S.; Shin, J.Y.; Kwon, M.; Kim, T.W. Bivariate drought frequency analysis to evaluate water supply capacity of multi-purpose dam. J. Korean Soc. Civ. Eng. 2017, 37, 231–238. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Singh, V.P.; Guo, S.; Mishra, A.K.; Guo, J. Drought analysis using copulas. J. Hydrol. Eng. 2012, 18, 797–808. [Google Scholar] [CrossRef]
- Mirabbasi, R.; Fakheri-Fard, A.; Dinpashoh, Y. Bivariate drought frequency analysis using the copula method. Theor. Appl. Climatol. 2012, 108, 191–206. [Google Scholar] [CrossRef]
- Kim, S.; Parhi, P.; Jun, H.; Lee, J. Evaluation of drought severity with a Bayesian network analysis of multiple drought indices. J. Water Resour. Plan. Manag. 2017, 144, 05017016. [Google Scholar] [CrossRef] [Green Version]
- Yu, J.S.; Yoo, J.Y.; Lee, J.H.; Kim, T.W. Estimation of drought risk through the bivariate drought frequency analysis using copula functions. J. Korea Water Resour. Assoc. 2016, 49, 217–225. [Google Scholar] [CrossRef]
- Lee, D.R.; Moon, J.W.; Lee, D.H.; Ahn, J.H. Development of water supply capacity index to monitor droughts in a reservoir. J. Korea Water Resour. Assoc. 2006, 39, 199–214. [Google Scholar] [CrossRef] [Green Version]
- Nelsen, R.B. An Introduction to Copulas, 2nd ed.; Springer Science & Business Media: New York, NY, USA, 2007. [Google Scholar]
- Zhang, L.S.; Singh, V.P. Bivariate flood frequency analysis using the copula method. J. Hydrol. Eng. 2006, 11, 150–164. [Google Scholar] [CrossRef]
- Kwak, J.W.; Kim, D.G.; Lee, J.S.; Kim, H.S. Hydrological drought analysis using copula theory. J. Korean Soc. Civ. Eng. 2012, 32, 161–168. [Google Scholar]
- Knutson, C.; Hayes, M.; Phillips, T. How to Reduce Drought Risk; Western Drought Coordination Council: Lincoln, NE, USA, 1998. [Google Scholar]
- Wilhite, D.A. Drought planning: A progress for state government. J. Am. Water Resour. Assoc. 1991, 27, 29–38. [Google Scholar] [CrossRef] [Green Version]
- Memon, A.A.; Muhammad, S.; Rahman, S.; Haq, M. Flood monitoring and damage assessment using water indices: A case study of Pakistan flood-2012. Egypt. J. Remote Sens. Space Sci. 2015, 18, 99–106. [Google Scholar] [CrossRef] [Green Version]
SPI, SDI, ESI, WSCI | DNBC-MDI | Moisture Condition |
---|---|---|
2.00~∞ | 1 | Extremely wet |
1.50~1.99 | 2 | Very wet |
1.00~1.49 | 3 | Moderately wet |
−0.99~0.99 | 4 | Normal |
−1.00~−1.49 | 5 | Moderately dry |
−1.50~−1.99 | 6 | Severe dry |
−2.00~−∞ | 7 | Extremely dry |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, H.; Park, D.-H.; Ahn, J.-H.; Kim, T.-W. Development of a Multiple-Drought Index for Comprehensive Drought Risk Assessment Using a Dynamic Naive Bayesian Classifier. Water 2022, 14, 1516. https://doi.org/10.3390/w14091516
Kim H, Park D-H, Ahn J-H, Kim T-W. Development of a Multiple-Drought Index for Comprehensive Drought Risk Assessment Using a Dynamic Naive Bayesian Classifier. Water. 2022; 14(9):1516. https://doi.org/10.3390/w14091516
Chicago/Turabian StyleKim, Hyeok, Dong-Hyeok Park, Jae-Hyun Ahn, and Tae-Woong Kim. 2022. "Development of a Multiple-Drought Index for Comprehensive Drought Risk Assessment Using a Dynamic Naive Bayesian Classifier" Water 14, no. 9: 1516. https://doi.org/10.3390/w14091516
APA StyleKim, H., Park, D. -H., Ahn, J. -H., & Kim, T. -W. (2022). Development of a Multiple-Drought Index for Comprehensive Drought Risk Assessment Using a Dynamic Naive Bayesian Classifier. Water, 14(9), 1516. https://doi.org/10.3390/w14091516