Development and Application of a Rainfall Temporal Disaggregation Method to Project Design Rainfalls
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Observation
2.2. Climate Models
2.3. Bias Correction for Climate Model Data
2.4. Neyman–Scott Rectangular Pulse Model (NSRPM)
- (1)
- Calculate the mean of 1 h rainfall, , the variance of 24 h rainfall, , the transition probability from wet to wet, in 24 h (daily) rainfall, the transition probability from dry to dry, in 24 h (daily) rainfall, and the probability of zero depth, . can be easily obtained by dividing the mean of input data by the temporal scale of input data. For example, if the input data is a 3 h scale rainfall, the 1 h mean rainfall is the input rainfall mean that is divided by 3.
- (2)
- Estimate the variance of 1, 3, 6, and 12 h rainfall, , , , and . It is known that it is desirable to construct a regression model with the variance of input data and the variance of the 1, 3, 6, and 12 h rainfall calculated from the observations for parameter estimation [21,23]. This assumes regional normality on a monthly scale and it is considered realistic to utilize empirical relationships rather than arbitrary distributions.
- (3)
- Ninety statistics, , , , , , , , and are used to estimate parameters to minimize the following objective function (Equation (12)), and genetic algorithms are used.
2.5. Rainfall Temporal Disaggregation Based on the NSRPM (RTD-NSRPM)
- Identification of the sequence of target rainfall events (wet = 0, dry = 1);
- Exploration of a synthetic time series with the same rainfall sequence; and
- Determination of the optimal time series that minimizes the following objective () among the explored synthetic time series.
2.6. Evaluation Strategy
3. Results and Discussion
3.1. Verification of the RTD-NSRPM
3.2. Comparison with the NSRPM
3.3. Projection of 1 h Maximum Rainfall
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, Y.; Li, H.; Reggiani, P. Climate Variability and Climate Change Impacts on Land Surface, Hydrological Processes and Water Management. Water 2019, 11, 1492. [Google Scholar] [CrossRef] [Green Version]
- IPCC. 2014: Climate Change 2014: Synthesis Report. In Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Core Writing Team, Pachauri, R.K., Meyer, L.A., Eds.; IPCC: Geneva, Switzerland, 2014; p. 151. [Google Scholar]
- Maraun, D.; Wetterhall, F.; Ireson, A.M.; Chandler, R.E.; Kendon, E.J.; Widmann, M.; Brienen, S.; Rust, H.W.; Sauter, T.; Themeßl, M.; et al. Precipitation downscaling under climate change: Recent developments to bridge the gap between dynamical models and the end user. Rev. Geophys. 2010, 48. [Google Scholar] [CrossRef]
- Eden, J.M.; Widmann, M.; Maraun, D.; Vrac, M. Comparison of GCM- and RCM-simulated precipitation following stochastic postprocessing. J. Geophys. Res. Atmos. 2014, 119, 11040–11053. [Google Scholar] [CrossRef] [Green Version]
- Tabari, H. Statistical Analysis and Stochastic Modelling of Hydrological Extremes. Water 2019, 11, 1681. [Google Scholar] [CrossRef] [Green Version]
- Taylor, K.E.; Stouffer, R.J.; Meehl, G.A. An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 2012, 93, 485–498. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.; Jang, J.; Kim, S. Performance Evaluation of Rainfall Disaggregation according to Temporal Scale of Rainfall Data. J. Wetl. Res. 2018, 20, 345–352. [Google Scholar]
- Jalota, S.K.; Vashisht, B.B.; Sharma, S.; Kaur, S. Chapter 2—Climate Change Projections. In Understanding Climate Change Impacts on Crop Productivity and Water Balance; Academic Press: Cambridge, MA, USA, 2018; pp. 55–86. [Google Scholar]
- Lombardo, F.; Volpi, E.; Koutsoyiannis, D. Rainfall downscaling in time: Theoretical and empirical comparison between multifractal and Hurst-Kolmogorov discrete random cascades. Hydrol. Sci. J. 2012, 57, 1052–1066. [Google Scholar] [CrossRef] [Green Version]
- Debele, B.; Srinivasan, R.; Parlange, J.Y. Accuracy evaluation of weather data generation and disaggregation methods at finer timescales. Adv. Water Res. 2007, 30, 1286–1300. [Google Scholar] [CrossRef]
- Abdellatif, M.; Atherton, W.; Alkhaddar, R. Application of the Stochastic Model for Temporal Rainfall Disaggregation for Hydrological Studies in North Western England. J. Hydroinform. 2013, 15, 555–567. [Google Scholar] [CrossRef] [Green Version]
- Nourani, V.; Farboudfam, N. Rainfall time series disaggregation in mountainous regions using hybrid wavelet-artificial intelligence methods. Environ. Res. 2019, 168, 306–318. [Google Scholar] [CrossRef]
- Rafatnejad, A.; Tavakolifar, H.; Nazif, S. Evaluation of the climate change impact on the extreme rainfall amounts using modified method of fragments for sub-daily rainfall disaggregation. Int. J. Climatol. 2022, 42, 908–927. [Google Scholar] [CrossRef]
- Burton, A.; Fowler, H.J.; Blenkinsop, S.; Kilsby, C.G. Downscaling transient climate change using a Neyman–Scott Rectangular Pulses stochastic rainfall model. J. Hydrol. 2010, 381, 18–32. [Google Scholar] [CrossRef]
- Olsson, J.; Burlando, P. Reproduction of temporal scaling by a rectangular pulses rainfall model. Hydrol. Processes 2002, 16, 611–630. [Google Scholar] [CrossRef]
- Cowpertwait, P.S.P.; Xie, G.; Isham, V.; Onof, C.; Walsh, D.C.I. A fine-scale point process model of rainfall with dependent pulse depths within cells. Hydrol. Sci. J. 2011, 56, 1110–1117. [Google Scholar] [CrossRef] [Green Version]
- Velghe, T.; Troch, P.A.; De Troch, F.P.; Van de Velde, J. Evaluation of cluster-based rectangular pulses point process models for rainfall. Water Resour. Res. 1994, 30, 2847–2857. [Google Scholar] [CrossRef]
- Rodriguez-Iturbe, I.; De Power, B.F.; Valdes, J.B. Rectangular pulses point process models for rainfall: Analysis of empirical data. J. Geophys. Res. Atmos. 1987, 92, 9645–9656. [Google Scholar] [CrossRef]
- Entekhabi, D.; Rodriguez-Iturbe, I.; Eagleson, P.S. Probabilistic representation of the temporal rainfall process by a modified Neyman-Scott rectangular pulses model: Parameter estimation and validation. Water Resour. Res. 1989, 25, 295–302. [Google Scholar] [CrossRef] [Green Version]
- Cowpertwait, P.S. Further developments of the Neyman-Scott clustered point process for modeling rainfall. Water Resour. Res. 1991, 27, 1431–1438. [Google Scholar] [CrossRef]
- Cowpertwait, P.S. A generalized point process model for rainfall. Proc. R. Soc. London Ser. A Math. Phys. Sci. 1994, 447, 23–37. [Google Scholar]
- Onof, C.; Chandler, R.E.; Kakou, A.; Northrop, P.; Wheater, H.S.; Isham, V. Rainfall modelling using Poisson-cluster processes: A review of developments. Stoch. Environ. Res. Risk Assess. 2000, 14, 384–411. [Google Scholar] [CrossRef]
- Burton, A.; Kilsby, C.G.; Fowler, H.J.; Cowpertwait, P.S.P.; O’connell, P.E. RainSim: A spatial–temporal stochastic rainfall modelling system. Environ. Model. Softw. 2008, 23, 1356–1369. [Google Scholar] [CrossRef]
- Haddad, K.; Rahman, A. Derivation of short-duration design rainfalls using daily rainfall statistics. Nat. Hazards 2014, 74, 1391–1401. [Google Scholar] [CrossRef]
- Nguyen, V.T.V.; Nguyen, T.D.; Wang, H. Regional estimation of short duration rainfall extremes. Water Sci. Technol. 1998, 37, 15–19. [Google Scholar] [CrossRef]
- Kim, J.; Park, M.; Joo, J. Comparison of characteristics and spatial distribution tendency of daily precipitation based on the regional climate models for the Korean Peninsula. J. Korean Soc. Hazard Mitig. 2015, 15, 59–70. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.; Joo, J. Characteristics of daily precipitation data based on the detailed climate change ensemble scenario depending on the regional climate models and the calibration. J. Korean Soc. Hazard Mitig. 2015, 15, 261–272. [Google Scholar] [CrossRef] [Green Version]
- Joo, J.; Kim, S.; Park, M.; Kim, J. Evaluation and calibration method proposal of RCP daily precipitation data. J. Korean Soc. Hazard Mitig. 2015, 15, 79–91. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.; Kim, U.; Kim, L.H.; Kim, E.S.; Kim, S. Management of organic matter in watersheds with insufficient observation data: The Nakdong River basin. Desalinat. Water Treat. 2019, 152, 44. [Google Scholar] [CrossRef] [Green Version]
- Kim, K.; Choi, J.; Lee, O.; Cha, D.H.; Kim, S. Uncertainty quantification of future design rainfall depths in Korea. Atmosphere 2020, 11, 22. [Google Scholar] [CrossRef] [Green Version]
- Boé, J.; Terray, L.; Habets, F.; Martin, E. Statistical and dynamical downscaling of the Seine basin climate for hydro-meteorological studies. Int. J. Climatol. J. R. Meteorol. Soc. 2007, 27, 1643–1655. [Google Scholar] [CrossRef]
- Cannon, A.J.; Sobie, S.R.; Murdock, T.Q. Bias correction of GCM precipitation by quantile mapping: How well do methods preserve changes in quantiles and extremes? J. Clim. 2015, 28, 6938–6959. [Google Scholar] [CrossRef]
- Kim, S.; Han, S. Urban Stormwater Capture Curve Using Three-Parameter Mixed Exponential Probability Density Function and NRCS Runoff Curve Number Method. Water Environ. Res. 2010, 82, 43–50. [Google Scholar] [PubMed]
- Choi, C.H.; Cho, S.; Park, M.J.; Kim, S. Overflow risk analysis for designing a nonpoint sources control detention. Water Environ. Res. 2012, 84, 434–440. [Google Scholar] [CrossRef] [PubMed]
- Lee, O.; Choi, J.; Jang, S.; Kim, S. Application of Stochastic Point Rainfall Model for Temporal Downscaling of Daily Precipitation Data. J. Korean Soc. Hazard Mitig. 2017, 17, 323–337. [Google Scholar] [CrossRef]
- Lee, J.; Kim, S. Temporal Disaggregation of Daily Rainfall data using Stochastic Point Rainfall Model. J. Korean Soc. Hazard Mitig. 2018, 18, 493–503. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez-Iturbe, I. Scale of fluctuation of rainfall models. Water Resour. Res. 1986, 22, 15S–37S. [Google Scholar] [CrossRef]
- Cowpertwait, P.S.P.; O’Connel, P.E.; Metcalfe, A.V.; Mawdsley, J.A. Stochastic point process modeling of rainfall: 1. Single-site fitting and validation. J. Hydrol. 1996, 175, 17–46. [Google Scholar] [CrossRef]
- Joo, J.; Lee, J.; Kim, J.H.; Jun, H.; Jo, D. Inter-event time definition setting procedure for urban drainage systems. Water 2014, 6, 45–58. [Google Scholar] [CrossRef] [Green Version]
- Koutsoyiannis, D.; Onof, C. Rainfall disaggregation using adjusting procedures on a Poisson cluster model. J. Hydrol. 2001, 246, 109–122. [Google Scholar] [CrossRef]
Acronym | GCM | RCM | Period | Scale (Temporal, Spatial, Year) | Scenario |
---|---|---|---|---|---|
RRD 1 | MPI_ESM_LR | MM5 | Present 1981–2010 | 3 h, 12.5 km, 365 days | RCP 4.5 |
RRD 2 | MPI_ESM_LR | WRF | 3 h, 12.5 km, 365 days | RCP 4.5 | |
RRD 3 | MPI_ESM_LR | RegCM | 3 h, 12.5 km, 365 days | RCP 4.5 | |
RRD 4 | MPI_ESM_LR | RSM | 3 h, 12.5 km, 365 days | RCP 4.5 | |
RRD 5 | HadGEM2-AO | MM5 | Future 2021–2050 | 3 h, 12.5 km, 365 days | RCP 4.5 |
RRD 6 | HadGEM2-AO | WRF | 3 h, 12.5 km, 365 days | RCP 4.5 | |
RRD 7 | HadGEM2-AO | RegCM | 3 h, 12.5 km, 360 days | RCP 4.5 | |
RRD 8 | HadGEM2-AO | RSM | 3 h, 12.5 km, 360 days | RCP 4.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, J.; Kim, U.; Kim, S.; Kim, J. Development and Application of a Rainfall Temporal Disaggregation Method to Project Design Rainfalls. Water 2022, 14, 1401. https://doi.org/10.3390/w14091401
Lee J, Kim U, Kim S, Kim J. Development and Application of a Rainfall Temporal Disaggregation Method to Project Design Rainfalls. Water. 2022; 14(9):1401. https://doi.org/10.3390/w14091401
Chicago/Turabian StyleLee, Jeonghoon, Ungtae Kim, Sangdan Kim, and Jungho Kim. 2022. "Development and Application of a Rainfall Temporal Disaggregation Method to Project Design Rainfalls" Water 14, no. 9: 1401. https://doi.org/10.3390/w14091401
APA StyleLee, J., Kim, U., Kim, S., & Kim, J. (2022). Development and Application of a Rainfall Temporal Disaggregation Method to Project Design Rainfalls. Water, 14(9), 1401. https://doi.org/10.3390/w14091401