Statistical Evaluation of the Influences of Precipitation and River Level Fluctuations on Groundwater in Yoshino River Basin, Japan
Abstract
:1. Introduction
2. Study Area and Methodology
2.1. Study Area and Datum
2.2. Data Analyses Methods
3. Results
3.1. Variability of Hydrological Time Series
3.2. Correlations of Hydrological Processes
3.3. Wavelet Analysis
- (1)
- Wavelet analysis of interdecadal variability
- (2)
- Wavelet analysis of interannual variability
4. Discussion
4.1. Influences of Precipitation and River on Groundwater
4.2. Recharge Travel Time
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Taylor, R.G.; Scanlon, B.; Döll, P.; Rodell, M.; van Beek, R.; Wada, Y.; Longuevergne, L.; Leblanc, M.; Famiglietti, J.S.; Edmunds, M.; et al. Ground water and climate change. Nature Clm. Change 2013, 3, 322–329. [Google Scholar] [CrossRef] [Green Version]
- Gribovszki, Z.; Szilágyi, J.; Kalicz, P. Diurnal fluctuations in shallow piezometric levels and streamflow rates and their interpretation—A review. J. Hydrol. 2010, 385, 371–383. [Google Scholar] [CrossRef] [Green Version]
- Dong, L.; Shimada, J.; Kagabu, M.; Fu, C. Teleconnection and climatic oscillation in aquifer water level in Kumamoto plain, Japan. Hydrol. Process. 2015, 29, 1687–1703. [Google Scholar] [CrossRef]
- Green, T.R.; Taniguchi, M.; Kooi, H.; Gurdak, J.J.; Allen, D.M.; Hiscock, K.M.; Treidel, H.; Aureli, A. Beneath the surface of global change: Impacts of climate change on groundwater. J. Hydrol. 2011, 405, 532–560. [Google Scholar] [CrossRef] [Green Version]
- Fleming, S.W.; Quilty, E.J. Aquifer Responses to El Niño–Southern Oscillation, Southwest British Columbia. Groundwater 2006, 44, 595–599. [Google Scholar] [CrossRef]
- Tremblay, L.; Larocque, M.; Anctil, F.; Rivard, C. Teleconnections and interannual variability in Canadian piezometric levels. J. Hydrol. 2011, 410, 178–188. [Google Scholar] [CrossRef]
- Jiao, J.J.; Tang, Z. An analytical solution of groundwater response to tidal fluctuation in a leaky confined aquifer. Water Resour. Res. 1999, 35, 747–751. [Google Scholar] [CrossRef] [Green Version]
- Dong, L.; Cheng, D.; Liu, J.; Zhang, P.; Ding, W. Analytical Analysis of Groundwater Responses to Estuarine and Oceanic Water Stage Variations Using Superposition Principle. J. Hydrol. Eng. 2016, 21, 04015046. [Google Scholar] [CrossRef]
- Ghanbari, R.N.; Bravo, H.R. Coherence among Climate Signals, Precipitation, and Groundwater. Groundwater 2011, 49, 476–490. [Google Scholar] [CrossRef]
- Shih, D.C.F.; Lee, C.D.; Chiou, K.F.; Tsai, S.M. Spectral analysis of tidal fluctuations in ground water level. J. Am. Water Resour. Assoc. 2000, 36, 1087–1099. [Google Scholar] [CrossRef]
- Dong, L.; Shimada, J.; Kagabu, M.; Yang, H. Barometric and tidal-induced aquifer water level fluctuation near the Ariake Sea. Environ. Monit. Assess. 2015, 187, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Namdar Ghanbari, R.; Bravo, H.R. Evaluation of correlations between precipitation, groundwater fluctuations, and lake level fluctuations using spectral methods (Wisconsin, USA). Hydrogeol. J. 2011, 19, 801–810. [Google Scholar] [CrossRef]
- Labat, D. Recent advances in wavelet analyses: Part 1. A review of concepts. J. Hydrol. 2005, 314, 275–288. [Google Scholar] [CrossRef]
- Charlier, J.B.; Ladouche, B.; Maréchal, J.C. Identifying the impact of climate and anthropic pressures on karst aquifers using wavelet analysis. J. Hydrol. 2015, 523, 610–623. [Google Scholar] [CrossRef] [Green Version]
- Mallat, S.G. A Theory for Multiresolution Signal Decomposition: The Wavelet Representation. IEEE Trans. Pattern Anal. Mach. Intell. 1989, 11, 674–693. [Google Scholar] [CrossRef] [Green Version]
- Kumar, P.; Foufoula-Georgiou, E. Wavelet analysis for geophysical applications. Rev. Geophys. 1997, 35, 385–412. [Google Scholar] [CrossRef] [Green Version]
- Lafrenière, M.; Sharp, M. Wavelet analysis of inter-annual variability in the runoff regimes of glacial and nival stream catchments, Bow Lake, Alberta. Hydrol. Process. 2003, 17, 1093–1118. [Google Scholar] [CrossRef]
- Benke, K.K.; Lowell, K.E.; Hamilton, A.J. Parameter uncertainty, sensitivity analysis and prediction error in a water-balance hydrological model. Math. Comput. Model. 2008, 47, 1134–1149. [Google Scholar] [CrossRef]
- Kang, S.; Lin, H. Wavelet analysis of hydrological and water quality signals in an agricultural watershed. J. Hydrol. 2007, 338, 1–14. [Google Scholar] [CrossRef]
- Fu, C.; James, A.L.; Wachowiak, M.P. Analyzing the combined influence of solar activity and El Niño on streamflow across southern Canada. Water Resour. Res. 2012, 48. [Google Scholar] [CrossRef]
- Massei, N.; Laignel, B.; Deloffre, J.; Mesquita, J.; Motelay, A.; Lafite, R.; Durand, A. Long-term hydrological changes of the Seine River flow (France) and their relation to the North Atlantic Oscillation over the period 1950–2008. Int. J. Climatol. 2010, 30, 2146–2154. [Google Scholar] [CrossRef]
- Zhang, Q.; Xu, C.Y.; Jiang, T.; Wu, Y. Possible influence of ENSO on annual maximum streamflow of the Yangtze River, China. J. Hydrol. 2007, 333, 265–274. [Google Scholar] [CrossRef]
- Torrence, C.; Compo, G.P. A Practical Guide to Wavelet Analysis. Bull. Am. Meteorol. Soc. 1998, 79, 61–78. [Google Scholar] [CrossRef] [Green Version]
- Grinsted, A.; Moore, J.C.; Jevrejeva, S. Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear Process. Geophys. 2004, 11, 561–566. [Google Scholar] [CrossRef]
- Adamowski, J.F. River flow forecasting using wavelet and cross-wavelet transform models. Hydrol. Process. 2008, 22, 4877–4891. [Google Scholar] [CrossRef]
- Liu, Y.; Brown, J.; Demargne, J.; Seo, D.J. A wavelet-based approach to assessing timing errors in hydrologic predictions. J. Hydrol. 2011, 397, 210–224. [Google Scholar] [CrossRef]
Level | Aquifer Water Level | Precipitation | River Level | Barometric Pressure | Humidity | Air Temperature | Sunspot Number | SST | |||
---|---|---|---|---|---|---|---|---|---|---|---|
No. 1 | No. 2 | No. 3 | No. 4 | ||||||||
1 | 0.087 | 0.095 | 0.139 | 0.124 | 0.616 | 0.258 | 0.272 | 0.434 | 0.094 | 0.071 | 0.026 |
2 | 0.123 | 0.144 | 0.199 | 0.140 | 0.510 | 0.322 | 0.410 | 0.481 | 0.126 | 0.097 | 0.030 |
3 | 0.155 | 0.169 | 0.238 | 0.141 | 0.398 | 0.331 | 0.373 | 0.383 | 0.130 | 0.172 | 0.042 |
4 | 0.192 | 0.183 | 0.284 | 0.169 | 0.299 | 0.333 | 0.271 | 0.283 | 0.107 | 0.310 | 0.063 |
5 | 0.215 | 0.180 | 0.279 | 0.178 | 0.212 | 0.300 | 0.227 | 0.228 | 0.084 | 0.212 | 0.070 |
6 | 0.221 | 0.162 | 0.268 | 0.188 | 0.153 | 0.267 | 0.148 | 0.200 | 0.081 | 0.157 | 0.103 |
7 | 0.228 | 0.141 | 0.280 | 0.205 | 0.112 | 0.213 | 0.158 | 0.165 | 0.092 | 0.155 | 0.180 |
8 | 0.446 | 0.221 | 0.554 | 0.401 | 0.150 | 0.357 | 0.662 | 0.460 | 0.953 | 0.124 | 0.261 |
9 | 0.227 | 0.094 | 0.193 | 0.166 | 0.072 | 0.263 | 0.067 | 0.077 | 0.096 | 0.104 | 0.557 |
10 | 0.309 | 0.114 | 0.158 | 0.177 | 0.036 | 0.260 | 0.052 | 0.061 | 0.092 | 0.152 | 0.621 |
11 | 0.277 | 0.119 | 0.114 | 0.151 | 0.029 | 0.246 | 0.062 | 0.078 | 0.087 | 0.547 | 0.284 |
12 | 0.267 | 0.184 | 0.143 | 0.219 | 0.031 | 0.157 | 0.072 | 0.041 | 0.105 | 0.497 | 0.191 |
Precipitation | River Level | Barometric Pressure | Humidity | Air Temperature | Sunspot Number | SST | |
---|---|---|---|---|---|---|---|
w1 | 0.234 | 0.434 | −0.257 | 0.286 | 0.349 | 0.010 | −0.059 |
w2 | 0.188 | 0.391 | −0.120 | 0.218 | 0.129 | 0.270 | 0.010 |
w3 | 0.339 | 0.640 | −0.367 | 0.398 | 0.471 | 0.119 | −0.101 |
w4 | 0.221 | 0.445 | −0.268 | 0.261 | 0.357 | −0.160 | −0.155 |
average | 0.246 | 0.478 | −0.253 | 0.291 | 0.327 | 0.059 | −0.076 |
Resolution Level | Precipitation | River Level | Barometric Pressure | Humidity | Air Temperature | Sunspot Number | SST | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
xi-yi | xi-yglobal | xi-yi | xi-yglobal | xi-yi | xi-yglobal | xi-yi | xi-yglobal | xi-yi | xi-yglobal | xi-yi | xi-yglobal | xi-yi | xi-yglobal | ||
water level in well No. 1 | 1 | −0.12 | −0.01 | 0.36 | 0.03 | 0.08 | 0.01 | 0.02 | 0.00 | −0.01 | 0.00 | 0.01 | 0.00 | 0.01 | 0.00 |
2 | 0.51 | 0.06 | 0.60 | 0.07 | −0.15 | −0.02 | 0.26 | 0.03 | 0.02 | 0.00 | 0.01 | 0.00 | −0.02 | 0.00 | |
3 | 0.62 | 0.10 | 0.66 | 0.10 | −0.25 | −0.04 | 0.21 | 0.03 | 0.05 | 0.01 | 0.05 | 0.01 | 0.00 | 0.00 | |
4 | 0.57 | 0.11 | 0.67 | 0.13 | −0.15 | −0.03 | 0.19 | 0.04 | −0.07 | −0.01 | 0.02 | 0.00 | 0.04 | 0.01 | |
5 | 0.55 | 0.12 | 0.74 | 0.16 | −0.20 | −0.04 | 0.34 | 0.07 | −0.02 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | |
6 | 0.60 | 0.13 | 0.67 | 0.15 | −0.04 | −0.01 | 0.36 | 0.08 | −0.03 | 0.00 | 0.06 | 0.01 | 0.02 | 0.00 | |
7 | 0.47 | 0.11 | 0.82 | 0.19 | −0.17 | −0.04 | 0.21 | 0.05 | 0.21 | 0.05 | −0.13 | −0.03 | −0.17 | −0.03 | |
8 | 0.86 | 0.38 | 0.85 | 0.38 | −0.74 | −0.33 | 0.90 | 0.40 | 0.86 | 0.38 | 0.21 | 0.10 | 0.02 | 0.01 | |
9 | 0.53 | 0.14 | 0.47 | 0.15 | −0.05 | −0.09 | 0.34 | 0.11 | 0.09 | 0.07 | 0.17 | 0.05 | −0.23 | −0.08 | |
10 | 0.45 | 0.16 | 0.40 | 0.16 | 0.12 | 0.09 | 0.54 | 0.21 | −0.04 | −0.07 | 0.10 | 0.04 | −0.08 | −0.01 | |
water level in well No. 2 | 1 | −0.28 | −0.03 | 0.64 | 0.06 | 0.19 | 0.02 | −0.05 | −0.01 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 |
2 | 0.47 | 0.07 | 0.77 | 0.11 | −0.07 | −0.01 | 0.26 | 0.04 | 0.01 | 0.00 | 0.02 | 0.00 | 0.00 | 0.00 | |
3 | 0.69 | 0.12 | 0.82 | 0.14 | −0.26 | −0.04 | 0.27 | 0.05 | 0.08 | 0.01 | 0.02 | 0.00 | 0.00 | 0.00 | |
4 | 0.72 | 0.13 | 0.79 | 0.15 | −0.15 | −0.03 | 0.28 | 0.05 | −0.05 | −0.01 | 0.04 | 0.01 | 0.00 | 0.01 | |
5 | 0.71 | 0.13 | 0.84 | 0.15 | −0.20 | −0.04 | 0.42 | 0.07 | 0.02 | 0.00 | 0.03 | 0.01 | 0.05 | 0.01 | |
6 | 0.66 | 0.11 | 0.74 | 0.12 | −0.01 | 0.00 | 0.42 | 0.07 | −0.07 | −0.01 | 0.00 | 0.00 | 0.06 | 0.01 | |
7 | 0.56 | 0.08 | 0.86 | 0.12 | −0.13 | −0.02 | 0.36 | 0.05 | 0.11 | 0.02 | −0.11 | −0.02 | −0.17 | −0.02 | |
8 | 0.88 | 0.19 | 0.84 | 0.18 | −0.71 | −0.16 | 0.83 | 0.18 | 0.78 | 0.17 | 0.19 | 0.04 | 0.14 | 0.03 | |
9 | 0.67 | 0.06 | 0.59 | 0.07 | 0.07 | 0.01 | 0.70 | 0.08 | 0.03 | −0.03 | 0.01 | 0.01 | −0.36 | −0.05 | |
10 | −0.02 | 0.01 | 0.11 | 0.03 | −0.01 | 0.03 | 0.53 | 0.09 | −0.02 | −0.07 | 0.01 | 0.02 | −0.09 | −0.02 | |
water level in well No. 3 | 1 | −0.14 | −0.02 | 0.39 | 0.05 | 0.08 | 0.01 | 0.03 | 0.00 | −0.01 | 0.00 | 0.02 | 0.00 | 0.00 | 0.00 |
2 | 0.50 | 0.10 | 0.65 | 0.13 | −0.13 | −0.03 | 0.23 | 0.05 | 0.00 | 0.00 | 0.03 | 0.01 | 0.00 | 0.00 | |
3 | 0.64 | 0.15 | 0.75 | 0.18 | −0.29 | −0.07 | 0.19 | 0.05 | 0.04 | 0.01 | 0.04 | 0.01 | 0.00 | 0.00 | |
4 | 0.65 | 0.19 | 0.75 | 0.21 | −0.14 | −0.04 | 0.22 | 0.06 | −0.05 | −0.01 | 0.02 | 0.01 | 0.00 | 0.01 | |
5 | 0.67 | 0.19 | 0.81 | 0.23 | −0.21 | −0.06 | 0.36 | 0.10 | 0.00 | 0.00 | 0.05 | 0.01 | 0.04 | 0.01 | |
6 | 0.65 | 0.17 | 0.74 | 0.20 | −0.05 | −0.01 | 0.43 | 0.12 | −0.07 | −0.02 | 0.03 | 0.01 | 0.11 | 0.03 | |
7 | 0.52 | 0.15 | 0.89 | 0.25 | −0.28 | −0.08 | 0.33 | 0.09 | 0.18 | 0.05 | −0.12 | −0.03 | −0.20 | −0.05 | |
8 | 0.88 | 0.49 | 0.85 | 0.47 | −0.81 | −0.45 | 0.94 | 0.52 | 0.92 | 0.51 | 0.27 | 0.15 | 0.08 | 0.04 | |
9 | 0.75 | 0.16 | 0.58 | 0.14 | −0.07 | −0.06 | 0.54 | 0.13 | 0.11 | 0.06 | 0.08 | 0.02 | −0.32 | −0.08 | |
10 | 0.78 | 0.16 | 0.14 | 0.04 | 0.05 | −0.04 | 0.41 | 0.09 | −0.03 | 0.02 | −0.05 | 0.00 | −0.33 | −0.07 | |
water level in well No. 4 | 1 | −0.05 | −0.01 | 0.23 | 0.03 | 0.03 | 0.00 | 0.04 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
2 | 0.47 | 0.07 | 0.47 | 0.07 | −0.19 | −0.03 | 0.22 | 0.03 | 0.03 | 0.00 | 0.02 | 0.00 | 0.00 | −0.01 | |
3 | 0.55 | 0.08 | 0.60 | 0.08 | −0.30 | −0.04 | 0.18 | 0.03 | 0.02 | 0.00 | 0.03 | 0.00 | 0.00 | 0.00 | |
4 | 0.60 | 0.10 | 0.67 | 0.11 | −0.18 | −0.03 | 0.25 | 0.04 | −0.06 | −0.01 | 0.02 | 0.00 | 0.00 | 0.01 | |
5 | 0.56 | 0.10 | 0.72 | 0.13 | −0.19 | −0.03 | 0.31 | 0.05 | −0.05 | −0.01 | 0.02 | 0.00 | −0.02 | 0.00 | |
6 | 0.58 | 0.11 | 0.69 | 0.13 | −0.02 | 0.00 | 0.47 | 0.09 | −0.09 | −0.02 | 0.01 | 0.00 | 0.01 | 0.00 | |
7 | 0.50 | 0.10 | 0.83 | 0.17 | −0.18 | −0.03 | 0.20 | 0.04 | 0.28 | 0.06 | −0.14 | −0.03 | −0.21 | −0.04 | |
8 | 0.84 | 0.34 | 0.83 | 0.33 | −0.79 | −0.32 | 0.93 | 0.37 | 0.90 | 0.36 | 0.25 | 0.10 | 0.09 | 0.04 | |
9 | 0.55 | 0.12 | 0.41 | 0.10 | 0.22 | −0.07 | 0.58 | 0.13 | −0.04 | 0.09 | −0.18 | −0.02 | −0.12 | −0.03 | |
10 | 0.62 | 0.14 | 0.24 | 0.07 | −0.06 | −0.19 | 0.42 | 0.11 | 0.13 | 0.17 | −0.46 | −0.08 | −0.15 | −0.06 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, L.; Guo, Y.; Tang, W.; Xu, W.; Fan, Z. Statistical Evaluation of the Influences of Precipitation and River Level Fluctuations on Groundwater in Yoshino River Basin, Japan. Water 2022, 14, 625. https://doi.org/10.3390/w14040625
Dong L, Guo Y, Tang W, Xu W, Fan Z. Statistical Evaluation of the Influences of Precipitation and River Level Fluctuations on Groundwater in Yoshino River Basin, Japan. Water. 2022; 14(4):625. https://doi.org/10.3390/w14040625
Chicago/Turabian StyleDong, Linyao, Yiwei Guo, Wenjian Tang, Wentao Xu, and Zhongjie Fan. 2022. "Statistical Evaluation of the Influences of Precipitation and River Level Fluctuations on Groundwater in Yoshino River Basin, Japan" Water 14, no. 4: 625. https://doi.org/10.3390/w14040625
APA StyleDong, L., Guo, Y., Tang, W., Xu, W., & Fan, Z. (2022). Statistical Evaluation of the Influences of Precipitation and River Level Fluctuations on Groundwater in Yoshino River Basin, Japan. Water, 14(4), 625. https://doi.org/10.3390/w14040625