Investigating the Linkage between Extreme Rainstorms and Concurrent Synoptic Features: A Case Study in Henan, Central China
Abstract
:1. Introduction
2. Study Area and Dataset
3. Methodology
3.1. Extraction of Extreme Events
3.2. Driver Identification of an Extreme Event
3.3. Dominant Factor Analysis at a Given Location
4. Results and Discussions
4.1. Spatial Patterns of the Dominant Factor in the Entire Period
4.2. Spatial Patterns of the Dominant Factor in Different Seasons
4.3. Considerations of other Factors
5. Conclusions
- Over the entire study region, extreme precipitation events mostly happen in summer (from June to August).
- For the entire period, PW, Wind, and RH are the most common drivers for extreme precipitation events over the Henan province.
- For the different seasons, across the Henan region, Wind and PW are dominant factors in summer, while Wind and CAPE are highly related factors in winter. For Zhengzhou city particularly, Wind is the key driver for summer, while CAPE plays a key role in winter.
- Temperature-related variables have the lowest contribution to the occurrence of extreme events in the study area.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Seneviratne, S.I.; Zhang, X.; Adnan, M.; Badi, W.; Dereczynski, C.; Luca, A.D.; Ghosh, S.; Iskandar, I.; Kossin, J.; Lewis, S.; et al. Weather and Climate Extreme Events in a Changing Climate. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., et al., Eds.; Cambridge University Press: Cambridge, UK, 2021; in press. [Google Scholar]
- Zhan, D.; Zou, J. Heavy Rain Storm Floods in China and their Estimation; Singh, V.P., Ed.; Springer: Dordrecht, The Netherlands, 1987; pp. 35–44. [Google Scholar] [CrossRef]
- National Research Council. Estimating Bounds on Extreme Precipitation Events: A Brief Assessment; National Academies Press: Washington, DC, USA, 1994. [Google Scholar]
- Abbs, D.J. A numerical modeling study to investigate the assumptions used in the calculation of probable maximum precipitation. Water Resour. Res. 1999, 35, 785–796. [Google Scholar] [CrossRef]
- Chen, L.-C.; Bradley, A.A. How does the record July 1996 Illinois rainstorm affect probable maximum precipitation estimates? J. Hydrol. Eng. 2007, 12, 327–335. [Google Scholar] [CrossRef]
- Chen, L.-C.; Bradley, A.A. Adequacy of using surface humidity to estimate atmospheric moisture availability for probable maximum precipitation. Water Resour. Res. 2006, 42, W09410. [Google Scholar] [CrossRef] [Green Version]
- WMO. Manual on Estimation of Probable Maximum Precipitation (PMP); World Meteorological Organization: Geneva, Switzerland, 2009. [Google Scholar]
- Chen, X.; Hossain, F. Revisiting extreme storms of the past 100 years for future safety of large water management infrastructures. Earth’s Future 2016, 4, 306–322. [Google Scholar] [CrossRef]
- Chen, X.; Hossain, F.; Leung, L.R. Probable Maximum Precipitation in the U.S. Pacific Northwest in a Changing Climate. Water Resour. Res. 2017, 53, 9600–9622. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Hossain, F. Understanding Model-Based Probable Maximum Precipitation Estimation as a Function of Location and Season from Atmospheric Reanalysis. J. Hydrometeorol. 2018, 19, 459–475. [Google Scholar] [CrossRef]
- Rouhani, H.; Leconte, R. A novel method to estimate the maximization ratio of the Probable Maximum Precipitation (PMP) using regional climate model output. Water Resour. Res. 2016, 52, 7347–7365. [Google Scholar] [CrossRef] [Green Version]
- Klein, I.M.; Rousseau, A.N.; Frigon, A.; Freudiger, D.; Gagnon, P. Evaluation of probable maximum snow accumulation: Development of a methodology for climate change studies. J. Hydrol. 2016, 537, 74–85. [Google Scholar] [CrossRef]
- Ben Alaya, M.A.; Zwiers, F.; Zhang, X. Evaluation and Comparison of CanRCM4 and CRCM5 to Estimate Probable Maximum Precipitation over North America. J. Hydrometeorol. 2019, 20, 2069–2089. [Google Scholar] [CrossRef]
- Ben Alaya, M.A.; Zwiers, F.W.; Zhang, X. Probable maximum precipitation in a warming climate over North America in CanRCM4 and CRCM5. Clim. Change 2020, 158, 611–629. [Google Scholar] [CrossRef]
- Kumar, A.; Dudhia, J.; Rotunno, R.; Niyogi, D.; Mohanty, U.C. Analysis of the 26 July 2005 heavy rain event over Mumbai, India using the Weather Research and Forecasting (WRF) model. Q. J. R. Meteorol. Soc. 2008, 134, 1897–1910. [Google Scholar] [CrossRef]
- Moore, B.J.; Neiman, P.J.; Ralph, F.M.; Barthold, F.E. Physical processes associated with heavy flooding rainfall in Nashville, Tennessee, and vicinity during 1–2 May 2010: The role of an atmospheric river and mesoscale convective systems. Mon. Weather Rev. 2012, 140, 358–378. [Google Scholar] [CrossRef]
- Liu, L.; Jensen, M.B. Climate resilience strategies of Beijing and Copenhagen and their links to sustainability. Water Policy 2017, 19, 997–1013. [Google Scholar] [CrossRef]
- Yin, J.; Zhang, D.-L.; Luo, Y.; Ma, R. On the Extreme Rainfall Event of 7 May 2017 over the Coastal City of Guangzhou. Part I: Impacts of Urbanization and Orography. Mon. Weather Rev. 2020, 148, 955–979. [Google Scholar] [CrossRef]
- Koç, G.; Natho, S.; Thieken, A.H. Estimating direct economic impacts of severe flood events in Turkey (2015–2020). Int. J. Disaster Risk Reduct. 2021, 58, 102222. [Google Scholar] [CrossRef]
- Fekete, A.; Sandholz, S. Here Comes the Flood, but Not Failure? Lessons to Learn after the Heavy Rain and Pluvial Floods in Germany 2021. Water 2021, 13, 3016. [Google Scholar] [CrossRef]
- Wang, H.; Hu, Y.; Guo, Y.; Wu, Z.; Yan, D. Urban flood forecasting based on the coupling of numerical weather model and stormwater model: A case study of Zhengzhou city. J. Hydrol. Reg. Stud. 2022, 39, 100985. [Google Scholar] [CrossRef]
- Davies, L.; Jakob, C.; May, P.; Kumar, V.V.; Xie, S. Relationships between the large-scale atmosphere and the small-scale convective state for Darwin, Australia. J. Geophys. Res. Atmos. 2013, 118, 11534–11545. [Google Scholar] [CrossRef]
- Loriaux, J.M.; Lenderink, G.; Siebesma, A.P. Peak precipitation intensity in relation to atmospheric conditions and large-scale forcing at midlatitudes. J. Geophys. Res. Atmos. 2016, 121, 5471–5487. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Z.; Rashid, M.M.; Johnson, F.; Sharma, A. A wavelet-based tool to modulate variance in predictors: An application to predicting drought anomalies. Environ. Model. Softw. 2021, 135, 104907. [Google Scholar] [CrossRef]
- Jiang, Z.; Sharma, A.; Johnson, F. Refining Predictor Spectral Representation Using Wavelet Theory for Improved Natural System Modeling. Water Resour. Res. 2020, 56, e2019WR026962. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Zeyi, C.; Zuoshu, W.; Zaitao, P. A numerical study on forecasting the Henan extraordinarily heavy rainfall event in August 1975. Adv. Atmos. Sci. 1992, 9, 53–62. [Google Scholar] [CrossRef]
- Fengmei, Y.; Chongyi, E. Correlation analysis between sand-dust events and meteorological factors in Shapotou, Northern China. Environ. Earth Sci. 2010, 59, 1359–1365. [Google Scholar] [CrossRef]
- Hamill, T.M.; Scheuerer, M. Probabilistic Precipitation Forecast Postprocessing Using Quantile Mapping and Rank-Weighted Best-Member Dressing. Mon. Weather Rev. 2018, 146, 4079–4098. [Google Scholar] [CrossRef]
- Vannitsem, S.; Bremnes, J.B.; Demaeyer, J.; Evans, G.R.; Flowerdew, J.; Hemri, S.; Lerch, S.; Roberts, N.; Theis, S.; Atencia, A.; et al. Statistical Postprocessing for Weather Forecasts: Review, Challenges, and Avenues in a Big Data World. Bull. Am. Meteorol. Soc. 2021, 102, E681–E699. [Google Scholar] [CrossRef]
- Wang, Q.J.; Zhao, T.; Yang, Q.; Robertson, D. A Seasonally Coherent Calibration (SCC) Model for Postprocessing Numerical Weather Predictions. Mon. Weather Rev. 2019, 147, 3633–3647. [Google Scholar] [CrossRef]
- Wu, X.; Marshall, L.; Sharma, A. Quantifying input error in hydrologic modeling using the Bayesian Error Analysis with Reordering (BEAR) approach. J. Hydrol. 2021, 598, 126202. [Google Scholar] [CrossRef]
- Kunkel, K.E.; Karl, T.R.; Easterling, D.R.; Redmond, K.; Young, J.; Yin, X.; Hennon, P. Probable maximum precipitation and climate change. Geophys. Res. Lett. 2013, 40, 1402–1408. [Google Scholar] [CrossRef]
- Lepore, C.; Veneziano, D.; Molini, A. Temperature and CAPE dependence of rainfall extremes in the eastern United States. Geophys. Res. Lett. 2015, 42, 74–83. [Google Scholar] [CrossRef]
- Kim, S.; Sharma, A.; Wasko, C.; Nathan, R. Linking Total Precipitable Water to Precipitation Extremes Globally. Earth’s Future 2022, 10, e2021EF002473. [Google Scholar] [CrossRef]
- Su, A.; Lü, X.; Cui, L.; Li, Z.; Xi, L.; Li, H. The Basic Observational Analysis of “7.20” Extreme Rainstorm in Zhengzhou. Torrential Rain Disasters 2021, 40, 445–454. (In Chinese) [Google Scholar] [CrossRef]
- Zhong, S.; Qian, Y.; Zhao, C.; Leung, R.; Wang, H.; Yang, B.; Fan, J.; Yan, H.; Yang, X.Q.; Liu, D. Urbanization-induced urban heat island and aerosol effects on climate extremes in the Yangtze River Delta region of China. Atmos. Chem. Phys. 2017, 17, 5439–5457. [Google Scholar] [CrossRef] [Green Version]
- Zhong, S.; Qian, Y.; Zhao, C.; Leung, R.; Yang, X.-Q. A case study of urbanization impact on summer precipitation in the Greater Beijing Metropolitan Area: Urban heat island versus aerosol effects. J. Geophys. Res. Atmos. 2015, 120, 10903–10904. [Google Scholar] [CrossRef]
- Oscar-Júnior, A.C. Precipitation Trends and Variability in River Basins in Urban Expansion Areas. Water Resour. Manag. 2021, 35, 661–674. [Google Scholar] [CrossRef]
- Cipolla, G.; Francipane, A.; Noto, L.V. Classification of Extreme Rainfall for a Mediterranean Region by Means of Atmospheric Circulation Patterns and Reanalysis Data. Water Resour. Manag. 2020, 34, 3219–3235. [Google Scholar] [CrossRef]
Event Order | Start Time | Accumulated 72 h Precipitation (mm) | M1 | |||||
---|---|---|---|---|---|---|---|---|
CAPE | PW | Wind | RH | Tavg | Tdiff | |||
1 | 2021-07-18 21:00:00 | 234.92 | 0 | 1 | 1 | 1 | 0 | 0 |
2 | 2000-07-03 00:00:00 | 223.94 | 0 | 1 | 1 | 1 | 0 | 0 |
3 | 2018-08-16 07:00:00 | 182.18 | 0 | 1 | 1 | 0 | 0 | 0 |
4 | 1984-07-16 07:00:00 | 150.53 | 1 | 1 | 1 | 1 | 0 | 0 |
5 | 1999-07-03 15:00:00 | 149.99 | 0 | 1 | 1 | 1 | 0 | 0 |
6 | 2009-07-20 00:00:00 | 144.32 | 1 | 1 | 1 | 0 | 1 | 0 |
7 | 2021-08-19 14:00:00 | 139.27 | 0 | 1 | 1 | 1 | 0 | 0 |
8 | 2010-07-16 04:00:00 | 130.87 | 0 | 1 | 1 | 1 | 0 | 0 |
9 | 2021-08-28 03:00:00 | 125.42 | 0 | 1 | 1 | 1 | 0 | 0 |
10 | 2000-08-03 09:00:00 | 123.12 | 0 | 1 | 1 | 1 | 0 | 0 |
11 | 2004-07-14 07:00:00 | 122.64 | 0 | 1 | 1 | 1 | 0 | 0 |
12 | 2000-06-24 23:00:00 | 120.97 | 0 | 1 | 1 | 1 | 0 | 0 |
13 | 1996-08-02 05:00:00 | 111.64 | 0 | 1 | 1 | 1 | 1 | 0 |
14 | 2000-07-12 18:00:00 | 110.28 | 0 | 1 | 1 | 1 | 0 | 0 |
15 | 1990-06-17 02:00:00 | 109.47 | 0 | 1 | 1 | 0 | 0 | 0 |
16 | 1995-07-22 09:00:00 | 109.13 | 1 | 1 | 1 | 1 | 1 | 0 |
17 | 1993-04-29 06:00:00 | 109.00 | 0 | 0 | 1 | 1 | 0 | 0 |
18 | 1990-08-13 02:00:00 | 109.00 | 0 | 1 | 1 | 1 | 0 | 0 |
19 | 1984-09-21 14:00:00 | 106.25 | 0 | 0 | 1 | 1 | 0 | 0 |
20 | 2010-09-04 01:00:00 | 105.82 | 0 | 1 | 1 | 1 | 0 | 0 |
21 | 1982-08-11 15:00:00 | 101.03 | 0 | 1 | 1 | 1 | 0 | 0 |
22 | 2011-09-11 23:00:00 | 100.94 | 0 | 0 | 1 | 1 | 0 | 0 |
23 | 2013-05-24 04:00:00 | 94.25 | 0 | 0 | 1 | 1 | 0 | 0 |
24 | 1998-08-03 11:00:00 | 93.30 | 0 | 1 | 1 | 1 | 1 | 0 |
25 | 2000-06-01 10:00:00 | 92.92 | 0 | 1 | 0 | 1 | 0 | 0 |
26 | 2011-07-31 09:00:00 | 92.74 | 0 | 0 | 1 | 1 | 0 | 0 |
27 | 1990-07-19 11:00:00 | 90.09 | 1 | 1 | 1 | 1 | 1 | 0 |
28 | 2011-09-04 01:00:00 | 89.85 | 0 | 1 | 0 | 1 | 0 | 0 |
29 | 2003-08-27 20:00:00 | 89.11 | 0 | 1 | 1 | 0 | 0 | 0 |
30 | 1984-08-06 07:00:00 | 88.28 | 1 | 1 | 1 | 1 | 0 | 0 |
31 | 2005-06-24 17:00:00 | 88.15 | 0 | 1 | 1 | 0 | 0 | 0 |
32 | 1983-08-09 11:00:00 | 85.46 | 0 | 1 | 1 | 1 | 0 | 0 |
33 | 1983-09-04 22:00:00 | 85.25 | 0 | 1 | 1 | 1 | 0 | 0 |
34 | 2012-07-04 03:00:00 | 85.16 | 0 | 1 | 1 | 0 | 0 | 0 |
35 | 1985-09-13 11:00:00 | 84.97 | 0 | 0 | 1 | 0 | 0 | 0 |
36 | 1983-10-03 03:00:00 | 84.93 | 0 | 0 | 1 | 0 | 0 | 0 |
37 | 2015-06-22 12:00:00 | 84.71 | 0 | 1 | 1 | 0 | 0 | 0 |
38 | 1993-08-12 10:00:00 | 84.34 | 0 | 1 | 1 | 1 | 0 | 0 |
39 | 2008-07-20 08:00:00 | 84.26 | 0 | 1 | 0 | 0 | 0 | 0 |
40 | 1984-09-06 17:00:00 | 84.18 | 0 | 1 | 1 | 1 | 0 | 0 |
41 | 1989-07-04 10:00:00 | 82.94 | 0 | 1 | 0 | 1 | 0 | 0 |
42 | 2006-07-01 10:00:00 | 82.75 | 0 | 1 | 1 | 1 | 1 | 0 |
43 | 2007-07-18 02:00:00 | 82.00 | 1 | 1 | 1 | 0 | 1 | 0 |
44 | 2007-07-03 22:00:00 | 81.92 | 0 | 1 | 1 | 1 | 0 | 0 |
45 | 1987-05-31 06:00:00 | 81.82 | 1 | 0 | 1 | 1 | 0 | 1 |
46 | 1982-08-28 07:00:00 | 81.56 | 0 | 1 | 1 | 1 | 0 | 0 |
47 | 1998-07-14 07:00:00 | 80.70 | 1 | 1 | 1 | 1 | 1 | 0 |
48 | 1997-09-12 03:00:00 | 79.52 | 0 | 0 | 1 | 0 | 0 | 0 |
49 | 2010-08-22 03:00:00 | 79.25 | 0 | 0 | 1 | 0 | 0 | 0 |
50 | 1981-08-09 02:00:00 | 78.79 | 0 | 1 | 0 | 1 | 0 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lang, Y.; Jiang, Z.; Wu, X. Investigating the Linkage between Extreme Rainstorms and Concurrent Synoptic Features: A Case Study in Henan, Central China. Water 2022, 14, 1065. https://doi.org/10.3390/w14071065
Lang Y, Jiang Z, Wu X. Investigating the Linkage between Extreme Rainstorms and Concurrent Synoptic Features: A Case Study in Henan, Central China. Water. 2022; 14(7):1065. https://doi.org/10.3390/w14071065
Chicago/Turabian StyleLang, Yu, Ze Jiang, and Xia Wu. 2022. "Investigating the Linkage between Extreme Rainstorms and Concurrent Synoptic Features: A Case Study in Henan, Central China" Water 14, no. 7: 1065. https://doi.org/10.3390/w14071065
APA StyleLang, Y., Jiang, Z., & Wu, X. (2022). Investigating the Linkage between Extreme Rainstorms and Concurrent Synoptic Features: A Case Study in Henan, Central China. Water, 14(7), 1065. https://doi.org/10.3390/w14071065