Heterogeneous Photo-Fenton Removal of Methyl Orange Using the Sludge Generated in Dyeing Wastewater as Catalysts
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Catalyst Preparation
2.3. Catalyst Characterization
2.4. Photo-Fenton Experiments
3. Results
3.1. Characterization of the Prepared Catalyst
3.2. Photo-Fenton Degradation of MO
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mani, S.; Chowdhary, P.; Bharagava, R.N. Textile Wastewater Dyes: Toxicity Profile and Treatment Approaches. Emerging and Eco-friendly Approaches for Waste Management; Springer: Berlin/Heidelberg, Germany, 2019; pp. 219–244. [Google Scholar]
- Li, H.; Wang, Y.; Wang, Y.; Wang, H.; Sun, K.; Lu, Z. Bacterial degradation of anthraquinone dyes. J. Zhejiang Univ.-SCI. B 2019, 20, 528–540. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X. Selective separation membranes for fractionating organics and salts for industrial wastewater treatment: Design strategies and process assessment. J. Membr. Sci. 2022, 643, 120052. [Google Scholar] [CrossRef]
- Torrades, F.; García-Montaño, J. Using central composite experimental design to optimize the degradation of real dye wastewater by Fenton and photo-Fenton reactions. Dyes Pigment. 2014, 100, 184–189. [Google Scholar] [CrossRef] [Green Version]
- Gu, L.; Nie, J.-Y.; Zhu, N.; Wang, L.; Yuan, H.-P.; Shou, Z. Enhanced Fenton’s degradation of real naphthalene dye intermediate wastewater containing 6-nitro-1-diazo-2-naphthol-4-sulfonic acid: A pilot scale study. Chem. Eng. J. 2012, 189, 108–116. [Google Scholar] [CrossRef]
- Chen, X.; Liu, X.; Wang, H.B.; Cui, K.P.; Weerasooriya, R.; He, S.L.; Li, G.H.; Pan, J.; Zhou, K. Ce3+ triggers Fenton-like processes in neutral solutions for effective catechol degradation. Environ. Eng. Res. 2022, 27, 200519. [Google Scholar] [CrossRef]
- Yang, G.; Zhang, G.; Wang, H. Current state of sludge production, management, treatment and disposal in China. Water Res. 2015, 78, 60–73. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.L.; Tang, J.T. Fe-based Fenton-like catalysts for water treatment: Catalytic mechanisms and applications. J. Mol. Liq. 2021, 332, 115755. [Google Scholar] [CrossRef]
- He, L.; Li, M.X.; Chen, F.; Yang, S.S.; Ding, J.; Ding, L.; Ren, N.Q. Novel coagulation waste-based Fe-containing carbonaceous catalyst as peroxymonosulfate activator for pollutants degradation: Role of ROS and electron transfer pathway. J. Hazard. Mater. 2021, 417, 126113. [Google Scholar] [CrossRef]
- Zeng, H.P.; Zhai, L.X.; Qiao, T.D.; Zhang, J.; Li, D. Removal of As(V) by a core-shell magnetic nanoparticles synthesized with iron-containing water treatment residuals. Coll. Surf. A 2021, 627, 127074. [Google Scholar] [CrossRef]
- Xia, Y.; Tang, Y.; Shih, K.; Li, B. Enhanced phosphorus availability and heavy metal removal by chlorination during sewage sludge pyrolysis. J. Hazard. Mater. 2020, 382, 121110. [Google Scholar] [CrossRef]
- Zhu, R.; Xia, J.; Zhang, H.; Kong, F.; Hu, X.; Shen, Y.; Zhang, W.-H. Synthesis of magnetic activated carbons from black liquor lignin and Fenton sludge in a one-step pyrolysis for methylene blue adsorption. J. Environ. Chem. Eng. 2021, 9, 106538. [Google Scholar] [CrossRef]
- Yuan, S.-J.; Dai, X.-H. Sewage sludge-based functional nanomaterials: Development and applications. Environ. Sci. Nano 2017, 4, 17–26. [Google Scholar] [CrossRef]
- Yuan, S.-J.; Dai, X.-H. Facile synthesis of sewage sludge-derived mesoporous material as an efficient and stable heterogeneous catalyst for photo-Fenton reaction. Appl. Catal. B Environ. 2014, 154, 252–258. [Google Scholar] [CrossRef]
- Huang, Y.-F.; Huang, Y.-Y.; Chiueh, P.-T.; Lo, S.-L. Heterogeneous Fenton oxidation of trichloroethylene catalyzed by sewage sludge biochar: Experimental study and life cycle assessment. Chemosphere 2020, 249, 126139. [Google Scholar] [CrossRef] [PubMed]
- Gan, Q.; Hou, H.; Liang, S.; Qiu, J.; Tao, S.; Yang, L.; Yu, W.; Xiao, K.; Liu, B.; Hu, J.; et al. Sludge-derived biochar with multivalent iron as an efficient Fenton catalyst for degradation of 4-Chlorophenol. Sci. Total Environ. 2020, 725, 138299. [Google Scholar] [CrossRef]
- Khan, S.A.; Zahera, M.; Khan, I.A.; Khan, M.S.; Azam, A.; Arshad, M.; Syed, A.; Nasif, O.; Elgorban, A.M. Photocatalytic degradation of methyl orange by cadmium oxide nanoparticles synthesized by the sol-gel method. Optik 2021, 251, 168401. [Google Scholar] [CrossRef]
- Omri, A.; Hamza, W.; Benzina, M. Photo-Fenton oxidation and mineralization of methyl orange using Fe-sand as effective heterogeneous catalyst. J. Photochem. Photobiol. A Chem. 2020, 393, 112444. [Google Scholar] [CrossRef]
- Velusamy, K.; Periyasamy, S.; Kumar, P.S.; Jayaraj, T.; Gokulakrishnan, M.; Keerthana, P. Transformation of aqueous methyl orange to green metabolites using bacterial strains isolated from textile industry effluent. Environ. Technol. Innov. 2022, 25, 102126. [Google Scholar] [CrossRef]
- Wang, Y.; Gao, Y.; Chen, L.; Zhang, H. Goethite as an efficient heterogeneous Fenton catalyst for the degradation of methyl orange. Catal. Today 2015, 252, 107–112. [Google Scholar] [CrossRef]
- Urmi, S.A.; Kurny, A.; Gulshan, F. Decolorization of methyl orange using mill scale by photo-Fenton reaction. Procedia Eng. 2015, 105, 844–851. [Google Scholar] [CrossRef] [Green Version]
- Izghri, Z.; Enaime, G.; Eouarrat, M.; Chahid, L.; el Gaini, L.; Baçaoui, A.; Yaacoubi, A. Hydroxide sludge/hydrochar-Fe composite catalysts for photo-fenton degradation of dyes. J. Chem. 2021, 2021, 5588176. [Google Scholar] [CrossRef]
- Zhang, H.-M.; Zhao, Y.; Zhang, Y.; Zhang, M.; Cheng, M.; Yu, J.; Liu, H.; Ji, M.; Zhu, C.; Xu, J. Fe3O4 encapsulated in porous carbon nanobowls as efficient oxygen reduction reaction catalyst for Zn-air batteries. Chem. Eng. J. 2019, 375, 122058. [Google Scholar] [CrossRef]
- Lee, J.-H.; Kwon, J.-S.; Om J-y Kim, Y.-H.; Choi, E.-H.; Kim, K.-M.; Kim, K.-N. Cell immobilization on polymer by air atmospheric pressure plasma jet treatment. JPN. J. Appl. Physics 2014, 53, 086202. [Google Scholar] [CrossRef]
- Daniells, S.; Overweg, A.; Makkee, M.; Moulijn, J. The mechanism of low-temperature CO oxidation with Au/Fe2O3 catalysts: A combined Mössbauer, FT-IR, and TAP reactor study. J. Catal. 2005, 230, 52–65. [Google Scholar] [CrossRef]
- Fekri, L.Z.; Nikpassand, M.; Goldoost, M. Synthesis, experimental and DFT studies on crystal structure, FT-IR, 1 H, and 13 C NMR spectra, and evaluation of aromaticity of three derivatives of xanthens. Rus. J. Gen. Chem. 2013, 83, 2352–2360. [Google Scholar] [CrossRef]
- Abdulkadir, I.; Uba, S.; Almustapha, M. A rapid method of crude oil analysis using FT-IR spectroscopy. Nig. J. Basic Appl. Sci. 2016, 24, 47–55. [Google Scholar] [CrossRef] [Green Version]
- Du, P.; Bao, Y.; Guo, C.; Wu, L.; Pan, J.; Zhao, C.; Ma, F.-X.; Lu, J.; Li, Y.Y. Design of Fe, N co-doped multi-walled carbon nanotubes for efficient oxygen reduction. Chem. Commun. 2020, 56, 14467–14470. [Google Scholar] [CrossRef]
- Wu, Q.; Chen, M.; Chen, K.; Wang, S.; Wang, C.; Diao, G. Fe3O4-based core/shell nanocomposites for high-performance electrochemical supercapacitors. J. Mater. Sci. 2016, 51, 1572–1580. [Google Scholar] [CrossRef]
- Wilson, D.; Langell, M.A. XPS analysis of oleylamine/oleic acid capped Fe3O4 nanoparticles as a function of temperature. Appl. Surf. Sci. 2014, 303, 6–13. [Google Scholar] [CrossRef]
- Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069. [Google Scholar] [CrossRef] [Green Version]
- Dong, C.; Ji, J.; Shen, B.; Xing, M.; Zhang, J. Enhancement of H2O2 Decomposition by the Co-catalytic Effect of WS2 on the Fenton Reaction for the Synchronous Reduction of Cr (VI) and Remediation of Phenol. Environ. Sci. Technol. 2018, 52, 11297–11308. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, M.R.; Martin, S.T.; Choi, W.; Bahnemann, D.W. Environmental applications of semiconductor photocatalysis. Chem. Rev. 1995, 95, 69–96. [Google Scholar] [CrossRef]
- Grassi, P.; Drumm, F.C.; Georgin, J.; Franco, D.S.P.; Foletto, E.L.; Dotto, G.L.; Jahn, S.L. Water treatment plant sludge as iron source to catalyze a heterogeneous photo-Fenton reaction. Environ. Technol. Innov. 2020, 17, 100544. [Google Scholar] [CrossRef]
- Wang, Q.; Tian, S.; Long, J.; Ning, P. Use of Fe(II)Fe(III)-LDHs prepared by co-precipitation method in a heterogeneous-Fenton process for degradation of Methylene Blue. Catal. Today 2014, 224, 41–48. [Google Scholar] [CrossRef]
- Zhou, G.; Fang, F.; Chen, Z.; He, Y.; Sun, H.; Shi, H. Facile synthesis of paper mill sludge-derived heterogeneous catalyst for the Fenton-like degradation of methylene blue. Catal. Commun. 2015, 62, 71–74. [Google Scholar] [CrossRef]
- Zhang, Q.; Jiang, L.; Wang, J.; Zhu, Y.; Pu, Y.; Dai, W. Photocatalytic degradation of tetracycline antibiotics using three-dimensional network structure perylene diimide supramolecular organic photocatalyst under visible-light irradiation. Appl. Catal. B Environ. 2020, 277, 119122. [Google Scholar] [CrossRef]
- Li, X.Y.; Cui, K.P.; Guo, Z.; Yang, T.T.; Cao, Y.; Xiang, Y.P.; Chen, H.H.; Xi, M.F. Heterogeneous Fenton-like degradation of tetracyclines using porous magnetic chitosan microspheres as an efficient catalyst compared with two preparation methods. Chem. Eng. J. 2020, 379, 122324. [Google Scholar] [CrossRef]
- Molnar, A. Efficient, selective, and recyclable palladium catalysts in carbon−carbon coupling reactions. Chem. Rev. 2011, 111, 2251–2320. [Google Scholar] [CrossRef]
Catalyst | S/(m2/g) | D/(nm) | V/(cc/g) |
---|---|---|---|
FeCN-0 | 50.425 | 48.782 | 0.105 |
FeCN-300 | 72.331 | 51.391 | 0.156 |
Catalyst Dosage | H2O2 Concentration | Contaminant/ Concentration | Time/ Degradation Rate (%) | References |
---|---|---|---|---|
0.5 g/L | 195.88 mM | Methyl orange/ 32.7 mg/L | 90 min/> 90% | [21] |
2.5 g/L | 14.68 mM | Methylene blue/ 50 mg/L Methyl orange/ 50 mg/L | 150 min/95% 60 min/99% | [22] |
0.75 g/L | 5.5 mM | amaranth dye/ 50 mg/L | 420 min/98% | [34] |
1 g/L | 0.01 mM | Methylene blue/ 10 mg/L | 60 min/100% | [35] |
1 g/L | 1.96 mM | Methylene blue/ 50 mg/L | 80 min/78% | [36] |
0.2 g/L | 3 mM | Methyl orange/ 50 mg/L | 120 min/93% | This work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Liu, H.-L.; Cui, K.-P.; Dai, Z.-L.; Wang, B.; Chen, X. Heterogeneous Photo-Fenton Removal of Methyl Orange Using the Sludge Generated in Dyeing Wastewater as Catalysts. Water 2022, 14, 629. https://doi.org/10.3390/w14040629
Liu X, Liu H-L, Cui K-P, Dai Z-L, Wang B, Chen X. Heterogeneous Photo-Fenton Removal of Methyl Orange Using the Sludge Generated in Dyeing Wastewater as Catalysts. Water. 2022; 14(4):629. https://doi.org/10.3390/w14040629
Chicago/Turabian StyleLiu, Xu, Hui-Lai Liu, Kang-Ping Cui, Zheng-Liang Dai, Bei Wang, and Xing Chen. 2022. "Heterogeneous Photo-Fenton Removal of Methyl Orange Using the Sludge Generated in Dyeing Wastewater as Catalysts" Water 14, no. 4: 629. https://doi.org/10.3390/w14040629
APA StyleLiu, X., Liu, H. -L., Cui, K. -P., Dai, Z. -L., Wang, B., & Chen, X. (2022). Heterogeneous Photo-Fenton Removal of Methyl Orange Using the Sludge Generated in Dyeing Wastewater as Catalysts. Water, 14(4), 629. https://doi.org/10.3390/w14040629