Recent Advances in Autotrophic Biological Nitrogen Removal for Low Carbon Wastewater: A Review
Abstract
:1. Introduction
2. Sulfur-Driven Autotrophic Denitrification Process
2.1. Sulfate Reduction Autotrophic Denitrification Nitrification Integrated Process
2.2. S0 as Electron Donor for SDAD Process
2.3. Sulfide as Electron Donor for SDAD Process
2.4. Practical Applications of SDAD Process
3. Anammox Process
3.1. Mainstream Anammox Process
3.1.1. Partial Nitrification-Anammox (PN-A) Process
3.1.2. Partial Denitrification-Anammox (PD-A) Process
3.2. Sidestream Anammox Process
4. Sulfur-Driven Autotrophic Denitrification Coupled with Anammox Process
5. Functional Microorganisms
5.1. Autotrophic Sulfur Oxidizing Nitrate Reducing Bacteria (a-soNRB)
5.2. Anammox Bacteria (AnAOB)
6. Future Perspectives of the Application
- (1)
- Enrichment of functional bacteria. The slow growth rate of autotrophic bacteria on the one hand avoids the production of large amounts of residual sludge, but at the same time makes them vulnerable to be eliminated from the wastewater treatment system. Thus, the enrichment of highly active and abundant functional bacteria should be considered. Previous studies have illustrated that the structure of biofilms and granular sludge lead to a high performance in autotrophic BNR processes [18,55,98]. Future research should focus on the aggregation behavior and enrichment of bacteria, decipher the formation process of biofilm and granular sludge, and provide microscopic interpretation and guidance for related processes.
- (2)
- Community interactions. Whether in the SDAD or anammox process, functional bacteria always appear together with companion bacteria, but their functional and ecological significance is often overlooked. Therefore, exploring the intra- and interspecific interactions from the perspective of community, such as cross-feeding [103], quorum sensing [104], and functional redundancy [105], will aid further understanding of the autotrophic system. Moreover, it lays a foundation for the optimization of community structure and function via process performance.
- (3)
- Metabolic pathways. Although the main metabolic pathways of a-soNRB and AnAOB have been clarified, there are still knowledge gaps regarding the metabolic diversity and coupling. With the development of molecular biological methods (e.g., metagenomic, metatranscriptomics, and proteomic analysis) in recent years, more unknown metabolic pathways have been discovered in the anammox or SDAD systems. The isolation of C, N and S co-metabolizing bacteria and the interpretation of their metabolic mechanisms [4,106], the discovery of new metabolism pathways such as ferric ammonium oxidation (Feammox) [107], nitrate/nitrite dependent anaerobic methane oxidation (n-DAMO) [8], and dissimilatory nitrate reduction to ammonium (DNRA) [108] have greatly expanded the knowledge of the natural nitrogen cycle. Besides, this information provides theoretical guidance for the broad application of wastewater nitrogen removal processes and the development of new technologies.
- (4)
- Construction of nutritional conditions. The construction of an autotrophic condition is a prerequisite for the autotrophic BNR process. In terms of the SDAD process, improving the bioavailability of S0 should be considered first. Although some strategies have been proven to be feasible, such as polysulfide mediation and surface modification of S0 [18], the long-term stability still needs further optimization. It is recommended that future studies focus on the interfacial mass transfer between S0 and biofilm via the immobilization of functional community groups, which has been somewhat neglected before. In terms of anammox, the stable supply of nitrite in wastewater treatment systems remains a concern. In addition to PN and PD, sulfur-based autotrophic PD strategy should be further investigated. Besides, coupling of multiple nitrite supply techniques may also be considered, as previous studies have shown that a relatively diverse microbial community structure is conducive to the maintenance of the macroscopic stability of the system [107].
- (5)
- Key parameters. In addition to the key parameters such as pH, temperature, substrate ratio, HRT, etc., which have been discussed above, the combined effect of various parameters on the process performance should also be intensively investigated due to the complex situation in practice. On the other hand, more effective parameters for reflecting on the in-situ state of the biological treatment system should be further explored. Some recent studies have established real-time monitoring systems based on dissolved organic matter (DOM) spectral detection in wastewater treatment systems [109,110]. DOM contains a large number of soluble microbial products (SMP), and the changes of content and compositions have been shown to establish a good correlation with process performance. However, related studies in the autotrophic BNR process, especially for SDAD systems, have been rarely reported. Thus, the detection of parameters related to spectra (SMP) or signal molecules is of positive significance for the establishment of real-time monitoring and pre-warning systems.
- (6)
- Environmental conditions. The bioactivity of functional bacteria is significantly related with the environmental conditions. In addition to the environmental parameters (e.g., pH and temperature, etc.) mentioned above, the changes of environmental conditions caused by characteristic pollutants contained in low-carbon wastewater, such as antibiotics, heavy metals, and salinity, should be of concern. In addition to process performance, the fate of characteristic pollutants should also be focused to avoid secondary pollution as much as possible. The spatial distribution of environmental conditions in autotrophic BNR systems is often overlooked, but spatial differences in denitrification functions and community structure do exist [4,30]. Based on the focus of the spatial distribution and coupling of functional bacteria, the exploration of spatial differences in environmental conditions, especially in full-scale processes, is conducive to the design and optimization of related facilities.
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kuypers, M.M.M.; Marchant, H.K.; Kartal, B. The microbial nitrogen-cycling network. Nat. Rev. Microbiol. 2018, 16, 263–276. [Google Scholar] [CrossRef]
- Galloway, J.N.; Dentener, F.J.; Capone, D.G.; Boyer, E.W.; Howarth, R.W.; Seitzinger, S.P.; Asner, G.P.; Cleveland, C.C.; Green, P.A.; Holland, E.A.; et al. Nitrogen Cycles: Past, Present, and Future. Biogeochemistry 2004, 70, 153–226. [Google Scholar] [CrossRef]
- Wang, S.; Wang, W.; Liu, L.; Zhuang, L.; Zhao, S.; Su, Y.; Li, Y.; Wang, M.; Wang, C.; Xu, L.; et al. Microbial Nitrogen Cycle Hotspots in the Plant-Bed/Ditch System of a Constructed Wetland with N2O Mitigation. Environ. Sci. Technol. 2018, 52, 6226–6236. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.C.; Chen, C.; Shao, B.; Wang, W.; Xu, X.J.; Zhou, X.; Xiang, Y.N.; Zhao, L.; Lee, D.J.; Ren, N.Q. Heterotrophic sulfide-oxidizing nitrate-reducing bacteria enables the high performance of integrated autotrophic-heterotrophic denitrification (IAHD) process under high sulfide loading. Water Res. 2020, 178, 115848. [Google Scholar] [CrossRef]
- Zhang, Q.H.; Yang, W.N.; Ngo, H.H.; Guo, W.S.; Jin, P.K.; Dzakpasu, M.; Yang, S.J.; Wang, Q.; Wang, X.C.; Ao, D. Current status of urban wastewater treatment plants in China. Environ. Int. 2016, 92–93, 11–22. [Google Scholar] [CrossRef]
- Murray, A.; Horvath, A.; Nelson, K.L. Hybrid Life-Cycle Environmental and Cost Inventory of Sewage Sludge Treatment and End-Use Scenarios: A Case Study from China. Environ. Sci. Technol. 2008, 42, 3163–3169. [Google Scholar] [CrossRef] [Green Version]
- Wu, D.; Ekama, G.A.; Chui, H.K.; Wang, B.; Cui, Y.X.; Hao, T.W.; van Loosdrecht, M.C.M.; Chen, G.H. Large-scale demonstration of the sulfate reduction autotrophic denitrification nitrification integrated (SANI®) process in saline sewage treatment. Water Res. 2016, 100, 496–507. [Google Scholar] [CrossRef]
- Liu, T.; Hu, S.; Guo, J. Enhancing mainstream nitrogen removal by employing nitrate/nitrite-dependent anaerobic methane oxidation processes. Crit. Rev. Biotechnol. 2019, 39, 732–745. [Google Scholar] [CrossRef]
- van de Graaf, A.A.; Mulder, A.; de Bruijn, P.; Jetten, M.S.; Robertson, L.A.; Kuenen, J.G. Anaerobic oxidation of ammonium is a biologically mediated process. Appl. Environ. Microbiol. 1995, 61, 1246–1251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lackner, S.; Gilbert, E.M.; Vlaeminck, S.E.; Joss, A.; Horn, H.; van Loosdrecht, M.C. Full-scale partial nitritation/anammox experiences–an application survey. Water Res. 2014, 55, 292–303. [Google Scholar] [CrossRef]
- Tang, Y.; Zhou, C.; Ziv-El, M.; Rittmann, B.E. A pH-control model for heterotrophic and hydrogen-based autotrophic denitrification. Water Res. 2011, 45, 232–240. [Google Scholar] [CrossRef] [PubMed]
- Xia, S.; Xu, X.; Zhou, C.; Wang, C.; Zhou, L.; Rittmann, B.E. Direct delivery of CO2 into a hydrogen-based membrane biofilm reactor and model development. Chem. Eng. J. 2016, 290, 154–160. [Google Scholar] [CrossRef]
- Wang, J.; Lu, H.; Chen, G.-H.; Lau, G.N.; Tsang, W.L.; van Loosdrecht, M.C.M. A novel sulfate reduction, autotrophic denitrification, nitrification integrated (SANI) process for saline wastewater treatment. Water Res. 2009, 43, 2363–2372. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.; Li, Z.; Huang, Y.; Zan, F.; Dai, J.; Yao, J.; Yang, B.; Chen, G.; Lei, L. Electrochemically assisted sulfate reduction autotrophic denitrification nitrification integrated (e-SANI®) process for high-strength ammonium industrial wastewater treatment. Chem. Eng. J. 2020, 381, 122707. [Google Scholar] [CrossRef]
- Jiang, F.; Zhang, L.; Peng, G.L.; Liang, S.Y.; Qian, J.; Wei, L.; Chen, G.H. A novel approach to realize SANI process in freshwater sewage treatment—Use of wet flue gas desulfurization waste streams as sulfur source. Water Res. 2013, 47, 5773–5782. [Google Scholar] [CrossRef]
- Qian, J.; Lu, H.; Jiang, F.; Ekama, G.A.; Chen, G.H. Beneficial co-treatment of simple wet flue gas desulphurization wastes with freshwater sewage through development of mixed denitrification–SANI process. Chem. Eng. J. 2015, 262, 109–118. [Google Scholar] [CrossRef]
- Wang, A.J.; Du, D.Z.; Ren, N.Q.; van Groenestijn, J.W. An Innovative Process of Simultaneous Desulfurization and Denitrification by Thiobacillus denitrificans. J. Environ. Sci. Health Part A 2005, 40, 1939–1949. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Qiu, Y.Y.; Zhou, Y.; Chen, G.H.; van Loosdrecht, M.C.M.; Jiang, F. Elemental sulfur as electron donor and/or acceptor: Mechanisms, applications and perspectives for biological water and wastewater treatment. Water Res. 2021, 202, 117373. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.X.; Biswal, B.K.; Guo, G.; Deng, Y.F.; Huang, H.; Chen, G.H.; Wu, D. Biological nitrogen removal from wastewater using sulphur-driven autotrophic denitrification. Appl. Microbiol. Biotechnol. 2019, 103, 6023–6039. [Google Scholar] [CrossRef]
- Chung, J.; Amin, K.; Kim, S.; Yoon, S.; Kwon, K.; Bae, W. Autotrophic denitrification of nitrate and nitrite using thiosulfate as an electron donor. Water Res. 2014, 58, 169–178. [Google Scholar] [CrossRef] [PubMed]
- Tian, T.; Yu, H.Q. Denitrification with non-organic electron donor for treating low C/N ratio wastewaters. Bioresour. Technol. 2020, 299, 122686. [Google Scholar] [CrossRef] [PubMed]
- Koenig, A.; Liu, L.H. Use of limestone for pH control in autotrophic denitrification: Continuous flow experiments in pilot-scale packed bed reactors. J. Biotechnol. 2002, 99, 161–171. [Google Scholar] [CrossRef]
- Sahinkaya, E.; Kilic, A.; Duygulu, B. Pilot and full scale applications of sulfur-based autotrophic denitrification process for nitrate removal from activated sludge process effluent. Water Res. 2014, 60, 210–217. [Google Scholar] [CrossRef]
- Kimura, K.; Nakamura, M.; Watanabe, Y. Nitrate removal by a combination of elemental sulfur-based denitrification and membrane filtration. Water Res. 2002, 36, 1758–1766. [Google Scholar] [CrossRef]
- Ucar, D.; Yilmaz, T.; di Capua, F.; Esposito, G.; Sahinkaya, E. Comparison of biogenic and chemical sulfur as electron donors for autotrophic denitrification in sulfur-fed membrane bioreactor (SMBR). Bioresour. Technol. 2020, 299, 122574. [Google Scholar] [CrossRef] [PubMed]
- Tang, C.Y.; Chong, T.H.; Fane, A.G. Colloidal interactions and fouling of NF and RO membranes: A review. Adv. Colloid Interface Sci. 2011, 164, 126–143. [Google Scholar] [CrossRef] [PubMed]
- Zhu, T.T.; Cheng, H.Y.; Yang, L.H.; Su, S.G.; Wang, H.C.; Wang, S.S.; Wang, A.J. Coupled Sulfur and Iron(II) Carbonate-Driven Autotrophic Denitrification for Significantly Enhanced Nitrate Removal. Environ. Sci. Technol. 2019, 53, 1545–1554. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Wei, D.; Li, F.; Zhang, Y.; Li, R. Sulfur-siderite autotrophic denitrification system for simultaneous nitrate and phosphate removal: From feasibility to pilot experiments. Water Res. 2019, 160, 52–59. [Google Scholar] [CrossRef]
- Show, K.Y.; Lee, D.J.; Pan, X. Simultaneous biological removal of nitrogen–sulfur–carbon: Recent advances and challenges. Biotechnol. Adv. 2013, 31, 409–420. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.C.; Xu, X.J.; Chen, C.; Xing, D.F.; Shao, B.; Liu, W.Z.; Wang, A.J.; Lee, D.J.; Ren, N.Q. Interactions of functional bacteria and their contributions to the performance in integrated autotrophic and heterotrophic denitrification. Water Res. 2018, 143, 355–366. [Google Scholar] [CrossRef]
- Yuan, Y.; Bian, A.; Chen, F.; Xu, X.; Huang, C.; Chen, C.; Liu, W.; Cheng, H.; Chen, T.; Ding, C.; et al. Continuous sulfur biotransformation in an anaerobic-anoxic sequential batch reactor involving sulfate reduction and denitrifying sulfide oxidization. Chemosphere 2019, 234, 568–578. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Li, Z.L.; Chen, F.; Liu, Q.; Zhao, Y.K.; Zhou, J.Z.; Wang, A.J. Microbial community structure and function in response to the shift of sulfide/nitrate loading ratio during the denitrifying sulfide removal process. Bioresour. Technol. 2015, 197, 227–234. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Zhou, X.; Wang, A.; Wu, D.H.; Liu, L.H.; Ren, N.; Lee, D.J. Elementary sulfur in effluent from denitrifying sulfide removal process as adsorbent for zinc(II). Bioresour. Technol. 2012, 121, 441–444. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.J.; Huang, B.C.; Li, J.; Jin, R.C. Advances and challenges of sulfur-driven autotrophic denitrification (SDAD) for nitrogen removal. Chin. Chem. Lett. 2020, 31, 2567–2574. [Google Scholar] [CrossRef]
- Huang, C.; Liu, Q.; Wang, H.; Gao, L.; Hou, Y.N.; Nan, J.; Ren, N.; Li, Z.L. Influence of microbial spatial distribution and activity in an EGSB reactor under high- and low-loading denitrification desulfurization. Environ. Res. 2021, 195, 110311. [Google Scholar] [CrossRef] [PubMed]
- Wong, B.T.; Lee, D.J. Denitrifying sulfide removal and carbon methanogenesis in a mesophilic, methanogenic culture. Bioresour. Technol. 2011, 102, 6673–6679. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.; Chen, C.; Liang, B.; Huang, C.; Zhao, Y.; Xu, X.; Tan, W.; Zhou, X.; Gao, S.; Sun, D.; et al. Fine-tuning key parameters of an integrated reactor system for the simultaneous removal of COD, sulfate and ammonium and elemental sulfur reclamation. J. Hazard. Mater. 2014, 269, 56–67. [Google Scholar] [CrossRef]
- Li, Y.; Wang, Y.; Wan, D.; Li, B.; Zhang, P.; Wang, H. Pilot-scale application of sulfur-limestone autotrophic denitrification biofilter for municipal tailwater treatment: Performance and microbial community structure. Bioresour. Technol. 2020, 300, 122682. [Google Scholar] [CrossRef]
- Xu, X.J.; Li, H.J.; Wang, W.; Zhang, R.C.; Zhou, X.; Xing, D.F.; Ren, N.Q.; Lee, D.J.; Yuan, Y.X.; Liu, L.H.; et al. The performance of simultaneous denitrification and biogas desulfurization system for the treatment of domestic sewage. Chem. Eng. J. 2020, 399, 125855. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, Y.; Chen, Y. Recent advances in partial denitrification in biological nitrogen removal: From enrichment to application. Bioresour. Technol. 2020, 298, 122444. [Google Scholar] [CrossRef]
- Blackburne, R.; Yuan, Z.; Keller, J. Demonstration of nitrogen removal via nitrite in a sequencing batch reactor treating domestic wastewater. Water Res. 2008, 42, 2166–2176. [Google Scholar] [CrossRef] [PubMed]
- Laureni, M.; Falås, P.; Robin, O.; Wick, A.; Weissbrodt, D.G.; Nielsen, J.L.; Ternes, T.A.; Morgenroth, E.; Joss, A. Mainstream partial nitritation and anammox: Long-term process stability and effluent quality at low temperatures. Water Res. 2016, 101, 628–639. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Z.; Zheng, M.; Hu, Z.; Duan, H.; de Clippeleir, H.; Al-Omari, A.; Hu, S.; Yuan, Z. Unravelling adaptation of nitrite-oxidizing bacteria in mainstream PN/A process: Mechanisms and counter-strategies. Water Res. 2021, 200, 117239. [Google Scholar] [CrossRef]
- Zhao, Q.; Peng, Y.; Li, J.; Gao, R.; Jia, T.; Deng, L.; Du, R. Sustainable upgrading of biological municipal wastewater treatment based on anammox: From microbial understanding to engineering application. Sci. Total Environ. 2021, 813, 152468. [Google Scholar] [CrossRef] [PubMed]
- Blum, J.M.; Jensen, M.M.; Smets, B.F. Nitrous oxide production in intermittently aerated Partial Nitritation-Anammox reactor: Oxic N2O production dominates and relates with ammonia removal rate. Chem. Eng. J. 2018, 335, 458–466. [Google Scholar] [CrossRef] [Green Version]
- Xu, Z.; Zhang, L.; Gao, X.; Peng, Y. Optimization of the intermittent aeration to improve the stability and flexibility of a mainstream hybrid partial nitrification-anammox system. Chemosphere 2020, 261, 127670. [Google Scholar] [CrossRef]
- Xiao, H.; Peng, Y.; Zhang, Q.; Liu, Y. Pre-anaerobic treatment enhanced partial nitrification start-up coupled with anammox for advanced nitrogen removal from low C/N domestic wastewater. Bioresour. Technol. 2021, 337, 125434. [Google Scholar] [CrossRef]
- Gholami-Shiri, J.; Azari, M.; Dehghani, S.; Denecke, M. A technical review on the adaptability of mainstream partial nitrification and anammox: Substrate management and aeration control in cold weather. J. Environ. Chem. Eng. 2021, 9, 106468. [Google Scholar] [CrossRef]
- Hu, Z.; Lotti, T.; de Kreuk, M.; Kleerebezem, R.; van Loosdrecht, M.; Kruit, J.; Mike, S.M.J.; Kartal, B. Nitrogen Removal by a Nitritation-Anammox Bioreactor at Low Temperature. Appl. Environ. Microbiol. 2013, 79, 2807–2812. [Google Scholar] [CrossRef] [Green Version]
- Gilbert, E.M.; Agrawal, S.; Schwartz, T.; Horn, H.; Lackner, S. Comparing different reactor configurations for Partial Nitritation/Anammox at low temperatures. Water Res. 2015, 81, 92–100. [Google Scholar] [CrossRef]
- Sui, Q.; Wang, Y.; Wang, H.; Yue, W.; Chen, Y.; Yu, D.; Chen, M.; Wei, Y. Roles of hydroxylamine and hydrazine in the in-situ recovery of one-stage partial nitritation-anammox process: Characteristics and mechanisms. Sci. Total Environ. 2020, 707, 135648. [Google Scholar] [CrossRef] [PubMed]
- Du, R.; Peng, Y.; Ji, J.; Shi, L.; Gao, R.; Li, X. Partial denitrification providing nitrite: Opportunities of extending application for anammox. Environ. Int. 2019, 131, 105001. [Google Scholar] [CrossRef] [PubMed]
- Cao, S.; Du, R.; Peng, Y.; Li, B.; Wang, S. Novel two stage partial denitrification (PD)-Anammox process for tertiary nitrogen removal from low carbon/nitrogen (C/N) municipal sewage. Chem. Eng. J. 2019, 362, 107–115. [Google Scholar] [CrossRef]
- Li, J.; Peng, Y.; Zhang, L.; Liu, J.; Wang, X.; Gao, R.; Pang, L.; Zhou, Y. Quantify the contribution of anammox for enhanced nitrogen removal through metagenomic analysis and mass balance in an anoxic moving bed biofilm reactor. Water Res. 2019, 160, 178–187. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Peng, Y.; Gao, R.; Yang, L.; Deng, L.; Zhao, Q.; Liu, Q.; Li, X.; Zhang, Q.; Zhang, L. Highly enriched anammox within anoxic biofilms by reducing suspended sludge biomass in a real-sewage A2/O process. Water Res. 2021, 194, 116906. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Zhang, Z.; Xia, S.; Ding, N.; Liao, X.; Yang, R.; Chen, M.; Chen, S. The potential contributions to organic carbon utilization in a stable acetate-fed Anammox process under low nitrogen-loading rates. Sci. Total Environ. 2021, 784, 147150. [Google Scholar] [CrossRef]
- Tang, C.J.; Zheng, P.; Wang, C.H.; Mahmood, Q.; Zhang, J.Q.; Chen, X.G.; Zhang, L.; Chen, J.W. Performance of high-loaded ANAMMOX UASB reactors containing granular sludge. Water Res. 2011, 45, 135–144. [Google Scholar] [CrossRef]
- Wang, W.Y.; Wang, R.; Abbas, G.; Wang, G.; Zhao, Z.G.; Deng, L.W.; Wang, L. Aggregation enhances the activity and growth rate of anammox bacteria and its mechanisms. Chemosphere 2021, 291, 132907. [Google Scholar] [CrossRef]
- Qi, P.; Li, J.; Dong, H.; Wang, D.; Bo, Y. Performance of anammox process treating nitrogen-rich saline wastewater: Kinetics and nitrite inhibition. J. Clean. Prod. 2018, 199, 493–502. [Google Scholar] [CrossRef]
- Jin, R.C.; Yang, G.F.; Yu, J.J.; Zheng, P. The inhibition of the Anammox process: A review. Chem. Eng. J. 2012, 197, 67–79. [Google Scholar] [CrossRef]
- Yu, H.; Wang, S.; Zuo, J.; Song, Y.; Li, Y.; Zhang, Y. In situ elimination of nitrite inhibition on AnAOB by acetate dosing in an up-flow granular anammox reactor. Sci. Total Environ. 2020, 741, 139738. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Liu, Y.S.; Zhang, J.N.; Yang, Y.Q.; Hu, L.X.; Yang, Y.Y.; Zhao, J.L.; Chen, F.R.; Ying, G.G. Removal of antibiotics from piggery wastewater by biological aerated filter system: Treatment efficiency and biodegradation kinetics. Bioresour. Technol. 2017, 238, 70–77. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Chen, Z.; Ma, Y.; Zhang, N.; Pang, Q.; Xie, X.; Li, Y.; Jia, J. Response of Anammox biofilm to antibiotics in trace concentration: Microbial activity, diversity and antibiotic resistance genes. J. Hazard. Mater. 2019, 367, 182–187. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Wu, J.; Yu, Y.Y.; He, Y.J.; Huang, Y.; Fan, N.S.; Huang, B.C.; Jin, R.C. Microbial and genetic responses of anammox process to the successive exposure of different antibiotics. Chem. Eng. J. 2021, 420, 127576. [Google Scholar] [CrossRef]
- Fu, J.J.; Huang, D.Q.; Bai, Y.H.; Shen, Y.Y.; Lin, X.Z.; Huang, Y.; Ling, Y.R.; Fan, N.S.; Jin, R.C. How anammox process resists the multi-antibiotic stress: Resistance gene accumulation and microbial community evolution. Sci. Total Environ. 2022, 807, 150784. [Google Scholar] [CrossRef]
- Ya, T.; Du, S.; Li, Z.; Liu, S.; Zhu, M.; Liu, X.; Jing, Z.; Hai, R.; Wang, X. Successional Dynamics of Molecular Ecological Network of Anammox Microbial Communities under Elevated Salinity. Water Res. 2021, 188, 116540. [Google Scholar] [CrossRef]
- Chen, H.; Ma, C.; Ji, Y.X.; Ni, W.M.; Jin, R.C. Evaluation of the efficacy and regulation measures of the anammox process under salty conditions. Sep. Purif. Technol. 2014, 132, 584–592. [Google Scholar] [CrossRef]
- Lin, L.; Pratt, S.; Li, Z.; Ye, L. Adaptation and evolution of freshwater Anammox communities treating saline/brackish wastewater. Water Res. 2021, 207, 117815. [Google Scholar] [CrossRef]
- Bi, Z.; Qiao, S.; Zhou, J.; Tang, X.; Cheng, Y. Inhibition and recovery of Anammox biomass subjected to short-term exposure of Cd, Ag, Hg and Pb. Chem. Eng. J. 2014, 244, 89–96. [Google Scholar] [CrossRef]
- Daverey, A.; Chen, Y.C.; Sung, S.; Lin, J.G. Effect of zinc on anammox activity and performance of simultaneous partial nitrification, anammox and denitrification (SNAD) process. Bioresour. Technol. 2014, 165, 105–110. [Google Scholar] [CrossRef]
- Yang, G.F.; Ni, W.M.; Wu, K.; Wang, H.; Yang, B.E.; Jia, X.Y.; Jin, R.C. The effect of Cu (II) stress on the activity, performance and recovery on the anaerobic ammonium-oxidizing (Anammox) process. Chem. Eng. J. 2013, 226, 39–45. [Google Scholar] [CrossRef]
- Madeira, C.L.; de Araújo, J.C. Inhibition of anammox activity by municipal and industrial wastewater pollutants: A review. Sci. Total Environ. 2021, 799, 149449. [Google Scholar] [CrossRef] [PubMed]
- Dworkin, M. The Prokaryotes. In Proteobacteria: Delta and Epsilon Subclasses. Deeply Rooting Bacteria; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2006; Volume 7. [Google Scholar]
- Gadekar, S.; Nemati, M.; Hill, G.A. Batch and continuous biooxidation of sulphide by Thiomicrospira sp. CVO: Reaction kinetics and stoichiometry. Water Res. 2006, 40, 2436–2446. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; Li, X.; Gu, C.; Huang, Y.; Yuan, Y. Selectivity control of nitrite and nitrate with the reaction of S0 and achieved nitrite accumulation in the sulfur autotrophic denitrification process. Bioresour. Technol. 2018, 266, 211–219. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Yuan, Y.; Huang, Y.; Bi, Z. Simultaneous removal of ammonia and nitrate by coupled S0-driven autotrophic denitrification and Anammox process in fluorine-containing semiconductor wastewater. Sci. Total Environ. 2019, 661, 235–242. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.F.; Ekama, G.A.; Cui, Y.X.; Tang, C.J.; van Loosdrecht, M.C.M.; Chen, G.H.; Wu, D. Coupling of sulfur(thiosulfate)-driven denitratation and anammox process to treat nitrate and ammonium contained wastewater. Water Res. 2019, 163, 114854. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Zhao, D.; Yan, L.; Wang, A.; Gu, Y.; Lee, D.J. Elemental sulfur formation and nitrogen removal from wastewaters by autotrophic denitrifiers and anammox bacteria. Bioresour. Technol. 2015, 191, 332–336. [Google Scholar] [CrossRef]
- Deng, Y.F.; Wu, D.; Huang, H.; Cui, Y.X.; van Loosdrecht, M.C.M.; Chen, G.H. Exploration and verification of the feasibility of sulfide-driven partial denitrification coupled with anammox for wastewater treatment. Water Res. 2021, 193, 116905. [Google Scholar] [CrossRef]
- Shi, Z.J.; Xu, L.Z.J.; Wu, D.; Cheng, Y.F.; Zhang, F.Y.; Liao, S.M.; Zhang, Z.Z.; He, M.M.; Jin, R.C. Anammox granule as new inoculum for start-up of anaerobic sulfide oxidation (ASO) process and its reverse start-up. Chemosphere 2019, 217, 279–288. [Google Scholar] [CrossRef]
- Shi, Z.J.; Xu, L.Z.J.; Huang, B.C.; Jin, R.C. A novel strategy for anammox consortia preservation: Transformation into anoxic sulfide oxidation consortia. Sci. Total Environ. 2020, 723, 138094. [Google Scholar] [CrossRef]
- Giovannelli, D.; Chung, M.; Staley, J.; Starovoytov, V.; le Bris, N.; Vetriani, C. Sulfurovum riftiae sp. nov., a mesophilic, thiosulfate-oxidizing, nitrate-reducing chemolithoautotrophic epsilonproteobacterium isolated from the tube of the deep-sea hydrothermal vent polychaete Riftia pachyptila. Int. J. Syst. Evol. Microbiol. 2016, 66, 2697–2701. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Zhang, C.; Hu, C.; Liu, H.; Bai, Y.; Qu, J. Sulfur-based mixotrophic denitrification corresponding to different electron donors and microbial profiling in anoxic fluidized-bed membrane bioreactors. Water Res. 2015, 85, 422–431. [Google Scholar] [CrossRef]
- Høgslund, S.; Revsbech, N.P.; Kuenen, J.G.; Jørgensen, B.B.; Gallardo, V.A.; Vossenberg, J.V.D.; Nielsen, J.L.; Holmkvist, L.; Arning, E.T.; Nielsen, L.P. Physiology and behaviour of marine Thioploca. ISME J. 2009, 3, 647–657. [Google Scholar] [CrossRef] [Green Version]
- Qiu, Y.Y.; Zhang, L.; Mu, X.; Li, G.; Guan, X.; Hong, J.; Jiang, F. Overlooked pathways of denitrification in a sulfur-based denitrification system with organic supplementation. Water Res. 2020, 169, 115084. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.X.; Biswal, B.K.; van Loosdrecht, M.C.M.; Chen, G.H.; Wu, D. Long term performance and dynamics of microbial biofilm communities performing sulfur-oxidizing autotrophic denitrification in a moving-bed biofilm reactor. Water Res. 2019, 166, 115038. [Google Scholar] [CrossRef] [PubMed]
- Tian, D.; Shon, H.K.; Chun, D.J.; Jin, C.S.; Gwon, E.M.; Chung, W.J. Isolation and characterization of sulfur-utilizing denitrifiers from the sulfur-oxidizing denitrification process. Biotechnol. Lett. 2003, 25, 1605–1608. [Google Scholar] [CrossRef] [PubMed]
- Hafenbradl, D.; Keller, M.; Dirmeier, R.; Rachel, R.; Roßnagel, P.; Burggraf, S.; Huber, H.; Stetter, K.O. Ferroglobus placidus gen. nov., sp. nov., A novel hyperthermophilic archaeum that oxidizes Fe2+ at neutral pH under anoxic conditions. Arch. Microbiol. 1996, 166, 308–314. [Google Scholar] [CrossRef]
- Sorokin, D.Y.; Kuenen, J.G.; Jetten, M.S.M. Denitrification at extremely high pH values by the alkaliphilic, obligately chemolithoautotrophic, sulfur-oxidizing bacterium Thioalkalivibrio denitrificans strain ALJD. Arch. Microbiol. 2001, 175, 94–101. [Google Scholar] [CrossRef]
- Zhang, M.; Zhang, T.; Shao, M.F.; Fang, H.H.P. Autotrophic denitrification in nitrate-induced marine sediment remediation and Sulfurimonas denitrificans-like bacteria. Chemosphere 2009, 76, 677–682. [Google Scholar] [CrossRef]
- Sievert, S.M.; Scott, K.M.; Klotz, M.G.; Chain, P.S.; Hauser, L.J.; Hemp, J.; Hugler, M.; Land, M.; Lapidus, A.; Larimer, F.W. Genome of the epsilonproteobacterial chemolithoautotroph Sulfurimonas denitrificans. Appl. Environ. Microbiol. 2008, 74, 1145–1156. [Google Scholar] [CrossRef] [Green Version]
- Oshiki, M.; Satoh, H.; Okabe, S. Ecology and Physiology of Anaerobic Ammonium Oxidizing (anammox) Bacteria. Environ. Microbiol. 2015, 18, 2784–2796. [Google Scholar] [CrossRef] [PubMed]
- Xiao, R.; Ni, B.J.; Liu, S.; Lu, H. Impacts of organics on the microbial ecology of wastewater anammox processes: Recent advances and meta-analysis. Water Res. 2021, 191, 116817. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Miao, Y.; Sun, Y.; Zhang, Q.; Dai, J.; Peng, Y. An effective strategy for in situ start-up of mainstream anammox process treating domestic sewage. Bioresour. Technol. 2021, 339, 125525. [Google Scholar] [CrossRef] [PubMed]
- Seuntjens, D.; Carvajal-Arroyo, J.M.; Ruopp, M.; Bunse, P.; de Mulder, C.P.; Lochmatter, S.; Agrawal, S.; Boon, N.; Lackner, S.; Vlaeminck, S.E. High-resolution mapping and modeling of anammox recovery from recurrent oxygen exposure. Water Res. 2018, 144, 522–531. [Google Scholar] [CrossRef] [PubMed]
- Ji, X.; Wu, Z.; Sung, S.; Lee, P.H. Metagenomics and metatranscriptomics analyses reveal oxygen detoxification and mixotrophic potentials of an enriched anammox culture in a continuous stirred-tank reactor. Water Res. 2019, 166, 115039. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Okabe, S. Ecological niche differentiation among anammox bacteria. Water Res. 2020, 171, 115468. [Google Scholar] [CrossRef]
- Liu, L.; Wang, F.; Xu, S.; Yan, Z.; Ji, M. Long-term effect of fulvic acid amendment on the anammox biofilm system at 15 °C: Performance, microbial community and metagenomics analysis. Bioresour. Technol. 2022, 344, 126234. [Google Scholar] [CrossRef]
- Park, H.; Sundar, S.; Ma, Y.; Chandran, K. Differentiation in the microbial ecology and activity of suspended and attached bacteria in a nitritation-anammox process. Biotechnol. Bioeng. 2015, 112, 272–279. [Google Scholar] [CrossRef]
- Yang, Y.; Azari, M.; Herbold, C.W.; Li, M.; Chen, H.; Ding, X.; Denecke, M.; Gu, J.D. Activities and metabolic versatility of distinct anammox bacteria in a full-scale wastewater treatment system. Water Res. 2021, 206, 117763. [Google Scholar] [CrossRef]
- Yokota, N.; Watanabe, Y.; Tokutomi, T.; Kiyokawa, T.; Hori, T.; Ikeda, D.; Song, K.; Hosomi, M.; Terada, A. High-rate nitrogen removal from waste brine by marine anammox bacteria in a pilot-scale UASB reactor. Appl. Microbiol. Biotechnol. 2018, 102, 1501–1512. [Google Scholar] [CrossRef]
- Li, J.; Qi, P.; Qiang, Z.; Dong, H.; Gao, D.; Wang, D. Is anammox a promising treatment process for nitrogen removal from nitrogen-rich saline wastewater? Bioresour. Technol. 2018, 270, 722–731. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Zhao, Y.; Jiang, B.; Zhao, H.; Wang, Q.; Liu, S. Discrepant gene functional potential and cross-feedings of anammox bacteria Ca. Jettenia caeni and Ca. Brocadia sinica in response to acetate. Water Res. 2019, 165, 114974. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Fan, N.S.; Fu, J.J.; Huang, B.C.; Jin, R.C. Role and application of quorum sensing in anaerobic ammonium oxidation (anammox) process: A review. Crit. Rev. Environ. Sci. Technol. 2021, 51, 626–648. [Google Scholar] [CrossRef]
- Louca, S.; Polz, M.F.; Mazel, F.; Albright, M.B.N.; Huber, J.A.; O’Connor, M.I.; Ackermann, M.; Hahn, A.S.; Srivastava, D.S.; Crowe, S.A.; et al. Function and functional redundancy in microbial systems. Nat. Ecol. Evol. 2018, 2, 936–943. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Ho, K.L.; Liu, F.C.; Ho, M.; Wang, A.; Ren, N.; Lee, D.J. Autotrophic and heterotrophic denitrification by a newly isolated strain Pseudomonas sp. C27. Bioresour. Technol. 2013, 145, 351–356. [Google Scholar] [CrossRef]
- Tan, X.; Xie, G.J.; Nie, W.B.; Xing, D.F.; Liu, B.F.; Ding, J.; Ren, N.Q. Fe(III)-mediated anaerobic ammonium oxidation: A novel microbial nitrogen cycle pathway and potential applications. Crit. Rev. Environ. Sci. Technol. 2021, 1–33. [Google Scholar] [CrossRef]
- Valiente, N.; Jirsa, F.; Hein, T.; Wanek, W.; Prommer, J.; Bonin, P.; Gómez-Alday, J.J. The role of coupled DNRA-Anammox during nitrate removal in a highly saline lake. Sci. Total Environ. 2022, 806, 150726. [Google Scholar] [CrossRef]
- Lu, Y.Z.; Li, N.; Ding, Z.W.; Fu, L.; Bai, Y.N.; Sheng, G.P.; Zeng, R.J. Tracking the activity of the Anammox-DAMO process using excitation–emission matrix (EEM) fluorescence spectroscopy. Water Res. 2017, 122, 624–632. [Google Scholar] [CrossRef]
- Xu, J.; Sheng, G.P. Microbial extracellular polymeric substances (EPS) acted as a potential reservoir in responding to high concentrations of sulfonamides shocks during biological wastewater treatment. Bioresour. Technol. 2020, 313, 123654. [Google Scholar] [CrossRef]
- Delre, A.; ten Hoeve, M.; Scheutz, C. Site-specific carbon footprints of Scandinavian wastewater treatment plants, using the life cycle assessment approach. J. Clean. Prod. 2019, 211, 1001–1014. [Google Scholar] [CrossRef]
Inhibition Conditions | Reactors | Concentration of Nitrogen (mg L−1) | Inhibition Threshold | References | ||
---|---|---|---|---|---|---|
Ammonium | Nitrite | |||||
Antibiotics | Norfloxacin | Biofilm reactor | 50.1 | 51.4 | 1 ug L−1 | [63] |
Spiramycin | UASB | 280 | 280 | 3 mg L−1 | [64] | |
Erythromycin | UASB | 280 | 280 | 0.1 mg L−1 | [65] | |
Sulfamethoxazole | UASB | 280 | 280 | 5 mg L−1 | [65] | |
Tetracycline | UASB | 280 | 280 | 0.1 mg L−1 | [65] | |
Salinity | NaCl | SBBR | 400–472 | 520 | 12 g L−1 | [66] |
NaCl | UASB | 191 | 325 | 20 g L−1 | [67] | |
NaCl; KCl | Batch test | 100 | 100 | 18.6 g L−1 | [68] | |
Heavy metals | Zn2+ | Batch test | - | - | 6.9 mg L−1 | [70] |
Cu2+ | Batch test | 100 | 100 | 12.9 mg L−1 | [71] | |
Cd2+ | Batch test | 100 | 120 | 11.16 mg L−1 | [69] | |
Ag+ | Batch test | 100 | 120 | 11.52 mg L−1 | [69] | |
Hg2+ | Batch test | 100 | 120 | 60.39 mg L−1 | [69] |
Genera | Origins | Electron Donor | Electron Acceptor | Relative Abundance | References |
---|---|---|---|---|---|
Agrobacterium | S0-packed bed | S0; S2−; S2O32−; SO3−; organic carbon | NO3− | - | [87] |
Pseudomonas | EGSB | S0; S2−; organic carbon | NO3−; NO2− | 27.60% | [30] |
Paracoccus | MBBR | S0; S2−; S2O32−; organic carbon; H2 | NO3− | 7.87% | [86] |
Thiobacillus | SBR | S0; S2−; S2O32−; SO3− | NO3−; NO2− | 50.20% | [18,85] |
Thioalkalimicrobium | Sediments from lake | S0; S2−; S2O32− | NO3− | - | [18] |
Thioalkalivibrio | Sediments from lake | S0; S2−; S2O32− | NO3−; O2 | - | [89] |
Thioploca | Sediments from lake | S0; S2−; S2O32−; organic carbon | NO3−; O2 | - | [18,84] |
Thauera | AnFB-MBR | S0; S2−; S2O32−; organic carbon | NO3− | 11.90% | [34,83] |
Sulfurimonas | SBR | S0; S2−; S2O32−; SO3−; organic carbon | NO3−; NO2−; O2 | 11.80% | [34,75,90] |
Sulfurovum | Deep-sea hydrothermal vent | S0; S2O32− | NO3−; O2 | - | [82] |
Sulfuricella | S0-packed bed | S0; S2O32− | NO3− | About 10% | [18] |
Ferritrophicum | Sediments | S0; S2−; Fe2+; H2 | NO3− | - | [88] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Q.; Xu, X.; Zhou, X.; Chen, C. Recent Advances in Autotrophic Biological Nitrogen Removal for Low Carbon Wastewater: A Review. Water 2022, 14, 1101. https://doi.org/10.3390/w14071101
Zhang Q, Xu X, Zhou X, Chen C. Recent Advances in Autotrophic Biological Nitrogen Removal for Low Carbon Wastewater: A Review. Water. 2022; 14(7):1101. https://doi.org/10.3390/w14071101
Chicago/Turabian StyleZhang, Quan, Xijun Xu, Xu Zhou, and Chuan Chen. 2022. "Recent Advances in Autotrophic Biological Nitrogen Removal for Low Carbon Wastewater: A Review" Water 14, no. 7: 1101. https://doi.org/10.3390/w14071101
APA StyleZhang, Q., Xu, X., Zhou, X., & Chen, C. (2022). Recent Advances in Autotrophic Biological Nitrogen Removal for Low Carbon Wastewater: A Review. Water, 14(7), 1101. https://doi.org/10.3390/w14071101