Numerical Assessment of Groundwater Flowpaths below a Streambed in Alluvial Plains Impacted by a Pumping Field
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Comparison between Natural and Pumping Situations
3.2. Impact of the Clogging
3.3. Impact of the Natural Hydraulic Head Gradient in the Pumping Condition
3.4. Impact of the Distance between the Well and the Riverbank
3.5. Effect of Non-Penetrating Well
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
References
- Maréchal, J.-C.; Rouillard, J. Groundwater in France: Resources, use and management issues. In Sustainable Groundwater Management; Springer: Berlin/Heidelberg, Germany, 2020; pp. 17–45. [Google Scholar]
- Winter, T.C.; Harvey, J.W.; Franke, O.L.; Alley, W.M. Ground Water and Surface Water-A Single Resource-U.S. Geological Survey Circular 1139; U.S. Geological Survey, Water Resources Division: Reston, VA, USA, 1998; Volume Circular, ISBN 0607893397. [Google Scholar]
- Holman, I.P. Climate change impacts on groundwater recharge-uncertainty, shortcomings, and the way forward? Hydrogeol. J. 2006, 14, 637–647. [Google Scholar] [CrossRef] [Green Version]
- Fleckenstein, J.H.; Krause, S.; Hannah, D.M.; Boano, F. Groundwater-surface water interactions: New methods and models to improve understanding of processes and dynamics. Adv. Water Resour. 2010, 33, 1291–1295. [Google Scholar] [CrossRef]
- Krause, S.; Freer, J.; Hannah, D.M.; Howden, N.J.K.; Wagener, T.; Worrall, F. Catchment similarity concepts for understanding dynamic biogeochemical behaviour of river basins. Hydrol. Process. 2014, 28, 1554–1560. [Google Scholar] [CrossRef] [Green Version]
- Bernard-Jannin, L.; Sun, X.; Teissier, S.; Sauvage, S.; Sánchez-Pérez, J.M. Spatio-temporal analysis of factors controlling nitrate dynamics and potential denitrification hot spots and hot moments in groundwater of an alluvial floodplain. Ecol. Eng. 2017, 103, 372–384. [Google Scholar] [CrossRef] [Green Version]
- Malama, B.; Pritchard-Peterson, D.; Jasbinsek, J.J.; Surfleet, C. Assessing stream-aquifer connectivity in a coastal California watershed. Water 2021, 13, 416. [Google Scholar] [CrossRef]
- Ranalli, A.J.; Macalady, D.L. The importance of the riparian zone and in-stream processes in nitrate attenuation in undisturbed and agricultural watersheds-A review of the scientific literature. J. Hydrol. 2010, 389, 406–415. [Google Scholar] [CrossRef]
- Shuai, P.; Cardenas, M.B.; Knappett, P.S.K.; Bennett, P.C.; Neilson, B.T. Denitrification in the banks of fluctuating rivers: The effects of river stage amplitude, sediment hydraulic conductivity and dispersivity, and ambient groundwater flow. Water Resour. Res. 2017, 53, 7951–7967. [Google Scholar] [CrossRef]
- Brunner, P.; Simmons, C.T.; Cook, P.G. Spatial and temporal aspects of the transition from connection to disconnection between rivers, lakes and groundwater. J. Hydrol. 2009, 376, 159–169. [Google Scholar] [CrossRef] [Green Version]
- Brunner, P.; Cook, P.G.; Simmons, C.T. Hydrogeologic controls on disconnection between surface water and groundwater. Water Resour. Res. 2009, 45, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Fuchs, E.H.; King, J.P.; Carroll, K.C. Quantifying Disconnection of Groundwater from Managed-Ephemeral Surface Water during Drought and Conjunctive Agricultural Use. Water Resour. Res. 2019, 55, 5871–5890. [Google Scholar] [CrossRef] [Green Version]
- Rivière, A.; Gonçalvès, J.; Jost, A.; Font, M. Experimental and numerical assessment of transient stream-aquifer exchange during disconnection. J. Hydrol. 2014, 517, 574–583. [Google Scholar] [CrossRef] [Green Version]
- Simonds, F.W.; Sinclair, K.A. Surface Water-Ground Water Interactions Along the Lower Dungeness River and Vertical Hydraulic Conductivity of Surface Water-Ground Water Interactions Along the Lower Dungeness River and Vertical Hydraulic Conductivity of Streambed Sediments, Clallam Cou. USGS Prof. Pap. 2002, 2, 20327. [Google Scholar]
- Cardenas, M.B. A model for lateral hyporheic flow based on valley slope and channel sinuosity. Water Resour. Res. 2009, 45, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Cardenas, M.B.; Wilson, J.L.; Zlotnik, V.A. Impact of heterogeneity, bed forms, and stream curvature on subchannel hyporheic exchange. Water Resour. Res. 2004, 40, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Pryshlak, T.T.; Sawyer, A.H.; Stonedahl, S.H.; Soltanian, M.R. Multiscale hyporheic exchange through strongly heterogeneous sediments. Water Resour. Res. 2015, 51, 9127–9140. [Google Scholar] [CrossRef] [Green Version]
- Sawyer, A.H.; Cardenas, M.B. Hyporheic flow and residence time distributions in heterogeneous cross-bedded sediment W08406. Water Resour. Res. 2009, 45, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Pinay, G.; Peiffer, S.; De Dreuzy, J.R.; Krause, S.; Hannah, D.M.; Fleckenstein, J.H.; Sebilo, M.; Bishop, K.; Hubert-Moy, L. Upscaling Nitrogen Removal Capacity from Local Hotspots to Low Stream Orders’ Drainage Basins. Ecosystems 2015, 18, 1101–1120. [Google Scholar] [CrossRef] [Green Version]
- Clausen, L.; Fabricius, I.; Madsen, L. Adsorption of Pesticides onto Quartz, Calcite, Kaolinite, and α-Alumina. J. Environ. Qual. 2001, 30, 846–857. [Google Scholar] [CrossRef] [PubMed]
- Song, X.; Chen, X.; Stegen, J.; Hammond, G.; Song, H.S.; Dai, H.; Graham, E.; Zachara, J.M. Drought Conditions Maximize the Impact of High-Frequency Flow Variations on Thermal Regimes and Biogeochemical Function in the Hyporheic Zone. Water Resour. Res. 2018, 54, 7361–7382. [Google Scholar] [CrossRef]
- Cardenas, M.B. Stream-aquifer interactions and hyporheic exchange in gaining and losing sinuous streams. Water Resour. Res. 2009, 45, 1–13. [Google Scholar] [CrossRef]
- Flipo, N.; Mouhri, A.; Labarthe, B.; Biancamaria, S.; Rivière, A.; Weill, P. Continental hydrosystem modelling: The concept of nested stream & ndash;aquifer interfaces. Hydrol. Earth Syst. Sci. 2014, 18, 3121–3149. [Google Scholar] [CrossRef] [Green Version]
- Barthel, R.; Banzhaf, S. Groundwater and Surface Water Interaction at the Regional-scale–A Review with Focus on Regional Integrated Models. Water Resour. Manag. 2016, 30, 1–32. [Google Scholar] [CrossRef] [Green Version]
- Toth, J. A Theoretical Analysis of Groundwater Flow in Small Drainage Basins 1 of phe low order stream and having similar t he outlet of lowest impounded body of a relatively. J. Geophys. Res. 1963, 68, 4795–4812. [Google Scholar] [CrossRef]
- Goderniaux, P.; Davy, P.; Bresciani, E.; De Dreuzy, J.R.; Le Borgne, T. Partitioning a regional groundwater flow system into shallow local and deep regional flow compartments. Water Resour. Res. 2013, 49, 2274–2286. [Google Scholar] [CrossRef] [Green Version]
- Bresciani, E.; Goderniaux, P.; Batelaan, O. Hydrogeological controls of water table-land surface interactions. Geophys. Res. Lett. 2016, 43, 9653–9661. [Google Scholar] [CrossRef]
- Khan, H.H.; Khan, A. Groundwater and Surface Water Interaction. In GIS and Geostatistical Techniques for Groundwater Science; Elsevier Inc.: Amsterdam, The Netherlands, 2019; ISBN 9780128154137. [Google Scholar]
- Gleeson, T.; Wada, Y.; Bierkens, M.F.P.; Van Beek, L.P.H. Water balance of global aquifers revealed by groundwater footprint. Nature 2012, 488, 197–200. [Google Scholar] [CrossRef] [PubMed]
- Saleh, F.; Flipo, N.; Habets, F.; Ducharne, A.; Oudin, L.; Viennot, P.; Ledoux, E. Modeling the impact of in-stream water level fluctuations on stream-aquifer interactions at the regional scale. J. Hydrol. 2011, 400, 490–500. [Google Scholar] [CrossRef]
- Pryet, A.; Labarthe, B.; Saleh, F.; Akopian, M.; Flipo, N. Reporting of Stream-Aquifer Flow Distribution at the Regional Scale with a Distributed Process-Based Model. Water Resour. Manag. 2015, 29, 139–159. [Google Scholar] [CrossRef]
- Hunt, B. Review of Stream Depletion Solutions, Behavior, and Calculations. J. Hydrol. Eng. 2014, 19, 167–178. [Google Scholar] [CrossRef]
- Huang, C.S.; Yang, T.; Yeh, H. Der Review of analytical models to stream depletion induced by pumping: Guide to model selection. J. Hydrol. 2018, 561, 277–285. [Google Scholar] [CrossRef]
- Zipper, S.C.; Gleeson, T.; Kerr, B.; Howard, J.K.; Rohde, M.M.; Carah, J.; Zimmerman, J. Rapid and Accurate Estimates of Streamflow Depletion Caused by Groundwater Pumping Using Analytical Depletion Functions. Water Resour. Res. 2019, 55, 5807–5829. [Google Scholar] [CrossRef]
- Alley, W.M.; Healy, R.W.; LaBaugh, J.W.; Reilly, T.E. Flow and storage in groundwater systems. Science 2002, 296, 1985–1990. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barlow, P.; Leake, S. Streamflow Depletion by Wells—Understanding and Managing the Effects of Groundwater Pumping on Streamflow; U.S. Geological Survey, Water Resources Division: Reston, VA, USA, 2012; ISBN 9781411334434. [Google Scholar]
- Konikow, L.F.; Leake, S.A. Depletion and capture: Revisiting “the source of water derived from wells”. Ground Water 2014, 52, 100–111. [Google Scholar] [CrossRef] [PubMed]
- Leake, S.A.; Reeves, H.W.; Dickinson, J.E. A new capture fraction method to map how pumpage affects surface water flow. Ground Water 2010, 48, 690–700. [Google Scholar] [CrossRef] [PubMed]
- Hiscock, K.M.; Grischek, T. Attenuation of groundwater pollution by bank filtration. J. Hydrol. 2002, 266, 139–144. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Y.; Zhai, Y.; Teng, Y.; Wang, G.; Du, Q.; Wang, J.; Yang, G. Water supply safety of riverbank filtration wells under the impact of surface water-groundwater interaction: Evidence from long-term field pumping tests. Sci. Total Environ. 2020, 711, 135141. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Zhai, Y.; Du, Q.; Teng, Y.; Wang, J.; Yang, G. The impact of well drawdowns on the mixing process of river water and groundwater and water quality in a riverside well field, Northeast China. Hydrol. Process. 2019, 33, 945–961. [Google Scholar] [CrossRef]
- Masse-Dufresne, J.; Baudron, P.; Barbecot, F.; Patenaude, M.; Pontoreau, C.; Proteau-Bédard, F.; Menou, M.; Pasquier, P.; Veuille, S.; Barbeau, B. Anthropic and Meteorological Controls on the Origin and Quality of Water at a Bank Filtration Site in Canada. Water 2019, 11, 2510. [Google Scholar] [CrossRef] [Green Version]
- Woessner, W.W. Stream and fluvial plain ground water interactions: Rescaling hydrogeologic thought. Ground Water 2000, 38, 423–429. [Google Scholar] [CrossRef]
- Bear, J. Hydraulics of Groundwater; McGraw-Hill: New York, NY, USA, 1979. [Google Scholar]
- Miracapillo, C.; Morel-Seytoux, H.J. Analytical solutions for stream-aquifer flow exchange under varying head asymmetry and river penetration: Comparison to numerical solutions and use in regional groundwater models. Water Resour. Res. 2014, 50, 1410–1432. [Google Scholar] [CrossRef]
- Poulain, A.; Marc, V.; Gillon, M.; Cognard-Plancq, A.L.; Simler, R.; Babic, M.; Leblanc, M. Multi frequency isotopes survey to improve transit time estimation in a situation of river-aquifer interaction. Water 2021, 13, 2695. [Google Scholar] [CrossRef]
- Tzoraki, O.; Nikolaidis, N.P.; Cooper, D.; Kassotaki, E. Nutrient mitigation in a temporary river basin. Environ. Monit. Assess. 2014, 186, 2243–2257. [Google Scholar] [CrossRef]
- Poulain, A.; Marc, V.; Gillon, M.; Mayer, A.; Cognard-Plancq, A.L.; Simler, R.; Babic, M.; Leblanc, M. Enhanced pumping test using physicochemical tracers to determine surface-water/groundwater interactions in an alluvial island aquifer, river Rhône, France. Hydrogeol. J. 2021, 29, 1569–1585. [Google Scholar] [CrossRef]
- Grenier, C.; Anbergen, H.; Bense, V.; Chanzy, Q.; Coon, E.; Collier, N.; Costard, F.; Ferry, M.; Frampton, A.; Frederick, J.; et al. Groundwater flow and heat transport for systems undergoing freeze-thaw: Intercomparison of numerical simulators for 2D test cases. Adv. Water Resour. 2018, 114, 196–218. [Google Scholar] [CrossRef]
- Rivière, A.; Jost, A.; Gonçalvès, J.; Font, M. Pore water pressure evolution below a freezing front under saturated conditions: Large-scale laboratory experiment and numerical investigation. Cold Reg. Sci. Technol. 2019, 158, 76–94. [Google Scholar] [CrossRef]
- Loizeau, S.; Rossier, Y.; Gaudet, J.P.; Refloch, A.; Besnard, K.; Angulo-Jaramillo, R.; Lassabatere, L. Water infiltration in an aquifer recharge basin affected by temperature and air entrapment. J. Hydrol. Hydromech. 2017, 65, 222–233. [Google Scholar] [CrossRef] [Green Version]
- Bouwer, H. Theory of seepage from open channels. Adv. Hydrosci. 1969, 5, 121–172. [Google Scholar]
- Van Genuchten, M.T. A Closed-form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils. Soil Sci. Soc. Am. J. 1980, 44, 892–898. [Google Scholar] [CrossRef] [Green Version]
- Mualem, Y. A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resour. Res. 1976, 12, 513–522. [Google Scholar] [CrossRef] [Green Version]
- Strahler, A.N. Quantitative analysis of watershed geomorphology. Eos. Trans. Am. Geophys. Union 1957, 38, 913–920. [Google Scholar] [CrossRef] [Green Version]
- Calver, A. Riverbed Permeabilities: Information from Pooled Data. Ground Water 2001, 39, 546–553. [Google Scholar] [CrossRef] [PubMed]
- Datry, T.; Lamouroux, N.; Thivin, G.; Descloux, S.; Baudoin, J.M. Estimation of sediment hydraulic conductivity in river reaches and its potential use to evaluate streambed clogging. River Res. Appl. 2007, 7, 189. [Google Scholar] [CrossRef]
- Schaap, M.G.; Leij, F.J.; Van Genuchten, M.T. Rosetta: A computer program for estimating soil hydraulic parameters with hierarchical pedotransfer functions. J. Hydrol. 2001, 251, 163–176. [Google Scholar] [CrossRef]
- Carsel, R.F.; Parrish, R.S. Developing joint probability distributions of soil water retention characteristics. Water Resour. Res. 1988, 24, 755–769. [Google Scholar] [CrossRef] [Green Version]
- Jin, G.; Tang, H.; Li, L.; Barry, D.A. Hyporheic flow under periodic bed forms influenced by low-density gradients. Geophys. Res. Lett. 2011, 38, 2–7. [Google Scholar] [CrossRef] [Green Version]
- Grischek, T.; Schoenheinz, D.; Syhre, C.; Saupe, K. Impact of decreasing water demand on bank filtration in Saxony, Germany. Drink. Water Eng. Sci. 2010, 3, 11–20. [Google Scholar] [CrossRef] [Green Version]
- Przybyłek, J.; Dragon, K.; Kaczmarek, P.M.J. Hydrogeological investigations of river bed clogging at a river bank filtration site along the River Warta, Poland. Geologos 2017, 23, 201–214. [Google Scholar] [CrossRef] [Green Version]
Materials | Ks (ms−1) | α (m−1) | n |
---|---|---|---|
Aquifer | 1.10−3 | 3.5 | 3.1 |
Streambed 0 (SB0) | 1.10−3 | 3.5 | 3.1 |
Streambed 1 (SB1) | 1.10−4 | 3.0 | 1.2 |
Streambed 2 (SB2) | 1.10−5 | 3.0 | 1.2 |
Simulation | Pumping Rate | Clogging Condition | Boundaries Conditions | Wells River Distance | Wells Depth | Simulation | Pumping Rate | Clogging Condition | Boundaries Conditions | Wells River Distance | Wells Depth |
---|---|---|---|---|---|---|---|---|---|---|---|
Sim$1.1 | 0 | SB0 | H0 | 50 | 100% | Sim$3.1 | 0.001 | SB0 | H0 | 75 | 100% |
Sim$1.2 | 0.001 | SB0 | H0 | 50 | 100% | Sim$3.2 | 0.001 | SB0 | H0 | 50 | 100% |
Sim$1.3 | 0.01 | SB0 | H0 | 50 | 100% | Sim$3.3 | 0.001 | SB0 | H0 | 25 | 100% |
Sim$1.4 | 0 | SB1 | H0 | 50 | 100% | Sim$3.4 | 0.001 | SB0 | H0.5 | 75 | 100% |
Sim$1.5 | 0.001 | SB1 | H0 | 50 | 100% | Sim$3.5 | 0.001 | SB0 | H0.5 | 50 | 100% |
Sim$1.6 | 0.01 | SB1 | H0 | 50 | 100% | Sim$3.6 | 0.001 | SB0 | H0.5 | 25 | 100% |
Sim$1.7 | 0 | SB2 | H0 | 50 | 100% | Sim$3.7 | 0.001 | SB0 | H1 | 75 | 100% |
Sim$1.8 | 0.001 | SB2 | H0 | 50 | 100% | Sim$3.8 | 0.001 | SB0 | H1 | 50 | 100% |
Sim$1.9 | 0.01 | SB2 | H0 | 50 | 100% | Sim$3.9 | 0.001 | SB0 | H1 | 25 | 100% |
Sim$2.1 | 0.001 | SB0 | H0 | 50 | 100% | Sim$4.1 | 0.01 | SB0 | H0 | 50 | 100% |
Sim$2.2 | 0.001 | SB0 | H0.5 | 50 | 100% | Sim$4.2 | 0.01 | SB0 | H0 | 50 | 25 m |
Sim$2.3 | 0.001 | SB0 | H1 | 50 | 100% | Sim$4.3 | 0.01 | SB0 | H0 | 50 | 50 m |
Pumping Conditions | Q = 0.001 | Q = 0.01 |
---|---|---|
Right GW regional flow | 96% | 67% |
Streamflow leakage | 0 | 26.5% |
Left GW regional flow | 4% | 6.5% |
Wells Conditions | 100% Penetrating Wells (Sim$4.1) | 25 m Partially Penetrating Wells (Sim$4.2) | 75 m Partially Penetrating Wells (Sim$4.3) |
---|---|---|---|
Right GW regional flow | 67% | 75% | 70% |
Streamflow leakage | 26.50% | 24% | 26% |
Left GW regional flow | 6.50% | 1% | 4% |
Simulation | Ar Threshold | Cross-Riverbank Flow Contribution at Ar = 1 | Simulation | Ar Threshold | Cross-Riverbank Flow Contribution at Ar = 1 |
---|---|---|---|---|---|
Sim$1.1 | * | 0% | Sim$3.1 | * | 0% |
Sim$1.2 | 0.2 | 6.50% | Sim$3.2 | 0.2 | 4% |
Sim$1.3 | 0.2 | 4% | Sim$3.3 | 0.2 | 8% |
Sim$1.4 | * | 0% | Sim$3.4 | 0.2 | 15% |
Sim$1.5 | 0.2 | 7% | Sim$3.5 | 0.2 | 21% |
Sim$1.6 | 0.2 | 4% | Sim$3.6 | 0.2 | 25% |
Sim$1.7 | * | 0% | Sim$3.7 | 0.2 | 18% |
Sim$1.8 | 0.05 | 15% | Sim$3.8 | 0.2 | 29% |
Sim$1.9 | 0.05 | 9% | Sim$3.9 | 0.2 | 35% |
Sim$2.1 | 0.2 | 4% | |||
Sim$2.2 | 0.2 | 21% | |||
Sim$2.3 | 0.2 | 29% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Texier, J.; Gonçalvès, J.; Rivière, A. Numerical Assessment of Groundwater Flowpaths below a Streambed in Alluvial Plains Impacted by a Pumping Field. Water 2022, 14, 1100. https://doi.org/10.3390/w14071100
Texier J, Gonçalvès J, Rivière A. Numerical Assessment of Groundwater Flowpaths below a Streambed in Alluvial Plains Impacted by a Pumping Field. Water. 2022; 14(7):1100. https://doi.org/10.3390/w14071100
Chicago/Turabian StyleTexier, Jérôme, Julio Gonçalvès, and Agnès Rivière. 2022. "Numerical Assessment of Groundwater Flowpaths below a Streambed in Alluvial Plains Impacted by a Pumping Field" Water 14, no. 7: 1100. https://doi.org/10.3390/w14071100
APA StyleTexier, J., Gonçalvès, J., & Rivière, A. (2022). Numerical Assessment of Groundwater Flowpaths below a Streambed in Alluvial Plains Impacted by a Pumping Field. Water, 14(7), 1100. https://doi.org/10.3390/w14071100