Wastewater Treatment in Mineral Processing of Non-Ferrous Metal Resources: A Review
Abstract
:1. Introduction
2. Wastewater Sources and Hazards in Non-Ferrous Metal Mineral Processing
2.1. Wastewater Sources in Non-Ferrous Metal Mineral Processing
2.2. Wastewater Hazards from Non-Ferrous Metal Mineral Processing
2.2.1. Hazards Posed by Heavy Metal Ions
2.2.2. Hazards Posed by Reagent Residues
3. Wastewater Treatment in Mineral Processing of Non-Ferrous Metals
3.1. Treatments for Heavy Metal Ions in Wastewater
3.1.1. Chemical Precipitation
3.1.2. Ion Exchange
3.1.3. Adsorption
3.2. Treatment of Residual Organic Reagents
3.2.1. Photocatalytic Oxidation
3.2.2. Fenton Oxidation
4. Recycling and Utilization of Wastewater from Non-Ferrous Metal Mineral Processing
4.1. Effects of Recycling Wastewater on Flotation Processes
4.2. Processes Involved in Recycling Flotation Wastewater
4.2.1. External Recycling
4.2.2. Internal Recycling Process
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Owodunni, A.A.; Suzylawati, I. Revolutionary technique for sustainable plant-based green coagulants in industrial wastewater treatment—A review. Water Process Eng. 2021, 42, 102096. [Google Scholar] [CrossRef]
- Wang, C.T.; Wang, G.; Feng, Z. Comprehensive utilization of the water resources in small watershed. Procedia Environ. Sci. 2011, 10, 1509–1512. [Google Scholar] [CrossRef] [Green Version]
- Gleeson, T.; Wada, Y.; Bierkens, M.F.P. Water balance of global aquifers revealed by groundwater footprint. Nature 2012, 488, 197–200. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Hoekstra, A.Y.; Mathews, R.E. Water Footprint Assessment (WFA) for better water governance and sustainable development, editorial. Water Resour. Ind. 2013, 1, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Malek, A.; Rao, G.R.; Thomas, T. Waste-to-wealth approach in water economy: The case of beneficiation of mercury-contaminated water in hydrogen production. Int. J. Hydrog. Energy 2021, 46, 26677–26692. [Google Scholar] [CrossRef]
- Dubey, A.K.; Sahu, O. Review on natural methods for waste water treatment. J. Urban Environ. Eng. 2014, 8, 89–97. [Google Scholar]
- Mwaanga, P.; Silondwa, M.; Kasali, G. Preliminary review of mine air pollution in Zambia. Heliyon 2019, 5, e02485. [Google Scholar] [CrossRef]
- Ran, H.; Guo, Z.; Yi, L. Pollution characteristics and source identification of soil metal (loid) s at an abandoned arsenic-containing mine, China. J. Hazard. Mater. 2021, 413, 125382. [Google Scholar] [CrossRef]
- Bhuiyan, M.A.H.; Parvez, L.; Islam, M.A. Heavy metal pollution of coal mine-affected agricultural soils in the northern part of Bangladesh. J. Hazard. Mater. 2010, 173, 384–392. [Google Scholar] [CrossRef]
- Antunes, I.; Gomes, M.E.P.; Neiva, A.M.R. Potential risk assessment in stream sediments, soils and waters after remediation in an abandoned W > Sn mine (NE Portugal). Ecotoxicol. Environ. Saf. 2016, 133, 135–145. [Google Scholar] [CrossRef]
- Xin, R.R.; Banda, J.F.; Hao, C.B. Contrasting seasonal variations of geochemistry and microbial community in two adjacent acid mine drainage lakes in Anhui Province, China. Environ. Pollut. 2021, 268, 115826. [Google Scholar] [CrossRef] [PubMed]
- Stewart, B.D.; Jenkins, S.R.; Boig, C. Metal pollution as a potential threat to shell strength and survival in marine bivalves. Sci. Total Environ. 2021, 755, 143019. [Google Scholar] [CrossRef] [PubMed]
- Pelletier, N.; Chételat, J.; Cousens, B. Lead contamination from gold mining in Yellowknife Bay (Northwest Territories), reconstructed using stable lead isotopes. Environ. Pollut. 2020, 259, 113888. [Google Scholar] [CrossRef] [PubMed]
- Luís, A.T.; Teixeira, P.; Almeida, S.F.P. Environmental impact of mining activities in the Lousal area (Portugal): Chemical and diatom characterization of metal-contaminated stream sediments and surface water of Corona stream. Sci. Total Environ. 2011, 409, 4312–4325. [Google Scholar] [CrossRef] [PubMed]
- Park, J.H.; Oh, C.; Han, Y.S. Optimizing the addition of flocculants for recycling mineral-processing wastewater. Geosyst. Eng. 2016, 19, 83–88. [Google Scholar] [CrossRef]
- Benavente, M.; Moreno, L.; Martinez, J. Sorption of heavy metals from gold mining wastewater using chitosan. J. Taiwan Inst. Chem. Eng. 2011, 42, 976–988. [Google Scholar] [CrossRef]
- Meriç, S.; Selçuk, H.; Belgiorno, V. Acute toxicity removal in textile finishing wastewater by Fenton’s oxidation, ozone and coagulation–flocculation processes. Water Res. 2005, 39, 1147–1153. [Google Scholar] [CrossRef]
- Hu, X.F.; Jiang, Y.; Shu, Y. Effects of mining wastewater discharges on heavy metal pollution and soil enzyme activity of the paddy fields. J. Geochem. Explor. 2014, 169, 139–150. [Google Scholar] [CrossRef]
- Han, G.; Wen, S.M.; Wang, H.; Feng, Q.C. Surface sulfidization mechanism of cuprite and its response to xanthate adsorption and flotation performance. Miner. Eng. 2021, 169, 106982. [Google Scholar] [CrossRef]
- Rani, C.N.; Karthikeyan, S.; Doss, S.P.A. Photocatalytic ultrafiltration membrane reactors in water and wastewater treatment-A review. Chem. Eng. Process.-Process Intensif. 2021, 165, 108445. [Google Scholar] [CrossRef]
- Xu, Y.; Schwartz, F.W. Lead immobilization by hydroxyapatite in aqueous solutions. J. Contam. Hydrol. 1994, 15, 187–206. [Google Scholar] [CrossRef]
- Yang, M.; Lin, L.; Wang, B. A facile yet versatile method for adsorption and relayed fluorescent detection of heavy metal ions. J. Environ. Chem. Eng. 2021, 9, 105737. [Google Scholar] [CrossRef]
- Zhang, C.J.; Hu, M.; Ke, Q.F.; Guo, C.X.; Guo, Y.J.; Guo, Y.P. Nacre-inspired hydroxyapatite/chitosan layered composites effectively remove lead ions in continuous-flow wastewater. J. Hazard. Mater. 2020, 386, 121999. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Wang, Z.; Wang, C. Preparation of magnetic resin microspheres MP (MMA-DVB-GMA) and the adsorption property to heavy metal ions. Appl. Surf. Sci. 2019, 496, 143708. [Google Scholar] [CrossRef]
- Tzu, T.W.; Tsuritani, T.; Sato, K. Sorption of Pb (II), Cd (II), and Ni (II) toxic metal ions by alginate-bentonite. J. Environ. Prot. 2013, 4, 51–55. [Google Scholar] [CrossRef]
- Najam, R.; Andrabi, S.M.A. Removal of Cu (II), Zn (II) and Cd (II) ions from aqueous solutions by adsorption on walnut shell-Equilibrium and thermodynamic studies: Treatment of effluents from electroplating industry. Desalin. Water Treat. 2016, 57, 27363–27373. [Google Scholar] [CrossRef]
- Alkherraz, A.M.; Ali, A.K.; Elsherif, K.M. Removal of Pb (II), Zn (II), Cu (II) and Cd (II) from aqueous solutions by adsorption onto olive branches activated carbon: Equilibrium and thermodynamic studies. Chem. Int. 2020, 6, 11–20. [Google Scholar]
- Joseph, I.V.; Tosheva, L.; Doyle, A.M. Simultaneous removal of Cd (II), Co (II), Cu (II), Pb (II), and Zn (II) ions from aqueous solutions via adsorption on FAU-type zeolites prepared from coal fly ash. J. Environ. Chem. Eng. 2020, 8, 103895. [Google Scholar] [CrossRef]
- Jagung, P.T. Removal of Zn (II), Cd (II) and Mn (II) from aqueous solutions by adsorption on maize stalks. Malays. J. Anal. Sci. 2011, 15, 8–21. [Google Scholar]
- Guo, S.; Wu, K.; Gao, Y. Efficient removal of Zn (II), Pb (II), and Cd (II) in waste water based on magnetic graphitic carbon nitride materials with enhanced adsorption capacity. J. Chem. Eng. Data 2018, 63, 3902–3912. [Google Scholar] [CrossRef]
- Dabrowski, A.; Hubicki, Z.; Podkościelny, P. Selective removal of the heavy metal ions from waters and industrial wastewaters by ion-exchange method. Chemosphere 2004, 56, 91–106. [Google Scholar] [CrossRef]
- Vaaramaa, K.; Lehto, J. Removal of metals and anions from drinking water by ion exchange. Desalination 2003, 155, 157–170. [Google Scholar] [CrossRef]
- Wang, R.; Guan, S.; Sato, A. Nanofibrous microfiltration membranes capable of removing bacteria, viruses and heavy metal ions. J. Membr. Sci. 2013, 446, 376–382. [Google Scholar] [CrossRef]
- Zhong, Y.J.; You, S.J.; Wang, X.H. Synthesis of carbonaceous nanowire membrane for removing heavy metal ions and highwater flux. Chem. Eng. J. 2013, 226, 217–226. [Google Scholar] [CrossRef]
- Hezarjaribi, M.; Bakeri, G.; Sillanpää, M. Novel adsorptive PVC nanofibrous/thiol-functionalized TNT composite UF membranes for effective dynamic removal of heavy metal ions. J. Environ. Manag. 2021, 284, 111996. [Google Scholar] [CrossRef]
- Mu, J.; Zhou, H.; Chen, Y. Revealing a novel natural bioflocculant resource from Ruditapes philippinarum: Effective polysaccharides and synergistic flocculation. Carbohydr. Polym. 2018, 186, 17–24. [Google Scholar] [CrossRef]
- Xiao, X.; Sun, Y.; Liu, J. Flocculation of heavy metal by functionalized starch-based bioflocculants: Characterization and process evaluation. Sep. Purif. Technol. 2021, 267, 118628. [Google Scholar] [CrossRef]
- Yang, K.; Wang, G.; Chen, X. Treatment of wastewater containing Cu2+ using a novel macromolecular heavy metal chelating flocculant xanthated chitosan. Colloids Surf. A Physicochem. Eng. Asp. 2018, 558, 384–391. [Google Scholar] [CrossRef]
- Nguyen, M.K.; Pham, T.T.; Pham, H.G. Fenton/ozone-based oxidation and coagulation processes for removing metals (Cu, Ni)-EDTA from plating wastewater. J. Water Process Eng. 2021, 39, 101836. [Google Scholar] [CrossRef]
- Wang, Y.; Pan, T.; Yu, Y. A novel peroxymonosulfate (PMS)-enhanced iron coagulation process for simultaneous removal of trace organic pollutants in water. Water Res. 2020, 185, 116136. [Google Scholar] [CrossRef]
- Ali, I.; Asim, M.; Khan, T.A. Lowcost adsorbents for the removal of organic pollutants from wastewater. J. Environ. Manag. 2012, 113, 170–183. [Google Scholar] [CrossRef]
- Feng, Y.; Yang, S.; Xia, L. In-situ ion exchange electrocatalysis biological coupling (i-IEEBC) for simultaneously enhanced degradation of organic pollutants and heavy metals in electroplating wastewater. J. Hazard. Mater. 2019, 364, 562–570. [Google Scholar] [CrossRef] [PubMed]
- Moreira, F.C.; Boaventura, R.A.R.; Brillas, E. Electrochemical advanced oxidation processes: A review on their application to synthetic and real wastewaters. Appl. Catal. B Environ. 2017, 202, 217–261. [Google Scholar] [CrossRef]
- Tony, M.A.; Mansour, S.A.; Tayeb, A.M. Use of a fenton-like process based on nano-haematite to treat synthetic wastewater contaminated by phenol: Process investigation and statistical optimization. Arab. J. Sci. Eng. 2018, 43, 2227–2235. [Google Scholar] [CrossRef]
- Martínez-Huitle, C.A.; Panizza, M. Electrochemical oxidation of organic pollutants for wastewater treatment. Curr. Opin. Electrochem. 2018, 11, 62–71. [Google Scholar] [CrossRef]
- Scialdone, O. Electrochemical oxidation of organic pollutants in water at metal oxide electrodes: A simple theoretical model including direct and indirect oxidation processes at the anodic surface. Electrochim. Acta 2009, 54, 6140–6147. [Google Scholar] [CrossRef]
- Comninellis, C. Electrochemical Oxidation of Organic Pollutants for Wastewater Treatment. Stud. Environ. Sci. 1994, 59, 77–102. [Google Scholar]
- He, Y.; Lin, H.; Guo, Z. Recent developments and advances in boron-doped diamond electrodes for electrochemical oxidation of organic pollutants. Sep. Purif. Technol. 2019, 212, 802–821. [Google Scholar] [CrossRef]
- Daghrir, R.; Drogui, P.; Robert, D. Photoelectrocatalytic technologies for environmental applications. J. Photochem. Photobiol. A Chem. 2012, 238, 41–52. [Google Scholar] [CrossRef]
- Kim, G.; Igunnu, E.T.; Chen, G.Z. A sunlight assisted dual purpose photoelectrochemical cell for low voltage removal of heavy metals and organic pollutants in wastewater. Chem. Eng. J. 2014, 244, 411–421. [Google Scholar] [CrossRef]
- Liu, C.; Ding, Y.; Wu, W. A simple and effective strategy to fast remove chromium (VI) and organic pollutant in photoelectrocatalytic process at low voltage. Chem. Eng. J. 2016, 306, 22–30. [Google Scholar] [CrossRef]
- Mehta, S.K.; Gaur, J.P. Use of algae for removing heavy metal ions from wastewater: Progress and prospects. Crit. Rev. Biotechnol. 2005, 25, 113–152. [Google Scholar] [CrossRef] [PubMed]
- Ngah, W.S.W.; Hanafiah, M.A.K.M. Removal of heavy metal ions from wastewater by chemically modified plant wastes as adsorbents: A review. Bioresour. Technol. 2008, 99, 3935–3948. [Google Scholar] [CrossRef] [PubMed]
- Fu, F.; Wang, Q. Removal of heavy metal ions from wastewaters: A review. J. Environ. Manag. 2011, 92, 407–418. [Google Scholar] [CrossRef]
- Cabral Pinto, M.; Silva, M.; Silva, E.A. The cancer and non-cancer risk of Santiago Island (Cape Verde) population due to potential toxic elements exposure from soils. Geosciences 2017, 7, 78. [Google Scholar] [CrossRef] [Green Version]
- Kumar, A.; Cabral-Pinto, M.; Kumar, M. Estimation of risk to the eco-environment and human health of using heavy metals in the Uttarakhand Himalaya, India. Appl. Sci. 2020, 10, 7078. [Google Scholar] [CrossRef]
- Adriano, D.C.; Wenzel, W.W.; Vangronsveld, J. Role of assisted natural remediation in environmental cleanup. Geoderma 2004, 122, 121–142. [Google Scholar] [CrossRef]
- Paithankar, J.G.; Saini, S.; Dwivedi, S. Heavy metal associated health hazards: An interplay of oxidative stress and signal transduction. Chemosphere 2021, 262, 128350. [Google Scholar] [CrossRef]
- Qin, G.; Niu, Z.; Yu, J. Soil heavy metal pollution and food safety in China: Effects, sources and removing technology. Chemosphere 2020, 267, 129205. [Google Scholar] [CrossRef]
- Corguinha, A.P.B.; Souza, G.A.; Gonçalves, V.C. Assessing arsenic, cadmium, and lead contents in major crops in Brazil for food safety purposes. J. Food Compos. Anal. 2015, 37, 143–150. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Trivedi, P.K. Heavy metal stress signaling in plants. In Plant Metal Interaction; Parvaiz, A., Ed.; Elsevier: Amsterdam, The Netherlands, 2016; Chapter 25; pp. 585–603. [Google Scholar]
- Tchounwou, P.B.; Yedjou, C.G.; Patlolla, A.K. Heavy metal toxicity and the environment. Mol. Clin. Environ. Toxicol. 2012, 101, 133–164. [Google Scholar]
- Jaishankar, M.; Tseten, T.; Anbalagan, N. Toxicity, mechanism and health effects of some heavy metals. Interdiscip. Toxicol. 2014, 7, 60. [Google Scholar] [CrossRef] [Green Version]
- Jarvis, A.P.; Younger, P.L. Broadening the scope of mine water environmental impact assessment: A UK perspective. Environ. Impact Assess. Rev. 2000, 20, 85–96. [Google Scholar] [CrossRef]
- Lanocha-Arendarczyk, N.; Kosik-Bogacka, D.I.; Kalisinska, E. Influence of environmental factors and relationships between vanadium, chromium, and calcium in human bone. BioMed Res. Int. 2016, 2016, 8340425. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.; Liu, J.; Zhu, Y. Adsorption and depression mechanism of an eco-friendly depressant PCA onto chalcopyrite and pyrite for the efficiency flotation separation. Colloids Surf. A Physicochem. Eng. Asp. 2021, 620, 126574. [Google Scholar] [CrossRef]
- Cañizares, P.; Lobato, J.; Paz, R. Advanced oxidation processes for the treatment of olive-oil mills wastewater. Chemosphere 2007, 67, 832–838. [Google Scholar] [CrossRef]
- Yay, A.S.E.; Oral, H.V.; Onay, T.T. A study on olive oil mill wastewater management in Turkey: A questionnaire and experimental approach. Resour. Conserv. Recycl. 2012, 60, 64–71. [Google Scholar]
- Amor, C.; Lucas, M.S.; Garcia, J. Combined treatment of olive mill wastewater by Fenton’s reagent and anaerobic biological process. J. Environ. Sci. Health Part A 2015, 50, 161–168. [Google Scholar] [CrossRef]
- Han, G.; Wen, S.M.; Wang, H.; Feng, Q.C. Enhanced sulfidization flotation of cuprite by surface modification with hydrogen peroxide. Trans. Nonferrous Met. Soc. China 2021, 31, 3564–3578. [Google Scholar] [CrossRef]
- Oliveira, J.G.G. Desenvolvimento de Uma Rota de Processo de Dessulfurização de Rejeitos de Um Minério Aurífero Sulfetado. Master’s Thesis, Federal University of Minas, Minas Gerais, Brazil, 2011. [Google Scholar]
- Hu, J.S.; Zhong, L.S.; Song, W.G. Synthesis of hierarchically structured metal oxides and their application in heavy metal ion removal. Adv. Mater. 2008, 20, 2977–2982. [Google Scholar] [CrossRef]
- Liang, H.; Song, B.; Peng, P. Preparation of three-dimensional honeycomb carbon materials and their adsorption of Cr (VI). Chem. Eng. J. 2019, 367, 9–16. [Google Scholar] [CrossRef]
- Ge, Y.; Li, Z. Application of lignin and its derivatives in adsorption of heavy metal ions in water: A review. ACS Sustain. Chem. Eng. 2018, 6, 7181–7192. [Google Scholar] [CrossRef]
- Wu, R. Removal of heavy metal ions from industrial wastewater based on chemical precipitation method. Ekoloji 2019, 28, 2443–2452. [Google Scholar]
- Mirbagheri, S.A.; Hosseini, S.N. Pilot plant investigation on petrochemical wastewater treatmentfor the removal of copper and chromium with the objective of reuse. Desalination 2005, 171, 85–93. [Google Scholar] [CrossRef]
- Giannopoulou, I.; Panias, D. Differential precipitation of copper and nickel from acidic polymetallic aqueous solutions. Hydrometallurgy 2008, 90, 137–146. [Google Scholar] [CrossRef]
- Charerntanyarak, L. Heavy metals removal by chemical coagulation and precipitation. Water Sci. Technol. 1999, 39, 135–138. [Google Scholar] [CrossRef]
- Özverdi, A.; Erdem, M. Cu2+, Cd2+ and Pb2+ adsorption from aqueous solutions by pyrite and synthetic iron sulphide. J. Hazard. Mater. 2006, 137, 626–632. [Google Scholar] [CrossRef]
- Ghirişan, A.L.; Drǎgan, S.; Pop, A. Heavy metal removal and neutralization of acid mine waste water-kinetic study. Can. J. Chem. Eng. 2007, 85, 900–905. [Google Scholar] [CrossRef]
- Ghosh, P.; Samanta, A.N.; Ray, S. Reduction of COD and removal of Zn2+ from rayon industry wastewater by combined electro-Fenton treatment and chemical precipitation. Desalination 2011, 266, 213–217. [Google Scholar] [CrossRef]
- Chen, Q.; Luo, Z.; Hills, C. Precipitation of heavy metals from wastewater using simulated flue gas: Sequent additions of fly ash, lime and carbon dioxide. Water Res. 2009, 43, 2605–2614. [Google Scholar] [CrossRef]
- Guo, Z.R.; Zhang, G.; Fang, J. Enhanced chromium recovery from tanning wastewater. J. Clean. Prod. 2006, 14, 75–79. [Google Scholar] [CrossRef]
- Alvarez, M.T.; Crespo, C.; Mattiasson, B. Precipitation of Zn (II), Cu (II) and Pb (II) at bench-scale using biogenic hydrogen sulfide from the utilization of volatile fatty acids. Chemosphere 2007, 66, 1677–1683. [Google Scholar] [CrossRef] [PubMed]
- Brown, J.R.; Bancroft, G.M.; Fyfe, W.S. Mercury removal from water by iron sulfide minerals. An electron spectroscopy for chemical analysis (ESCA) study. Environ. Sci. Technol. 1979, 13, 1142–1144. [Google Scholar] [CrossRef]
- Cheremisinoff, P.N. Activated Carbon/Ion Exchange. In Handbook of Water and Wastewater Treatment Technology; Cheremisinoff, P.N., Ed.; Routledge: Boca Raton, FL, USA, 1995; Volume 1, Chapter 10; pp. 371–411. [Google Scholar]
- Verbych, S.; Hilal, N.; Sorokin, G. Ion exchange extraction of heavy metal ions from wastewater. Sep. Sci. Technol. 2005, 39, 2031–2040. [Google Scholar] [CrossRef]
- Motsi, T.; Rowson, N.A.; Simmons, M.J.H. Adsorption of heavy metals from acid mine drainage by natural zeolite. Int. J. Miner. Process. 2009, 92, 42–48. [Google Scholar] [CrossRef]
- Kang, S.Y.; Lee, J.U.; Moon, S.H. Competitive adsorption characteristics of Co2+, Ni2+, and Cr3+ by IRN-77 cation exchange resin in synthesized wastewater. Chemosphere 2004, 56, 141–147. [Google Scholar] [CrossRef]
- Cavaco, S.A.; Fernandes, S.; Quina, M.M. Removal of chromium from electroplating industry effluents by ion exchange resins. J. Hazard. Mater. 2007, 144, 634–638. [Google Scholar] [CrossRef]
- Siddiqui, W.A.; Khan, S.A. Synthesis, characterization and ion-exchange properties of a new and novel ‘organic–inorganic’ hybrid cation-exchanger: Poly (methyl methacrylate) Zr (IV) phosphate. Colloids Surf. A Physicochem. Eng. Asp. 2007, 295, 193–199. [Google Scholar] [CrossRef]
- Singare, P.U.; Lokhande, R.S. Studies on ion-isotopic exchange reactions using nuclear grade ion exchange resins. Ionics 2012, 18, 351–357. [Google Scholar] [CrossRef]
- Inamuddin, K.S.A.; Siddiqui, W.A.; Khan, A.A. Synthesis, characterization and ion-exchange properties of a new and novel ‘organic–inorganic’ hybrid cation-exchanger: Nylon-6, 6, Zr (IV) phosphate. Talanta 2007, 71, 841–847. [Google Scholar] [CrossRef]
- Naushad, M.; ALOthman, Z.A.; Sharma, G. Kinetics, isotherm and thermodynamic investigations for the adsorption of Co (II) ion onto crystal violet modified amberlite IR-120 resin. Ionics 2015, 21, 1453–1459. [Google Scholar] [CrossRef]
- Khan, A.A.; Alam, M.M. Preparation, characterization and analytical applications of a new and novel electrically conducting fibrous type polymeric–inorganic composite material: Polypyrrole Th (IV) phosphate used as a cation-exchanger and Pb (II) ion-selective membrane electrode. Mater. Res. Bull. 2005, 40, 289–305. [Google Scholar] [CrossRef]
- Varshney, K.; Agrawal, A.; Mojumdar, S. Pyridine based cerium (IV) phosphate hybrid fibrous ion exchanger: Synthesis, characterization and thermal behaviour. J. Therm. Anal. Calorim. 2007, 90, 731–734. [Google Scholar] [CrossRef]
- Khan, A.A.; Alam, M.M.; Mohammad, F. Ion-exchange kinetics and electrical conductivity studies of polyaniline Sn (IV) tungstoarsenate; (SnO2) (WO3) (As2O5)4 (-C6H5-NH-)2 · nH2O: A new semi-crystalline ‘polymeric–inorganic’ composite cation-exchange material. Electrochim. Acta 2003, 48, 2463–2472. [Google Scholar] [CrossRef]
- Khan, A.A.; Alam, M.M. New and novel organic–inorganic type crystalline ‘polypyrrolel/polyantimonic acid’composite system: Preparation, characterization and analytical applications as a cation-exchange material and Hg (II) ion-selective membrane electrode. Anal. Chim. Acta 2004, 504, 253–264. [Google Scholar] [CrossRef]
- Khan, A.A.; Alam, M.M. Synthesis, characterization and analytical applications of a new and novel ‘organic–inorganic’ composite material as a cation exchanger and Cd (II) ion-selective membrane electrode: Polyaniline Sn (IV) tungstoarsenate. React. Funct. Polym. 2003, 55, 277–290. [Google Scholar] [CrossRef]
- Varshney, K.G.; Tayal, N.; Khan, A.A.; Niwas, S. Synthesis, characterization and analytical applications of lead (II) selective polyacrylonitrile thorium (IV) phosphate: A novel fibrous ion exchanger. Colloids Surf. A Physicochem. Eng. Asp. 2001, 181, 123–129. [Google Scholar] [CrossRef]
- Gupta, A.P.; Agarwal, H.; Ikram, S. Studies on a new composites material polyanilinezirconium (IV) tungstophosphate-a thorium (IV) selective cation exchanger. J. Indian Chem. Soc. 2003, 80, 57–59. [Google Scholar]
- Nabi, S.A.; Shahadat, M.; Bushra, R. Development of composite ion-exchange adsorbent for pollutants removal from environmental wastes. Chem. Eng. J. 2010, 165, 405–412. [Google Scholar] [CrossRef]
- Nabi, S.A.; Shahadat, M.; Bushra, R. Heavy-metals separation from industrial effluent, natural water as well as from synthetic mixture using synthesized novel composite adsorbent. Chem. Eng. J. 2011, 175, 8–16. [Google Scholar] [CrossRef]
- Nabi, S.A.; Naushad, M.; Bushra, R. Synthesis and characterization of a new organic–inorganic Pb2+ selective composite cation exchanger acrylonitrile stannic (IV) tungstate and its analytical applications. Chem. Eng. J. 2009, 152, 80–87. [Google Scholar] [CrossRef]
- Nabi, S.A.; Raeissi, A.S.; Shahadat, M. Synthesis and characterization of novel cation exchange adsorbent for the treatment of real samples for metal ions. Chem. Eng. J. 2012, 200, 426–432. [Google Scholar] [CrossRef]
- Zonoz, F.M.; Ahmadi, S.J.; Nosrati, S.A. Preparation and characterization of zirconium (IV) molybdo tungsto vanado silicate as a novel inorganic ion exchanger in sorption of radionuclides. J. Hazard. Mater. 2009, 169, 808–812. [Google Scholar] [CrossRef]
- Khan, M.A.; Bushra, R.; Ahmad, A. Ion exchangers as adsorbents for removing metals from aquatic media. Arch. Environ. Contam. Toxicol. 2014, 66, 259–269. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Deng, W.; Xie, Y. Selective removal of mercury ions using a chitosan–poly (vinyl alcohol) hydrogel adsorbent with three-dimensional network structure. Chem. Eng. J. 2013, 228, 232–242. [Google Scholar] [CrossRef]
- Godiya, C.B.; Cheng, X.; Li, D. Carboxymethyl cellulose/polyacrylamide composite hydrogel for cascaded treatment/reuse of heavy metal ions in wastewater. J. Hazard. Mater. 2019, 364, 28–38. [Google Scholar] [CrossRef] [PubMed]
- Kadirvelu, K.; Thamaraiselvi, K.; Namasivayam, C. Removal of heavy metals from industrial wastewaters by adsorption onto activated carbon prepared from an agricultural solid waste. Bioresour. Technol. 2001, 76, 63–65. [Google Scholar] [CrossRef]
- Pan, B.; Zhang, W. Development of polymeric and polymer-based hybrid adsorbents for pollutants removal from waters. Chem. Eng. J. 2009, 151, 19–29. [Google Scholar] [CrossRef]
- Zhao, X.; Lv, L.; Pan, B. Polymer-supported nanocomposites for environmental application: A review. Chem. Eng. J. 2011, 170, 381–394. [Google Scholar] [CrossRef]
- Mahmud, E.; Huq, O.; Yahya, R. The removal of heavy metal ions from wastewater/aqueous solution using polypyrrole-based adsorbents: A review. RSC Adv. 2016, 6, 14778–14791. [Google Scholar] [CrossRef]
- Zhang, S.; Zeng, M.; Xu, W. Polyaniline nanorods dotted on graphene oxide nanosheets as a novel super adsorbent for Cr (VI). Dalton Trans. 2013, 42, 7854–7858. [Google Scholar] [CrossRef] [PubMed]
- El, H.M.; Shaaban, A.F.; ElKhawaga, H.A. Effective removal of Pb (II), Cd (II) and Zn (II) from aqueous solution by a novel hyper cross-linked nanometer-sized chelating resin. J. Environ. Chem. Eng. 2020, 8, 103788. [Google Scholar]
- Ulusoy, U.; Şimşek, S. Lead removal by polyacrylamide-bentonite and zeolite composites: Effect of phytic acid immobilization. J. Hazard. Mater. 2005, 127, 163–171. [Google Scholar] [CrossRef] [PubMed]
- Yuan, L.; Liu, Y. Removal of Pb (II) and Zn (II) from aqueous solution by ceramisite prepared by sintering bentonite, iron powder and activated carbon. Chem. Eng. J. 2013, 215, 432–439. [Google Scholar] [CrossRef]
- Bohli, T.; Villaescusa, I.; Ouederni, A. Comparative study of bivalent cationic metals adsorption Pb (II), Cd (II), Ni (II) and Cu (II) on olive stones chemically activated carbon. J. Chem. Eng. Process Technol. 2013, 4, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Cho, H.H.; Wepasnick, K.; Smith, B.A. Sorption of aqueous Zn (II) and Cd (II) by multiwall carbon nanotubes: The relative roles of oxygen-containing functional groups and graphenic carbon. Langmuir 2010, 26, 967–981. [Google Scholar] [CrossRef] [PubMed]
- Cheng, C.; Wang, J.; Yang, X. Adsorption of Ni (II) and Cd (II) from water by novel chelating sponge and the effect of alkali-earth metal ions on the adsorption. J. Hazard. Mater. 2014, 264, 332–341. [Google Scholar] [CrossRef]
- Demirbas, A.; Pehlivan, E.; Gode, F. Adsorption of Cu (II), Zn (II), Ni (II), Pb (II), and Cd (II) from aqueous solution on Amberlite IR-120 synthetic resin. J. Colloid Interface Sci. 2005, 282, 20–25. [Google Scholar] [CrossRef]
- Dave, P.N.; Chopda, L.V. Application of iron oxide nanomaterials for the removal of heavy metals. J. Nanotechnol. 2014, 2014, 14. [Google Scholar] [CrossRef] [Green Version]
- Agrawal, A.; Sahu, K.K. Kinetic and isotherm studies of cadmium adsorption on manganese nodule residue. J. Hazard. Mater. 2006, 137, 915–924. [Google Scholar] [CrossRef]
- Xu, P.; Zeng, G.M.; Huang, D.L. Use of iron oxide nanomaterials in wastewater treatment: A review. Sci. Total Environ. 2012, 424, 1–10. [Google Scholar] [CrossRef]
- Fang, R.; Lu, C.; Zhong, Y. Puffed rice carbon with coupled sulfur and metal iron for high-efficiency mercury removal in aqueous solution. Environ. Sci. Technol. 2020, 54, 2539–2547. [Google Scholar] [CrossRef]
- Nassar, N.N. Rapid removal and recovery of Pb (II) from wastewater by magnetic nanoadsorbents. J. Hazard. Mater. 2010, 184, 538–546. [Google Scholar] [CrossRef] [PubMed]
- Warner, C.L.; Chouyyok, W.; Mackie, K.E. Manganese doping of magnetic iron oxide nanoparticles: Tailoring surface reactivity for a regenerable heavy metal sorbent. Langmuir 2012, 28, 3931–3937. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Gu, Z.; Wang, X. Effects of organic acids on adsorption of lead onto montmorillonite, goethite and humic acid. Environ. Pollut. 2003, 121, 469–475. [Google Scholar] [CrossRef]
- Bhattacharyya, K.G.; Gupta, S.S. Adsorptive accumulation of Cd (II), Co (II), Cu (II), Pb (II), and Ni (II) from water on montmorillonite: Influence of acid activation. J. Colloid Interface Sci. 2007, 310, 411–424. [Google Scholar] [CrossRef] [PubMed]
- Yin, J.; Jiang, Z.; Chang, G. Simultaneous on-line preconcentration and determination of trace metals in environmental samples by flow injection combined with inductively coupled plasma mass spectrometry using a nanometer-sized alumina packed micro-column. Anal. Chim. Acta 2005, 540, 333–339. [Google Scholar] [CrossRef]
- Al-Degs, Y.; Khraisheh, M.A.M.; Tutunji, M.F. Sorption of lead ions on diatomite and manganese oxides modified diatomite. Water Res. 2001, 35, 3724–3728. [Google Scholar] [CrossRef]
- Rivera-Utrilla, J.; Bautista-Toledo, I.; Ferro-García, M.A. Activated carbon surface modifications by adsorption of bacteria and their effect on aqueous lead adsorption. J. Chem. Technol. Biotechnol. 2001, 76, 1209–1215. [Google Scholar] [CrossRef] [Green Version]
- Herrera-Urbina, R.; Sotillo, F.J.; Fuerstenau, D.W. Amyl xanthate uptake by natural and sulfide-treated cerussite and galena. Int. J. Miner. Process. 1998, 55, 113–128. [Google Scholar] [CrossRef]
- Han, G.; Wen, S.M.; Wang, H.; Feng, Q.C. Sulfidization regulation of cuprite by pre-oxidation using sodium hypochlorite as an oxidant. Int. J. Min. Sci. Technol. 2021, 31, 1117–1128. [Google Scholar] [CrossRef]
- Cui, K.; He, Y.; Jin, S. Enhanced UV–visible response of bismuth subcarbonate nanowires for degradation of xanthate and photocatalytic reaction mechanism. Chemosphere 2016, 149, 245–253. [Google Scholar] [CrossRef] [PubMed]
- Molina, G.C.; Cayo, C.H.; Rodrigues, M.A.S. Sodium isopropyl xanthate degradation by advanced oxidation processes. Miner. Eng. 2013, 45, 88–93. [Google Scholar] [CrossRef]
- Chen, S.; Gong, W.; Mei, G. Primary biodegradation of sulfide mineral flotation collectors. Miner. Eng. 2011, 24, 953–955. [Google Scholar] [CrossRef]
- Wang, J.; Zhuan, R. Degradation of antibiotics by advanced oxidation processes: An overview. Sci. Total Environ. 2020, 701, 135023. [Google Scholar] [CrossRef] [PubMed]
- Zhou, P.; Shen, Y.; Zhao, S. Synthesis of clinoptilolite-supported BiOCl/TiO2 heterojunction nanocomposites with highly-enhanced photocatalytic activity for the complete degradation of xanthates under visible light. Chem. Eng. J. 2021, 407, 126697. [Google Scholar] [CrossRef]
- Wu, S.; Hu, H.; Lin, Y. Visible light photocatalytic degradation of tetracycline over TiO2. Chem. Eng. J. 2020, 382, 122842. [Google Scholar] [CrossRef]
- Zeng, Q.; Xie, X.; Wang, X. Enhanced photocatalytic performance of Ag@ TiO2 for the gaseous acetaldehyde photodegradation under fluorescent lamp. Chem. Eng. J. 2018, 341, 83–92. [Google Scholar] [CrossRef]
- Feizpoor, S.; Habibi-Yangjeh, A.; Ahadzadeh, I. Oxygen-rich TiO2 decorated with C-Dots: Highly efficient visible-light-responsive photocatalysts in degradations of different contaminants. Adv. Powder Technol. 2019, 30, 1183–1196. [Google Scholar] [CrossRef]
- Feizpoor, S.; Habibi-Yangjeh, A.; Yubuta, K. Integration of carbon dots and polyaniline with TiO2 nanoparticles: Substantially enhanced photocatalytic activity to removal various pollutants under visible light. J. Photochem. Photobiol. A Chem. 2018, 367, 94–104. [Google Scholar] [CrossRef]
- Liu, S.; Lim, M.; Amal, R. TiO2-coated natural zeolite: Rapid humic acid adsorption and effective photocatalytic regeneration. Chem. Eng. Sci. 2014, 105, 46–52. [Google Scholar] [CrossRef]
- Shen, Y.; Zhou, P.; Zhao, S. Synthesis of high-efficient TiO2/clinoptilolite photocatalyst for complete degradation of xanthate. Miner. Eng. 2020, 159, 106640. [Google Scholar] [CrossRef]
- Bian, Z.; Feng, Y.; Li, H. Fabrication of Ag3PO4/TiO2@ molecular sieve (MS) ternary composites with remarkably enhanced visible light-responded photocatalytic activity and mechanism insight. Environ. Res. 2020, 190, 109984. [Google Scholar] [CrossRef] [PubMed]
- Bi, X.; Du, G.; Kalam, A. Constructing anatase TiO2/Amorphous Nb2O5 heterostructures to enhance photocatalytic degradation of acetaminophen and nitrogen oxide. J. Colloid Interface Sci. 2021, 601, 346–354. [Google Scholar] [CrossRef] [PubMed]
- Wei, G.T.; Fan, C.Y.; Zhang, L.Y. Photo-Fenton degradation of methyl orange using H3PW12O40 supported Fe-bentonite catalyst. Catal. Commun. 2012, 17, 184–188. [Google Scholar] [CrossRef]
- Zhang, L.Y.; Cai, S.Y.; Huang, K. Preparation of H3PMo12O40/organobentonite by chemical immobilization method and its catalytic performance in photo-Fenton process. Desalin. Water Treat. 2013, 51, 7815–7824. [Google Scholar] [CrossRef]
- Fu, L.; Zhao, Z.; Ma, J. Cavity-confined acceleration of iron cycle for the Fenton-like reaction by β-CD-benzoquinone host–guest complex under visible irradiation. Catal. Commun. 2015, 65, 96–101. [Google Scholar] [CrossRef]
- Wang, S. A comparative study of Fenton and Fenton-like reaction kinetics in decolourisation of wastewater. Dyes Pigments 2008, 76, 714–720. [Google Scholar] [CrossRef]
- Lee, H.; Shoda, M. Removal of COD and color from livestock wastewater by the Fenton method. J. Hazard. Mater. 2008, 153, 1314–1319. [Google Scholar] [CrossRef]
- Zhao, H.; Cao, J.; Lv, H. 3D nano-scale perovskite-based composite as Fenton-like system for efficient oxidative degradation of ketoprofen. Catal. Commun. 2013, 41, 87–90. [Google Scholar] [CrossRef]
- Trabelsi-Souissi, S.; Oturan, N.; Bellakhal, N. Application of the photo-Fenton process to the mineralization of phthalic anhydride in aqueous medium. Desalin. Water Treat. 2011, 25, 210–215. [Google Scholar] [CrossRef]
- Xu, T.; Zhu, R.; Zhu, G. Mechanisms for the enhanced photo-Fenton activity of ferrihydrite modified with BiVO4 at neutral pH. Appl. Catal. B Environ. 2017, 212, 50–58. [Google Scholar] [CrossRef]
- Men, L.; Zhou, Y.; Guo, H. Experimental study on treating cellulose acetate wastewater based on electro-Fenton. In Proceedings of the 2018 7th International Conference on Energy, Environment and Sustainable Development (ICEESD 2018), Shenzhen, China, 30–31 March 2018. [Google Scholar]
- Ai, G.; Tao, X.; Wang, Y. Removal of xanthate in flotation wastewater by ultrasound and Fenton reagent. In Proceedings of the 2011 International Conference on Electric Technology and Civil Engineering (ICETCE), Lushan, China, 22–24 April 2011. [Google Scholar]
- Liu, Q.; Liu, S.; Yang, M. Application of Fenton reagent in the treatment for kaolin processing waste water. J. Saf. Environ. 2006, 1, 74–75. [Google Scholar]
- Zhang, L.; Wei, X. The degradation of pyrid ine in aqueouw solution by the ultrasound/Fenton reagent. Environ. Chem. 2009, 3, 365–366. [Google Scholar]
- Zhou, J.J.; Yuan, F.Y.; Wang, G.J. Experimental Research on the Treatment of RDX Wastewater by US/Fenton Reagent. Shanghai Chem. Ind. 2009, 34, 11–14. [Google Scholar]
- Zhao, D.; Zhan, C.; Jin, X. Study on degradation of p-nitrophenol in aqueous solution by ultrasound-Fenton reagent technology. J. Zhejiang Univ. Technol. 2004, 32, 311–315. [Google Scholar]
- García-Leiva, B.; Teixeira, L.A.C.; Torem, M.L. Degradation of xanthate in waters by hydrogen peroxide, fenton and simulated solar photo-fenton processes. J. Mater. Res. Technol. 2019, 8, 5698–5706. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, L.; Zhu, Y. Three-dimensional photoelectrocatalytic degradation of ethyl xanthate catalyzed by activated bentonite-based bismuth ferrites particle electrodes: Influencing factors, kinetics, and mechanism. J. Environ. Chem. Eng. 2021, 9, 105559. [Google Scholar] [CrossRef]
- Catrinescu, C.; Teodosiu, C.; Macoveanu, M. Catalytic wet peroxide oxidation of phenol over Fe-exchanged pillared beidellite. Water Res. 2003, 37, 1154–1160. [Google Scholar] [CrossRef]
- Feng, J.; Hu, X.; Yue, P.L. Discoloration and mineralization of Reactive Red HE-3B by heterogeneous photo-Fenton reaction. Water Res. 2003, 37, 3776–3784. [Google Scholar] [CrossRef]
- Feng, J.; Hu, X.; Yue, P.L. Novel bentonite clay-based Fe-nanocomposite as a heterogeneous catalyst for photo-fenton discoloration and mineralization of orange II. Environ. Sci. Technol. 2004, 38, 269–275. [Google Scholar] [CrossRef] [PubMed]
- Soon, A.N.; Hameed, B.H. Heterogeneous catalytic treatment of synthetic dyes in aqueous media using Fenton and photo-assisted Fenton process. Desalination 2011, 269, 1–16. [Google Scholar] [CrossRef]
- Wei, G.; Li, Y.; Cai, S. Photo-Fenton degradation of ethyl xanthate catalyzed by bentonite-supported Fe (II)/phosphotungstic acid under visible light irradiation. Water Sci. Technol. 2018, 2017, 473–480. [Google Scholar] [CrossRef] [Green Version]
- Shao, L.; Wei, G.; Wang, Y. Preparation and application of acidified/calcined red mud catalyst for catalytic degradation of butyl xanthate in Fenton-like process. Environ. Sci. Pollut. Res. 2016, 23, 15202–15207. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Du, D. Degradation of n-butyl xanthate using fly ash as heterogeneous Fenton-like catalyst. J. Cent. South Univ. 2014, 21, 1448–1452. [Google Scholar] [CrossRef]
- Park, J.H.; Han, Y.S.; Ji, S.W. Investigation of Mineral-Processing Wastewater Recycling Processes: A Pilot Study. Sustainability 2018, 10, 3069. [Google Scholar] [CrossRef] [Green Version]
- Rao, S.R.; Finch, J.A. A review of water re-use in flotation. Miner. Eng. 1989, 2, 65–85. [Google Scholar] [CrossRef]
- Akhoundi, A.; Nazif, S. Sustainability assessment of wastewater reuse alternatives using the evidential reasoning approach. J. Clean. Prod. 2018, 195, 1350–1376. [Google Scholar] [CrossRef]
- Shengo, L.M.; Mutiti, W.N.C. Bio-treatment and water reuse as feasible treatment approaches for improving wastewater management during flotation of copper ores. Int. J. Environ. Sci. Technol. 2016, 13, 2505–2520. [Google Scholar] [CrossRef] [Green Version]
- Farrokhpay, S.; Zanin, M. An investigation into the effect of water quality on froth stability. Adv. Powder Technol. 2012, 23, 493–497. [Google Scholar] [CrossRef]
Category | Source |
---|---|
Processing wastewater | 1. Concentrate wastewater |
2. Tailing wastewater | |
3. Ore flushing water | |
Other wastewater | 1. Equipment with water |
2. Drainage of wet dust cleaning apparatus | |
3. Floor flushing water | |
4. Mine acid wastewater |
Contaminated Organism | Specific Hazards |
---|---|
Aquatic plants | 1. Decreasing photosynthesis |
2. Inhibiting plant growth | |
3. Causing plant atrophy and death | |
Aquatic animals | 1. Causing metabolic disorders |
2. Causing organ damage | |
3. Altering genetic information |
Process | Removing of Metal Ions | Chemicals/Adsorbents Used | Removing (%)/Qmax | Experimental Conditions | References |
---|---|---|---|---|---|
Hydroxide precipitation | Cu2+, Zn2+ | Apatite | >90 | Ca5(PO4)3 F/Ca5(PO4)3(OH) = 1:6 | [80] |
Cu2+ | CaO + biosorption | >99 | pH = 12.5 | [76] | |
Zn2+ | CaO | >99 | In the pH range of 9 to 10 | [81] | |
Ni2+ | NaOH | >99 | pH = 10.0 | [77] | |
Cu2+, Zn2+ | CaO | >99 | In the pH range of 7 to 11 | [82] | |
Cr3+ | CaO and MgO | >99 | pH = 8.0 | [83] | |
Sulfide precipitation | Cu2+, Zn2+ | H2S | >90 | pH = 3.0 | [84] |
Hg2+ | Pyrrhotite and pyrite | >90 | pH = 4.0 | [85] |
Composite Materials | Thermal Stability (°C) | IEC for Na Ions | References |
---|---|---|---|
n-Butylacetatezr (IV) iodate | 200 | 0.78 | [102] |
Polyaniline Ti (IV) tungstate | 300 | 0.78 | [103] |
Zirconium (IV) iodotungstate | 400 | 0.68 | [104] |
Poly-orthotoluidine Zr (IV) iodate | 100 | 0.85 | [105] |
Zirconium (IV) molybdo tungstovanadosilicate | 100 | 0.86 | [106] |
Polyaniline Zr (IV) molybdophosphate | 200 | 1.30 | [107] |
Adsorbents | Metal Ions | Sorption Capacity (mmol/g) | Conditions | Reference |
---|---|---|---|---|
HCNSCR | Pb (II), Cd (II), and Zn (II) | 1.2, 1, and 0.9 | pH = 5.5, 6.0, and 6.3 25 °C | [115] |
PAA-B/Z | Pb (II) | 0.16 | pH = 4.5 25 °C | [116] |
Fe2O3–ceramisite (FOC) | Pb (II) and Zn (II) | 0.08 and 0.11 | pH = 5 25 °C | [117] |
Olive stone activated carbon (COSAC) | Cd (II) and Pb (II) | 0.53 and 0.54 | pH = 5 30 °C | [118] |
Amidoxime-modified poly (acrylonitrile-co-acrylic acid) | Cd (II) and Pb (II) | 0.18 and 0.6 | pH = 9 25 °C | [119] |
Novel chelating sponge (PVA-M-H) | Ni (II) and Cd (II) | 1.114 and 1.117 | pH = 5.5 30 °C | [120] |
Synthetic amberlite IR-120 | Ni (II), Cu (II), and Cd (II) | 0.819, 0.344, and 0.899 | pH = 9 25 °C | [121] |
Adsorbing Material | Maximum Adsorption (mg/g) | Reference |
---|---|---|
Nano oxide particle | 36.0 | [126] |
Humic acid | 22.7 | [128] |
Goethite | 11.04 | [128] |
Montmorillonite | 33 | [129] |
Al2O3 | 17.5 | [130] |
Diatomite | 24 | [131] |
Activated carbon | 21.5 | [132] |
Progress | Characteristic | |
---|---|---|
Traditional treatment technologies | Physical and chemical precipitation | High cost, poor reusability, and causes secondary contamination |
Activated carbon adsorption | ||
Advanced oxidation technologies (AOTs) | Fenton oxidation | High chemical activity and decontamination efficiency |
Photocatalytic oxidation |
Material | Bandgap (eV) | Reference |
---|---|---|
TiO2 | 3.09 | [145] |
TiO2/Clinoptilolite | 2.88 | [145] |
BiOCl/TiO2/Clinoptilolite | 2.56 | [139] |
TiO2/Nb2O5 | 2.59 | [147] |
Ag3PO4/TiO2 | 2.05 | [146] |
Process | Conditions | Removal Rate of Xanthate (%) | Reference |
---|---|---|---|
Ultrasonic–Fenton oxidation | c(Fe2+) = 18 mg/L c(H2O2) = 24 mg/L 40 kHz (Ultrasonic frequency) pH = 3 | 97.6 | [157] |
Photocatalysis–Fenton oxidation | [Fe2+]: [H2O2] = 1:40 (Molar ratio) pH = 9 30mW/cm2 (Irradiance) | 99.1 | [162] |
Electrocatalysis–Fenton oxidation | c (Na2SO4) = 0.10 mol/L c(A-BiFe/Bent) = 1 g/L U = 10 V Aeration intensity 3.5 L/min pH = 6.82 | 97.85 | [163] |
Factors | Potential Effects |
---|---|
Inevitable ions | 1. Consumption of flotation reagents. |
2. Activation of gangue mineral. | |
3. Depression of the target mineral. | |
Residual reagents | 1. May have a depressive effect on the purpose mineral. |
2. May activate the gangue mineral, making it difficult to separate the target mineral from the gangue mineral. | |
3. Could interact with inevitable ions to form complex, colloidal substances, etc., reducing the efficiency of flotation. | |
Suspended solids | 1. The surface of mineral particles could be covered by suspended solids, which affects the adsorption of reagents on the mineral surface. 2. The colloidal group generated by suspended solids will increase the pulp viscosity. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meng, S.; Wen, S.; Han, G.; Wang, X.; Feng, Q. Wastewater Treatment in Mineral Processing of Non-Ferrous Metal Resources: A Review. Water 2022, 14, 726. https://doi.org/10.3390/w14050726
Meng S, Wen S, Han G, Wang X, Feng Q. Wastewater Treatment in Mineral Processing of Non-Ferrous Metal Resources: A Review. Water. 2022; 14(5):726. https://doi.org/10.3390/w14050726
Chicago/Turabian StyleMeng, Shengbing, Shuming Wen, Guang Han, Xiao Wang, and Qicheng Feng. 2022. "Wastewater Treatment in Mineral Processing of Non-Ferrous Metal Resources: A Review" Water 14, no. 5: 726. https://doi.org/10.3390/w14050726
APA StyleMeng, S., Wen, S., Han, G., Wang, X., & Feng, Q. (2022). Wastewater Treatment in Mineral Processing of Non-Ferrous Metal Resources: A Review. Water, 14(5), 726. https://doi.org/10.3390/w14050726