Isotopic Characterization of Rainwater for the Development of a Local Meteoric Water Line in an Arid Climate: The Case of the Wadi Ziz Watershed (South-Eastern Morocco)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
- -
- An upper watercourse, East–West direction over 122 km, becoming North–South at Kerrando. This course drains the upstream Ziz watershed (Upper Ziz), which is limited to the South by the Hassan Addakhil dam with a capacity of 380 million m3. The High Ziz area limited to the South by the great South Atlas accident is marked by significant exchanges between surface and groundwater [1,3,4,5,6].
- -
- An average course, generally North–South, collects the water from the intermediate watershed (Middle Ziz) from the dam to the Erfoud raft.
- -
- A lower course, generally North–South, crosses the Tafilalet plain and gets lost in the Sahara (Lower Ziz).
2.2. Regional Geology
2.3. Rain Sampling
2.4. Isotope Analysis
2.5. Calculation of Weighted Means of Precipitation Isotopic Composition
2.6. Global Meteoric Line and Deuterium Excess
2.7. Observation of Air Masses Trajectories
3. Results
3.1. Origin of Air Masses
- -
- ANW (Northwest Atlantic): this sector concerns the air masses coming from the Northwest Atlantic Ocean and crossing the land surface, the Southeast of Morocco, before reaching the sampling area.
- -
- EAST Europe: These air masses move over Eastern Europe, the Mediterranean Sea, Tunisia, and Algeria.
- -
- S-SE (south and south-east): These air masses come from the south-east of the area. They therefore pass over Algeria and pass over south-eastern Morocco before reaching the sampling area.
3.2. Climatic Conditions at the Sampling Stations
3.3. Isotopic Characterization of Rainwater in the Study Area
4. Discussion
4.1. Development of the Local Meteoric Water Line (LMWL)
4.2. Seasonal Variation
4.3. Local Altimetric Gradient of δ18O as a Function of Altitude
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- El Ouali, A.; Mudry, J.; Mania, J.; Chauve, P.; Elyamine, N.; Marzouk, M. Present Recharge of an Aquifer in a Semi-Arid Region: An Example from the Turonian Limestones of the Errachidia Basin, Morocco. Environ. Geol. 1999, 38, 171–176. [Google Scholar] [CrossRef]
- Ammary, B. Etude Géochimique ET Isotopique des Principaux Aquifères du Bassin CRétacé d’Errachidia ET de la Plaine de Tafilalet. Ph.D. Thesis, Universit Mohammed V-Agdal, Rabat, Morocco, 2007; p. 134. [Google Scholar]
- Lgourna, Z.; Warner, N.; Bouchaou, L.; Boutaleb, S.; Tagma, T.; Hssaisoune, M.; Ettayfi, N.; Vengosh, A. Nitrate Contamination of Alluvial Groundwater in the Ziz Basin, Southeastern Morocco. Moroc. J. Chem. 2014, 2, 2–5. [Google Scholar]
- Lgourna, Z.; Warner, N.; Bouchaou, L.; Boutaleb, S.; Hssaisoune, M.; Tagma, T.; Ettayfi, N.; Vengosh, A. Elucidating the Sources and Mechanisms of Groundwater Salinization in the Ziz Basin of Southeastern Morocco. Environ. Earth Sci. 2015, 73, 77–93. [Google Scholar] [CrossRef]
- Nouayti, N.; Khattach, D.; Hilali, M. Assessment ofphysico-chemical quality of groundwaterof the Jurassic aquifers inhigh basin of Ziz (Central High Atlas, Morocco). J. Mater. Environ. Sci. 2015, 6, 1068–1081. [Google Scholar]
- El Ouali, A.; El Hafyani, M.; Roubil, A.; Lahrach, A.; Essahlaoui, A.; Hamid, F.E.; Muzirafuti, A.; Paraforos, D.S.; Lanza, S.; Randazzo, G. Modeling and Spatiotemporal Mapping of Water Quality through Remote Sensing Techniques: A Case Study of the Hassan Addakhil Dam. Appl. Sci. 2021, 11, 9297. [Google Scholar] [CrossRef]
- Etcheverry, D. Valorisation des Méthodes Isotopiques Pour les Questions Pratiques LIéES Aux Eaux Souterraines Isotopes de l’OxygèNE ET de l’Hydrogène; FOWG Reports; Geological Series; Federal Office for Water and Geology: Berne, Switzerland, 2002; Volume 2, pp. 1–70. [Google Scholar]
- N’da, B.; Bouchaou, L.; Reichert, B.; Hanich, L.; Danni, S.; Ait Brahim, Y.; Chehbouni, A.; Beraaouz, E.; Michelot, J.L. Chemical Tracers and Stable Isotopes Mixing Models for Groundwater Quality and Recharge Study in the Moroccan High Atlas Mountains. In Groundwater and Global Change in the Western Mediterranean Area; Environmental Earth Sciences; Calvache, M.L., Duque, C., Pulido-Velazquez, D., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 235–244. ISBN 978-3-319-69355-2. [Google Scholar]
- Heiß, L.; Bouchaou, L.; Tadoumant, S.; Reichert, B. Multi-Tracer Approach for Assessing Complex Aquifer Systems under Arid Climate: Case Study of the River Tata Catchment in the Moroccan Anti-Atlas Mountains. Appl. Geochem. 2020, 120, 104671. [Google Scholar] [CrossRef]
- Blavoux, B.; Letolle, R. Apports des techniques isotopiques à la connaissance des eaux souterraines. Géochronique 1995, 54, 12–15. [Google Scholar]
- Gonfiantini, R.; Conrad, G.; Fontes, J.; Sauzay, G.; Payne, B. Etude Isotopique de La Nappe Du Continental Intercalaire et des Relations Avec les Autres Nappes Du Sahara Septentrional. Isot. Tech. Groundw. Hydrol. 1974, 1, 227–241. [Google Scholar]
- McCarthy, K.A.; McFarland, W.D.; Wilkinson, J.M.; White, L.D. The Dynamic Relationship between Ground Water and the Columbia River: Using Deuterium and Oxygen-18 as Tracers. J. Hydrol. 1992, 135, 1–12. [Google Scholar] [CrossRef]
- Fritz, P.; Fontes, J.C. Hand Book of Environmental Isotope Geochemistry; Springer: Berlin/Heidelberg, Germany, 1980; Volume 1–3. [Google Scholar]
- Payne, B.R. The Status of Isotope Hydrology Today. J. Hydrol. 1988, 100, 207–237. [Google Scholar] [CrossRef]
- Fontes, J.C.; Jean-Claude, O. Gradient isotopique entre 0 et 4000 m dans les précipitations du Mont Cameroun (Résumé de communication). In Proceedings of the Quatrième Réunion Annuelle des Sciences de la Terre, Paris, France, 13–16 April 1976; Société Géologique de France: Paris, France, 1976; p. 171. [Google Scholar]
- Fontes, J.C. Stable Isotope Hydrology: Deuterium and Oxygen-18 in the Water Cycle; Technical Reports Series No. 210; International Atomic Energy Agency: Vienna, Austria, 1981; pp. 273–302. [Google Scholar]
- Fontes, J.C.; Edmunds, W.M. The Use of Environmental Isotope Techniques in Arid Zone Hydrology: A Critical Review; UNESCO: Paris, France, 1989; p. 75. Available online: https://snia.mop.gob.cl/repositoriodga/bitstream/handle/20.500.13000/1654/ISO729.pdf?sequence=1 (accessed on 15 January 2020).
- Craig, H. Isotopic Variations in Meteoric Waters. Science 1961, 133, 1702–1703. [Google Scholar] [CrossRef] [PubMed]
- Dansgaard, W. Stable Isotopes in Precipitation. Tellus 1964, 16, 436–468. [Google Scholar] [CrossRef]
- Merlivat, L. Molecular Diffusivities of H2 160, HD160, and H2180 in Gases. J. Chem. Phys. 1978, 69, 2864–2871. [Google Scholar] [CrossRef]
- Mook, W.; Rozanski, K. Environmental Isotopes in the Hydrological Cycle; IAEA Publish: Vienna, Austria, 2000; p. 39. [Google Scholar]
- Araguás-Araguás, L.; Froehlich, K.; Rozanski, K. Deuterium and oxygen-18 isotope composition of precipitation and atmospheric moisture. Hydrol. Processes 2000, 14, 1341–1355. [Google Scholar] [CrossRef]
- Kendall, C.; McDonnell, J. Isotope Tracers in Catchment Hydrology; Elsevier: Amsterdam, The Netherlands, 1998. [Google Scholar]
- Bouchaou, L.; Michelot, J.L.; Vengosh, A.; Hsissou, Y.; Qurtobi, M.; Gaye, C.B.; Bullen, T.D.; Zuppi, G.M. Application of Multiple Isotopic and Geochemical Tracers for Investigation of Recharge, Salinization, and Residence Time of Water in the Souss–Massa Aquifer, Southwest of Morocco. J. Hydrol. 2008, 352, 267–287. [Google Scholar] [CrossRef]
- Louvat, D.; Bichara, S. Étude de Plusieurs Systèmes Aquifères du Maroc à l’Aide des Isotopes du Milieu; Rapport IAEA; IAEA Publish: Vienna, Austria, 1990; 30p. [Google Scholar]
- Michelot, J.L. Hydrogéologie Isotopique des Systèmes Aquifères de Fès-Meknès; Errachidia et Kheng-el-Hammam–Projet MOR/8/004; IAEA Publish: Vienna, Austria, 1991. [Google Scholar]
- Bouchaou, L.; Michelot, J.L.; Qurtobi, M.; Zine, N.; Gaye, C.B.; Aggarwal, P.K.; Marah, H.; Zerouali, A.; Taleb, H.; Vengosh, A. Origin and Residence Time of Groundwater in the Tadla Basin (Morocco) Using Multiple Isotopic and Geochemical Tools. J. Hydrol. 2009, 379, 323–338. [Google Scholar] [CrossRef]
- Marah, H.; Zine, N.; Qurtobi, M.; Zerouali, A. Sens d’écoulement, Vitesse et Âge des Eaux de l’aquifère Turonien du Bassin de Tadla (Maroc). Afr. J. Env. Assess Manag. 2007, 12, 1–12. [Google Scholar]
- Cappy, S. Hydrogeological Characterization of the Upper Drâa Catchment: Morocco. Ph.D. Thesis, Universitäts und Landesbibliothek, Bonne, France, 2006. [Google Scholar]
- Bouchaou, L.; Warner, N.R.; Tagma, T.; Hssaisoune, M.; Vengosh, A. The Origin of Geothermal Waters in Morocco: Multiple Isotope Tracers for Delineating Sources of Water-Rock Interactions. Appl. Geochem. 2017, 84, 244–253. [Google Scholar] [CrossRef]
- Clark, I.; Fritz, P. Environmental Isotopes in Hydrogeology; CRC Press: New York, NY, USA, 1997. [Google Scholar]
- Putman, A.L.; Fiorella, R.P.; Bowen, G.J.; Cai, Z. A Global Perspective on Local Meteoric Water Lines: Meta-analytic Insight Into Fundamental Controls and Practical Constraints. Water Resour. Res. 2019, 55, 6896–6910. [Google Scholar] [CrossRef]
- Raibi, F.; Benkaddour, A.; Hanich, L.; Chehbouni, A.; Chtioui, M. Variation in stable isotopic contents of rainfall under semi-arid climate. The Tensift basin case study, Morocco). In Proceedings of the GIRE3D—International Conference on Integrated Water Resources Management and Challenges of Sustainable Development, Marrakech, Morocco, 23–25 May 2006. [Google Scholar]
- Kabiri, L.; Boudad, L.; Delaune, M.; Krimou, A. Nouvelles Données Chronostratigraphiques des Carbonates Continentaux Quaternaires de Tafilalet et Environs. Note et Mémoires de Géologie Marocaine 2003, 42, 341–344. [Google Scholar]
- Margat, J. Etude Hydrogéologique du Basin Quaternaire de Tafilalet. Ressources en Eau du Maroc 1977, 310–380. [Google Scholar]
- Joly, F. Principes pour une méthode de cartographie géomorphologique. Bulletin de l’Association de Géographes Français 1962, 39, 270–278. [Google Scholar] [CrossRef]
- Dresnay, R.D. Sédiments jurassiques du domaine des chaînes atlasiques du Maroc. In Symposium sur la Sédimentation Jurassique W. Européen; Publication Spéciale; Association des Sédimentologistes Français: Paris, France, 1977; Volume 1, pp. 345–365. [Google Scholar]
- Bernasconi, R. Géologie Du Haut Atlas de Rich (Maroc). Ph.D. Thesis, Université de Neuchâtel, Neuchâtel, Switzerland, 1983. [Google Scholar]
- Brechbuhler, Y.A. Etude Structural et Géologique Du Haut-Atlas Calcaire Entre le Jbel Ayachi et Rich (Maroc). Ph.D. Thesis, Université de Neuchâtel, Neuchâtel, Switzerland, 1984. [Google Scholar]
- International Atomic Energy Agency (IAEA). IAEA/GNIP Precipitation Sampling Guide. 2014. Available online: http://www-naweb.iaea.org/napc/ih/documents/other/gnip_manual_v2.02_en_hq.pdf (accessed on 5 November 2019).
- Marcé, A. Contribution des Méthodes Isotopiques à l’Étude des Modalités d’alimentation et de Renouvellement des Réserves Souterraines du Maroc; Rap. 75SGN447; French Geological Survey (BRGM): Orléans, France, 1975; Volume 131. [Google Scholar]
- Hughes, C.E.; Crawford, J. A New Precipitation Weighted Method for Determining the Meteoric Water Line for Hydrological Applications Demonstrated Using Australian and Global GNIP Data. J. Hydrol. 2012, 464–465, 344–351. [Google Scholar] [CrossRef]
- UNESCO; International Atomic Energy Agency (IAEA). Environmental Isotopes in the Hydrological Cycle: Principles and Applications. 2001. Available online: http://www-naweb.iaea.org/napc/ih/documents/global_cycle/Environmental%20Isotopes%20in%20the%20Hydrological%20Cycle%20Vol%201.pdf (accessed on 15 January 2020).
- Gat, J.; Gonfiantini, R. Stable Isotope Hydrology: Deuterium and Oxygen-18 in the Water Cycle; International Atomic Energy Agency: Vienna, Austria, 1981; p. 335. [Google Scholar]
- Draxler, R.R.; Hess, G. An Overview of the HYSPLIT_4 Modelling System for Trajectories. Aust. Meteorol. Mag. 1998, 47, 295–308. [Google Scholar]
- Ait Brahim, Y.; Bouchaou, L.; Sifeddine, A.; Khodri, M.; Reichert, B.; Cruz, F.W. Elucidating the Climate and Topographic Controls on Stable Isotope Composition of Meteoric Waters in Morocco, Using Station-Based and Spatially-Interpolated Data. J. Hydrol. 2016, 543, 305–315. [Google Scholar] [CrossRef]
- Froehlich, K.; Gibson, J.J.; Aggarwal, P.K. Deuterium Excess in Precipitation and Its Climatological Significance; No. IAEA-CSP 2002-13/P; International Atomic Energy Agency: Vienna, Austria, 2002. [Google Scholar]
- Crawford, J.; Hughes, C.E.; Lykoudis, S. Alternative Least Squares Methods for Determining the Meteoric Water Line, Demonstrated Using GNIP Data. J. Hydrol. 2014, 519, 2331–2340. [Google Scholar] [CrossRef]
- International Atomic Energy Agency. Isotopic Composition of Precipitation in the Mediterranean Basin in Relation to Air Circulation Patterns and Climate: Final Report of a Coordinated Research Project; International Atomic Energy Agency: Vienna, Austria, 2005; ISBN 978-92-0-105305-3. Available online: https://www-pub.iaea.org/MTCD/Publications/PDF/te_1453_web.pdf (accessed on 15 January 2020).
- El Ghali, T.; Qurtobi, M.; Marah, H.; Raibi, F.; El Mansouri, B. Chemical and isotopic characterization of rainwater in the Berrechid basin, Morocco. J. Water Sci. Environ. Technol. 2018, 3, 335–341. [Google Scholar]
- Anuard, P.-G.; Julián, G.-T.; Hugo, J.-F.; Carlos, B.-C.; Arturo, H.-A.; Edith, O.-T.; Claudia, Á.-S. Integration of Isotopic (2H and 18O) and Geophysical Applications to Define a Groundwater Conceptual Model in Semiarid Regions. Water 2019, 11, 488. [Google Scholar] [CrossRef] [Green Version]
- Abourida, A. Approche Hydrogeologique de la Nappe du Haouz (Maroc) par Teledetection, Isotopie, Sig ET Modelisation; Université Cadi Ayyad Faculté des Sciences Semlalia: Marrakech, Morocco, 2007; 146p. [Google Scholar]
Month | D | J | F | M | A | M | J | J | A | S | O | N | Total | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ZSH | T °C | 6.4 | 5.5 | 7.1 | 12.3 | 15.6 | 20.2 | 23.4 | 27.1 | 26.4 | 23.4 | 19.2 | 11.2 | |
P (mm) | 8.8 | 27.6 | 0 | 36.7 | 10.9 | 25 | 12 | 26.5 | 13 | 44.6 | 32.2 | 14.4 | 251.7 | |
NRD | 2 | 4 | 0 | 7 | 4 | 7 | 1 | 4 | 5 | 6 | 2 | 3 | 45 | |
RIC | T °C | 7.7 | 6.4 | 7.5 | 15.5 | 19.6 | 23.2 | 26.1 | 29.9 | 29 | 24.7 | 20.1 | 13.8 | |
P (mm) | 7.4 | 6.5 | 0 | 49.5 | 12.1 | 17.1 | 3 | 4.9 | 30.2 | 47.9 | 6.4 | 17.4 | 202.4 | |
NRD | 4 | 3 | 0 | 12 | 5 | 5 | 4 | 2 | 8 | 9 | 2 | 4 | 58 | |
ERRA | T °C | 12.6 | 9.39 | 15 | 17.17 | 20.7 | 25.4 | 29.9 | 34.2 | 34 | 29.1 | 21.2 | 15.2 | |
P (mm) | 5.7 | 0.6 | 0 | 61.6 | 8.4 | 1.4 | 0.2 | 2.1 | 1 | 0.2 | 30 | 11.2 | 122.4 | |
NRD | 5 | 1 | 0 | 6 | 3 | 2 | 1 | 1 | 3 | 1 | 3 | 5 | 31 | |
ERF | T °C | 12.8 | 9.1 | 15 | 17.2 | 20.7 | 25.4 | 29.6 | 33.5 | 33.1 | 29.4 | 22.1 | 15.8 | |
P (mm) | 3.9 | 0.4 | 0 | 14.8 | 10.2 | 0.4 | 0 | 0 | 2.6 | 44.6 | 32.2 | 4.3 | 113.4 | |
NRD | 4 | 1 | 0 | 4 | 1 | 1 | 0 | 0 | 4 | 4 | 2 | 5 | 26 |
Station | Altitude (m) | Yearly Rain Value (mm) | Yearly Mean Temperature °C | Yearly Mean Relative Moisture % |
---|---|---|---|---|
ZSH | 1760 | 251.7 | 15.95 | 48 |
RCH | 1240 | 202.4 | 17.98 | 41 |
ERRA | 1050 | 122.4 | 20.94 | 36 |
ERF | 840 | 113.4 | 21.98 | 24 |
Zaouia Sidi Hamza (ZSH) | Rich (RCH) | Errachidia (ERRA) | Erfoud (ERF) | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Date | δ18O | δ2H | P.mm | d | δ18O | δ2H | P.mm | d | δ18O | δ2H | P.mm | d | δ18O | δ2H | P.mm | d |
2019-12-03 | −7.33 | −52.6 | 3.2 | 6.04 | ||||||||||||
2019-12-06 | −7.19 | −44.2 | 7.8 | 13.32 | −4.68 | −21.9 | 3.3 | 15.54 | −3.28 | −17.3 | 3.9 | 8.94 | −1.98 | −11.7 | 2.8 | 4.14 |
2020-01-21 | −3.96 | −30.2 | 5.7 | 1.48 | ||||||||||||
2020-01-22 | −10.21 | −68.6 | 18.7 | 13.08 | ||||||||||||
2020-03-14 | −10.02 | −77.5 | 5.7 | 2.66 | ||||||||||||
2020-03-18 | −6.77 | −50.9 | 3.1 | 3.26 | ||||||||||||
2020-03-19 | −6.69 | −39.2 | 18 | 14.32 | −3.66 | −24.6 | 27 | 4.68 | −5.25 | −35.3 | 47 | 6.7 | ||||
2020-03-23 | −5.3 | −29 | 2 | 13.4 | ||||||||||||
2020-03-24 | −5.48 | −34.2 | 9.5 | 9.64 | ||||||||||||
2020-03-28 | −4.89 | −28.7 | 10 | 10.42 | −4.12 | −21.8 | 3.6 | 11.16 | ||||||||
2020-04-18 | −5.26 | −35.4 | 8.3 | 6.68 | −5.77 | −36.5 | 6.8 | 9.66 | −2.98 | −15.8 | 10.2 | 8.04 | ||||
2020-04-24 | −3.29 | −24 | 7.5 | 2.32 | ||||||||||||
2020-05-15 | −10.27 | −77.5 | 7.7 | 4.66 | −5.98 | −42.1 | 10.1 | 5.74 | ||||||||
2020-05-28 | −4.69 | −21.8 | 3.5 | 15.72 | ||||||||||||
2020-06-10 | −4.35 | −31.9 | 12 | 2.9 | ||||||||||||
2020-07-14 | −4.66 | −30.1 | 2.6 | 7.18 | ||||||||||||
2020-07-20 | −6.02 | −41.1 | 2.1 | 7.06 | ||||||||||||
2020-07-21 | −4.26 | −29.9 | 2.3 | 4.18 | ||||||||||||
2020-09-01 | −4.69 | −32.5 | 13 | 5.02 | −5.02 | −30.1 | 15 | 10.06 | −5.31 | −36.2 | 17.5 | 6.33 | ||||
2020-09-17 | −4.86 | −30.1 | 17 | 8.78 | −4.89 | −36.8 | 20.5 | 2.32 | ||||||||
2020-10-21 | −3.96 | −30.2 | 16 | 1.48 | ||||||||||||
2020-10-22 | −5.68 | −37.7 | 32 | 7.74 | −4.08 | −30.6 | 5.1 | 2.04 | −2.99 | −17.2 | 12 | 6.72 | −2.14 | −14.6 | 24 | 2.52 |
2020-11-13 | −2.14 | −14.4 | 5.6 | 2.72 | ||||||||||||
2020-11-19 | −5.47 | −38 | 8 | 5.76 | ||||||||||||
2020-11-26 | −4.02 | −25.4 | 5.6 | 6.76 | −5.28 | −34.3 | 2.7 | 7.96 |
Parameter | Minimum | Maximum | Mean | Standard Deviation % |
---|---|---|---|---|
δ18O, in ‰ | −10.27 | −1.98 | −5.09 | 1.92 |
δ2H, in ‰ | −77.50 | −11.70 | −33.70 | 14.94 |
d in ‰ | 1.48 | 15.72 | 7.05 | 3.99 |
Wet Period | Dry Period | Difference (Wet-Dry) | |||||||
---|---|---|---|---|---|---|---|---|---|
δ18O | δ2H | d-excess | δ18O | δ2H | d-excess | δ18O | δ2H | d-excess | |
ZSH | −7.10 | −46.56 | 8.73 | −5.71 | −39.80 | 5.08 | 1.39 | 6.75 | −3.65 |
Rich | −5.08 | −33.46 | 6.90 | −3.73 | −25.95 | 7.67 | 1.35 | 7.51 | 0.77 |
ERRA | −4.07 | −26.97 | 8.02 | −4.99 | −31.79 | 5.09 | −0.92 | −4.82 | −2.93 |
Erfoud | −4.06 | −24.26 | 7.45 | −3.94 | −28.02 | 3.72 | 0.11 | −3.76 | −3.72 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El Ouali, A.; Roubil, A.; Lahrach, A.; Mudry, J.; El Ghali, T.; Qurtobi, M.; El Hafyani, M.; Alitane, A.; El Hmaidi, A.; Essahlaoui, A.; et al. Isotopic Characterization of Rainwater for the Development of a Local Meteoric Water Line in an Arid Climate: The Case of the Wadi Ziz Watershed (South-Eastern Morocco). Water 2022, 14, 779. https://doi.org/10.3390/w14050779
El Ouali A, Roubil A, Lahrach A, Mudry J, El Ghali T, Qurtobi M, El Hafyani M, Alitane A, El Hmaidi A, Essahlaoui A, et al. Isotopic Characterization of Rainwater for the Development of a Local Meteoric Water Line in an Arid Climate: The Case of the Wadi Ziz Watershed (South-Eastern Morocco). Water. 2022; 14(5):779. https://doi.org/10.3390/w14050779
Chicago/Turabian StyleEl Ouali, Anas, Allal Roubil, Abderrahim Lahrach, Jacques Mudry, Tibari El Ghali, Mohamed Qurtobi, Mohammed El Hafyani, Abdennabi Alitane, Abdellah El Hmaidi, Ali Essahlaoui, and et al. 2022. "Isotopic Characterization of Rainwater for the Development of a Local Meteoric Water Line in an Arid Climate: The Case of the Wadi Ziz Watershed (South-Eastern Morocco)" Water 14, no. 5: 779. https://doi.org/10.3390/w14050779
APA StyleEl Ouali, A., Roubil, A., Lahrach, A., Mudry, J., El Ghali, T., Qurtobi, M., El Hafyani, M., Alitane, A., El Hmaidi, A., Essahlaoui, A., & Van Rompaey, A. (2022). Isotopic Characterization of Rainwater for the Development of a Local Meteoric Water Line in an Arid Climate: The Case of the Wadi Ziz Watershed (South-Eastern Morocco). Water, 14(5), 779. https://doi.org/10.3390/w14050779