Extremes Rainfall Events on Riparian Flora and Vegetation in the Mediterranean Basin: A Challenging but Completely Unexplored Theme
Abstract
:1. Introduction
1.1. Extreme Rainfall Events (EREs)
1.2. Riparian Habitats
2. Materials and Methods
3. Results and Discussion
3.1. Step Two: “Extreme Rainfall Events” and “Extreme Rainfall and Floods”
3.2. Extreme Rainfall Events in Mediterranean Basin: Impacts on Vegetation
3.3. Sardinia as a Study Case
- October 2008: flood in Capoterra (South Sardinia), which affected the Gutturu Mannu River basin, Rio S. Girolamo and Rio Masone Ollastu, as well as Poggio dei Pini village (Capoterra municipality) and the city of Cagliari.
- November 2013: flood in Olbia (North-Western Sardinia) associated with an extratropical cyclone in the western Mediterranean Basin, called “Cyclone Cleopatra”.
- October 2018: flood in Capoterra (South Sardinia), the cities of Cagliari and Capoterra were hit by torrential rains that caused a flood of Santa Lucia River; the same Mediterranean perturbation also affected some localities in the Sarrabus region.
- October 2020: flood in Bitti (North-Eastern Sardinia) caused by a large cyclone that brought heavy rainfall along the Eastern part of the Sardinia region.
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Meteorological Organization (WMO). Provisional Report on the State of the Global Climate—In Statement on the State of the Global Climate. Available online: https://library.wmo.int/index.php?lvl=notice_display&id=21804#.YX-1-J7MI2z (accessed on 25 December 2021).
- IPCC. Global Warming of 1.5 °C. In An IPCC Special Report on the Impacts of Global Warming of 1.5 °C above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty; Masson-Delmotte, V., Zhai, P., Pörtner, H.O., Roberts, D., Skea, J., Shukla, P.R., Pirani, A., Moufouma-Okia, W., Péan, C., Pidcock, R., et al., Eds.; IPCC: Geneva, Switzerland, 2018; p. 616. [Google Scholar]
- IPCC. Climate Change 2014: Synthesis Report. In Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Pachauri, R.K., Meyer, L.A., Eds.; IPCC: Geneva, Switzerland, 2014; p. 151. [Google Scholar]
- Hegerl, G.C.; Brönnimann, S.; Cowan, T.; Friedman, A.R.; Hawkins, E.; Iles, C.; Müller, W.; Schurer, A.; Undorf, S. Causes of climate change over the historical record. Environ. Res. Lett. 2019, 14, 123006. [Google Scholar] [CrossRef]
- Fawzy, S.; Osman, A.I.; Doran, J.; Rooney, D.W. Strategies for mitigation of climate change: A review. Environ. Chem. Lett. 2020, 18, 2069–2094. [Google Scholar] [CrossRef]
- Purkey, S.G.; Johnson, G.C. Warming of Global Abyssal and Deep Southern Ocean Waters between the 1990s and 2000s: Contributions to Global Heat and Sea Level Rise Budgets. J. Clim. 2010, 23, 6336–6351. [Google Scholar] [CrossRef] [Green Version]
- von Schuckmann, K.; Cheng, L.; Palmer, M.D.; Hansen, J.; Tassone, C.; Aich, V.; Adusumilli, S.; Beltrami, H.; Boyer, T.; Cuesta-Valero, F.J.; et al. Heat stored in the Earth system: Where does the energy go? Earth Syst. Sci. Data 2020, 12, 2013–2041. [Google Scholar] [CrossRef]
- García-Monteiro, S.; Sobrino, J.; Julien, Y.; Sòria, G.; Skokovic, D. Surface Temperature trends in the Mediterranean Sea from MODIS data during years 2003–2019. Reg. Stud. Mar. Sci. 2022, 49, 102086. [Google Scholar] [CrossRef]
- Doney, S.C.; Busch, D.S.; Cooley, S.R.; Kroeker, K.J. The Impacts of Ocean Acidification on Marine Ecosystems and Reliant Human Communities. Annu. Rev. Environ. Resour. 2020, 45, 83–112. [Google Scholar] [CrossRef]
- European Environment Agency (EEA). Trends and Drivers of EU Greenhouse Gas Emissions. Available online: https://www.eea.europa.eu/publications/trends-and-drivers-of-eu-ghg (accessed on 20 September 2021).
- Doney, S.C.; Fabry, V.J.; Feely, R.A.; Kleypas, J.A. Ocean Acidification: The Other CO2 Problem. Annu. Rev. Mar. Sci. 2009, 1, 169–192. [Google Scholar] [CrossRef] [Green Version]
- Hall-Spencer, J.M.; Harvey, B.P. Ocean acidification impacts on coastal ecosystem services due to habitat degradation. Emerg. Top. Life Sci. 2019, 3, 197–206. [Google Scholar] [CrossRef] [Green Version]
- Rogelj, J.; Popp, A.; Calvin, K.V.; Luderer, G.; Emmerling, J.; Gernaat, D.; Fujimori, S.; Strefler, J.; Hasegawa, T.; Marangoni, G.; et al. Scenarios towards limiting global mean temperature increase below 1.5 °C. Nat. Clim. Chang. 2018, 8, 325–332. [Google Scholar] [CrossRef]
- United Nations Environment Programme (UNEP). Emissions Gap Report 2020. Available online: https://www.unep.org/emissions-gap-report-2020 (accessed on 20 September 2021).
- European Environment Agency (EEA). Ocean Acidification. Available online: https://www.eea.europa.eu/data-and-maps/indicators/ocean-acidification-4/assessment (accessed on 20 September 2021).
- European Environment Agency (EEA). Annual European Union Greenhouse Gas Inventory 1990–2018 and Inventory Report 2020. Available online: https://www.eea.europa.eu/publications/european-union-greenhouse-gas-inventory-2020 (accessed on 25 September 2021).
- IPCC. Climate Change 2013: The Physical Science Basis. In Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.K., Tignor, M.M.B., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; p. 1535. [Google Scholar]
- Easterling, D.R.; Meehl, G.A.; Parmesan, C.; Changnon, S.A.; Karl, T.R.; Mearns, L.O. Climate Extremes: Observations, Modeling, and Impacts. Science 2000, 289, 2068–2074. [Google Scholar] [CrossRef] [Green Version]
- Jentsch, A.; Beierkuhnlein, C. Research frontiers in climate change: Effects of extreme meteorological events on ecosystems. Comptes Rendus Geosci. 2008, 340, 621–628. [Google Scholar] [CrossRef]
- Depietri, Y.; Renaud, F.G.; Kallis, G. Heat waves and floods in urban areas: A policy-oriented review of ecosystem services. Sustain. Sci. 2012, 7, 95–107. [Google Scholar] [CrossRef]
- Lloret, F.; Escudero, A.; Iriondo, J.M.; Martínez-Vilalta, J.; Valladares, F. Extreme climatic events and vegetation: The role of stabilizing processes. Glob. Chang. Biol. 2012, 18, 797–805. [Google Scholar] [CrossRef]
- Grimm, N.B.; Chapin, F.S., III; Bierwagen, B.; Gonzalez, P.; Groffman, P.M.; Luo, Y.; Melton, F.; Nadelhoffer, K.; Pairis, A.; Raymond, P.A.; et al. The impacts of climate change on ecosystem structure and function. Front. Ecol. Environ. 2013, 11, 474–482. [Google Scholar] [CrossRef] [Green Version]
- Black, R.; Arnell, N.W.; Adger, W.N.; Thomas, D.; Geddes, A. Migration, immobility and displacement outcomes following extreme events. Environ. Sci. Policy 2013, 27, 32–43. [Google Scholar] [CrossRef]
- Heim, R.R. An overview of weather and climate extremes—Products and trends. Weather Clim. Extrem. 2015, 10, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Thomas, K.; Hardy, R.D.; Lazrus, H.; Mendez, M.; Orlove, B.; Rivera-Collazo, I.; Roberts, J.T.; Rockman, M.; Warner, B.P.; Winthrop, R. Explaining differential vulnerability to climate change: A social science review. Wiley Interdiscip. Rev. Clim. Chang. 2019, 10, 565. [Google Scholar] [CrossRef] [Green Version]
- Korell, L.; Auge, H.; Chase, J.M.; Harpole, W.S.; Knight, T.M. Responses of plant diversity to precipitation change are strongest at local spatial scales and in drylands. Nat. Commun. 2021, 12, 1–7. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2007: Impacts, Adaptation and Vulnerability. In Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Parry, M.L., Canziani, O.F., Palutikof, J.P., van der Linden, P.J., Hanson, C.E., Eds.; Cambridge University Press: Cambridge, UK, 2007; p. 976. [Google Scholar]
- Cayan, D.C.; Maurer, E.; Dettinger, M.D.; Tyree, M.; Hayhoe, K.; Bonfils, C.; Duffy, P.; Santer, B. Climate Scenarios for California. California Climate Change Center, California Energy Commission; Report CEC-500-2005-203-SD; UC Berkeley: Sacramento, CA, USA, 2006; p. 47. [Google Scholar]
- Christensen, J.H.; Hewitson, B.; Busuioc, A.; Chen, A.; Gao, X.; Held, I.; Jones, R.; Kolli, R.K.; Kwon, W.-T.; Laprise, R.; et al. Regional Climate Projections. In Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., Miller, H.L., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2007; pp. 847–890. [Google Scholar]
- Giorgi, F.; Lionello, P. Climate change projections for the Mediterranean region. Glob. Planet. Chang. 2008, 63, 90–104. [Google Scholar] [CrossRef]
- Giannakopoulos, C.; Le Sager, P.; Bindi, M.; Moriondo, M.; Kostopoulou, E.; Goodess, C.M. Climatic changes and associated impacts in the Mediterranean resulting from a 2 °C global warming. Glob. Planet. Chang. 2009, 68, 209–224. [Google Scholar] [CrossRef]
- Cardell, M.F.; Amengual, A.; Romero, R.; Ramis, C. Future extremes of temperature and precipitation in Europe derived from a combination of dynamical and statistical approaches. Int. J. Climatol. 2020, 40, 4800–4827. [Google Scholar] [CrossRef]
- Moatti, J.-P.; Thiébault, S. The Mediterranean Region under Climate Change: A Scientific Update; AllEnvi: Marseille, France, 2016. [Google Scholar]
- Vogiatzakis, I.N.; Mannion, A.M.; Sarris, D. Mediterranean island biodiversity and climate change: The last 10,000 years and the future. Biodivers. Conserv. 2016, 25, 2597–2627. [Google Scholar] [CrossRef]
- Ducrocq, V.; Drobinski, P.; Gualdi, S.; Raimbault, P. The water cycle in the Mediterranean. In The Mediterranean Region under Climate Change: A Scientific Update; Moatti, J., Thiébault, S., Eds.; IRD Éditions: Marseille, France, 2016; pp. 73–81. [Google Scholar]
- Mariotti, A.; Pan, Y.; Zeng, N.; Alessandri, A. Long-term climate change in the Mediterranean region in the midst of decadal variability. Clim. Dyn. 2015, 44, 1437–1456. [Google Scholar] [CrossRef]
- Michaelides, S.; Karacostas, T.; Sánchez, J.L.; Retalis, A.; Pytharoulis, I.; Homar, V.; Romero, R.; Zanis, P.; Giannakopoulos, C.; Bühl, J.; et al. Reviews and perspectives of high impact atmospheric processes in the Mediterranean. Atmos. Res. 2018, 208, 4–44. [Google Scholar] [CrossRef]
- Kostopoulou, E.; Jones, P.D. Assessment of climate extremes in the Eastern Mediterranean. Meteorol. Atmos. Phys. 2005, 89, 69–85. [Google Scholar] [CrossRef]
- Cherif, S.; Doblas-Miranda, E.; Lionello, P.; Borrego, C.; Giorgi, F.; Iglesias, A.; Jebari, S.; Mahmoudi, E.; Moriondo, M.; Pringault, O.; et al. Drivers of change. In Climate and Environmental Change in the Mediterranean Basin—Current Situation and Risks for the Future. First Mediterranean Assessment Report; Cramer, W., Guiot, J., Marini, K., Eds.; Union for the Mediterranean, Plan Bleu, UNEP/MAP: Marseille, France, 2020; pp. 59–180. [Google Scholar]
- Lionello, P.; Scarascia, L. The relation of climate extremes with global warming in the Mediterranean region and its north versus south contrast. Reg. Environ. Chang. 2020, 20, 31. [Google Scholar] [CrossRef]
- Rädler, A.T.; Groenemeijer, P.H.; Faust, E.; Sausen, R.; Púčik, T. Frequency of severe thunderstorms across Europe expected to increase in the 21st century due to rising instability. NPJ Clim. Atmos. Sci. 2019, 2, 30. [Google Scholar] [CrossRef]
- Miglietta, M.M.; Rotunno, R. Development mechanisms for Mediterranean tropical-like cyclones (medicanes). Q. J. R. Meteorol. Soc. 2019, 145, 1444–1460. [Google Scholar] [CrossRef] [Green Version]
- Mastrantonas, N.; Herrera-Lormendez, P.; Magnusson, L.; Pappenberger, F.; Matschullat, J. Extreme precipitation events in the Mediterranean: Spatiotemporal characteristics and connection to large-scale atmospheric flow patterns. Int. J. Climatol. 2021, 41, 2710–2728. [Google Scholar] [CrossRef]
- Patlakas, P.; Stathopoulos, C.; Tsalis, C.; Kallos, G. Wind and wave extremes associated with tropical-like cyclones in the Mediterranean basin. Int. J. Climatol. 2021, 41, 1623–1644. [Google Scholar] [CrossRef]
- Cavicchia, L.; von Storch, H.; Gualdi, S. A long-term climatology of medicanes. Clim. Dyn. 2014, 43, 1183–1195. [Google Scholar] [CrossRef]
- Emanuel, K. Genesis and maintenance of “Mediterranean hurricanes”. Adv. Geosci. 2005, 2, 217–220. [Google Scholar] [CrossRef] [Green Version]
- Ragone, F.; Mariotti, M.; Parodi, A.; von Hardenberg, J.; Pasquero, C. A Climatological Study of Western Mediterranean Medicanes in Numerical Simulations with Explicit and Parameterized Convection. Atmosphere 2018, 9, 397. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Villarini, G.; Scoccimarro, E.; Napolitano, F. Examining the precipitation associated with medicanes in the high-resolution ERA-5 reanalysis data. Int. J. Climatol. 2021, 41, 126–132. [Google Scholar] [CrossRef]
- Romero, R.; Emanuel, K. Medicane risk in a changing climate. J. Geophys. Res-Atmos. 2013, 118, 5992–6001. [Google Scholar] [CrossRef]
- Romero, R.; Emanuel, K. Climate change and hurricane-like extratropical cyclones: Projections for North Atlantic polar lows and medicanes based on CMIP5 models. J. Clim. 2017, 30, 279–299. [Google Scholar] [CrossRef] [Green Version]
- Cavicchia, L.; von Storch, H.; Gualdi, S. Mediterranean Tropical-Like Cyclones in Present and Future Climate. J. Clim. 2014, 27, 7493–7501. [Google Scholar] [CrossRef] [Green Version]
- Dayan, U.; Nissen, K.; Ulbrich, U. Review Article: Atmospheric conditions inducing extreme precipitation over the eastern and western Mediterranean. Nat. Hazards Earth Syst. Sci. 2015, 15, 2525–2544. [Google Scholar] [CrossRef] [Green Version]
- Cioni, G.; Cerrai, D.; Klocke, D. Investigating the predictability of a Mediterranean tropical-like cyclone using a storm-resolving model. Q. J. R. Meteorol. Soc. 2018, 144, 1598–1610. [Google Scholar] [CrossRef]
- Flaounas, E.; Kotroni, V.; Lagouvardos, K.; Gray, S.L.; Rysman, J.-F.; Claud, C. Heavy rainfall in Mediterranean cyclones. Part I: Contribution of deep convection and warm conveyor belt. Clim. Dyn. 2018, 50, 2935–2949. [Google Scholar] [CrossRef]
- González-Alemán, J.J.; Pascale, S.; Gutierrez-Fernandez, J.; Murakami, H.; Gaertner, M.A.; Vecchi, G.A. Potential increase in hazard from Mediterranean hurricane activity with global warming. Geophys. Res. Lett. 2019, 46, 1754–1764. [Google Scholar] [CrossRef]
- Miglietta, M.M. Mediterranean Tropical-Like Cyclones (Medicanes). Atmosphere 2019, 10, 206–210. [Google Scholar] [CrossRef] [Green Version]
- Pravia-Sarabia, E.; Gómez-Navarro, J.J.; Jiménez-Guerrero, P.; Montávez, J.P. TITAM (v1.0): The Time-Independent Tracking Algorithm for Medicanes. Geosci. Model Dev. 2020, 13, 6051–6075. [Google Scholar] [CrossRef]
- de la Vara, A.; Gutiérrez-Fernández, J.; González-Alemán, J.J.; Gaertner, M.A. Characterization of medicanes with a minimal number of geopotential levels. Int. J. Climatol. 2021, 4, 3300–3316. [Google Scholar] [CrossRef]
- Miglietta, M.M.; Carnevale, D.; Levizzani, V.; Rotunno, R. Role of moist and dry air advection in the development of Mediterranean tropical-like cyclones (medicanes). Q. J. R. Meteorol. Soc. 2021, 147, 876–899. [Google Scholar] [CrossRef]
- Claud, C.; Alhammoud, B.; Funatsu, B.M.; Chaboureau, J.-P. Mediterranean hurricanes: Large-scale environment and convective and precipitating areas from satellite microwave observations. Nat. Hazards Earth Syst. Sci. 2010, 10, 2199–2213. [Google Scholar] [CrossRef]
- Tous, M.; Romero, R. Meteorological environments associated with medicane development. Int. J. Climatol. 2013, 33, 1–14. [Google Scholar] [CrossRef]
- Gaertner, M.Á.; González-Alemán, J.J.; Romera, R.; Domínguez, M.; Gil, V.; Sánchez, E.; Gallardo, C.; Miglietta, M.M.; Walsh, K.J.E.; Sein, D.V.; et al. Simulation of Medicanes over the Mediterranean Sea in a regional climate model ensemble: Impact of ocean–atmosphere coupling and increased resolution. Clim. Dyn. 2018, 51, 1041–1057. [Google Scholar] [CrossRef] [Green Version]
- Akhtar, N.; Brauch, J.; Dobler, A.; Béranger, K.; Ahrens, B. Medicanes in an ocean–atmosphere coupled regional climate model. Nat. Hazards Earth Syst. Sci. 2014, 14, 2189–2201. [Google Scholar] [CrossRef] [Green Version]
- Miglietta, M.M.; Cerrai, D.; Laviola, S.; Cattani, E.; Levizzani, V. Potential vorticity patterns in Mediterranean “hurricanes”. Geophys. Res. Lett. 2017, 44, 2537–2545. [Google Scholar] [CrossRef]
- Miglietta, M.M.; Laviola, S.; Malvaldi, A.; Conte, D.; Levizzani, V.; Price, C. Analysis of tropical-like cyclones over the Mediterranean Sea through a combined modelling and satellite approach. Geophys. Res. Lett. 2013, 40, 2400–2405. [Google Scholar] [CrossRef]
- Davolio, S.; Della Fera, S.; Laviola, S.; Miglietta, M.M.; Levizzani, V. Heavy Precipitation over Italy from the Mediterranean Storm “Vaia” in October 2018: Assessing the Role of an Atmospheric River. Mon. Weather Rev. 2020, 148, 3571–3588. [Google Scholar] [CrossRef]
- Bouin, M.-N.; Lebeaupin Brossier, C. Surface processes in the 7 November 2014 medicane from air-sea coupled high-resolution numerical modelling. Atmos. Chem. Phys. 2020, 20, 6861–6881. [Google Scholar] [CrossRef]
- Lugon, J., Jr.; Juliano, M.M.; Kyriakides, I.; Yamasaki, E.N.; Rodrigues, P.P.G.W.; Silva Neto, A.J. Environmental hydrodynamic modeling applied to extreme events in Caribbean and Mediterranean countries. Desalin. Water Treat. 2020, 194, 315–323. [Google Scholar] [CrossRef]
- Nastos, P.T.; Papadimou, K.K.; Matsangouras, I.T. Mediterranean tropical-like cyclones: Impacts and composite daily means and anomalies of synoptic patterns. Atmos. Res. 2018, 208, 156–166. [Google Scholar] [CrossRef]
- Romera, R.; Gaertner, M.A.; Sánchez, E.; Domínguez, M.; González-Alemán, J.J.; Miglietta, M.M. Climate change projections of Medicanes with a large multi-model ensemble of regional climate models. Glob. Planet. Chang. 2017, 151, 134–143. [Google Scholar] [CrossRef]
- Moreno, J.M.; Álvarez Cobelas, M.; Benito, G.; Catalán, J.; Ramos, M.; Rosa, D.D.L.; Valladares Ros, F.; Zazo, C. Principales Conclusiones de la Evaluación Preliminar de los Impactos en España por Efecto del Cambio Climático; Ministerio de Medio Ambiente: Madrid, Spain, 2005. [Google Scholar]
- Cantonati, M.; Poikane, S.; Pringle, C.M.; Stevens, L.E.; Turak, E.; Heino, J.; Richardson, J.S.; Bolpagni, R.; Borrini, A.; Cid, N.; et al. Characteristics, Main Impacts, and Stewardship of Natural and Artificial Freshwater Environments: Consequences for Biodiversity Conservation. Water 2020, 12, 260. [Google Scholar] [CrossRef] [Green Version]
- Maasri, A.; Jähnig, S.; Adamescu, M.; Adrian, R.; Baigun, C.; Baird, D.; Batista-Morales, A.; Bonada, N.; Brown, L.; Cai, Q.; et al. A global agenda for advancing freshwater biodiversity research. Ecol. Lett. 2021, 25, 255–263. [Google Scholar] [CrossRef]
- Naiman, R.J.; Décamps, H.; McClain, M.E. Riparia: Ecology, Conservation, and Management of Streamside Communities, 1st ed.; Elsevier Academic Press: San Diego, CA, USA, 2005; p. 430. [Google Scholar]
- Zogaris, S.; Chatzinikolaou, Y.; Diplopoulos, P. Riparian woodland flora in upland rivers of Western Greece. Mediterr. Mar. Sci. 2008, 9, 87–102. [Google Scholar] [CrossRef] [Green Version]
- Naiman, R.J.; Décamps, H. The ecology of interfaces-riparian zones. Annu. Rev. Ecol. Syst. 1997, 28, 621–658. [Google Scholar] [CrossRef] [Green Version]
- Naiman, R.J.; Décamps, H.; Pollock, M. The role of riparian corridors in maintaining regional biodiversity. Ecol. Appl. 1993, 3, 209–212. [Google Scholar] [CrossRef] [PubMed]
- Gregory, S.V.; Swanson, F.J.; McKee, W.A.; Cummins, K.W. An ecosystem prospective of riparian zones. BioScience 1991, 41, 540–551. [Google Scholar] [CrossRef]
- Tang, S.M.; Montgomery, D.R. Riparian buffers and potentially unstable ground. Environ. Manag. 1995, 19, 741. [Google Scholar] [CrossRef]
- Barling, R.D.; Moore, I.D. Role of buffer strips in management of waterway pollution: A review. Environ. Manag. 1994, 18, 543–558. [Google Scholar] [CrossRef]
- Hood, G.W.; Naiman, R.J. Vulnerability of riparian zones to evasion by exotic vascular plants. Plant Ecol. 2000, 148, 105–114. [Google Scholar] [CrossRef]
- Ward, J.V. Riverine-wetland interactions. In Freshwater Wetlands and Wildlife; Sharitz, R.R., Gibbons, J.W., Eds.; DOE Symp: Oak Ridge, TN, USA, 1989; pp. 385–400. [Google Scholar]
- Mikulová, K.; Jarolímek, I.; Šibík, J.; Bacigál, T.; Šibíková, M. Long-Term Changes of Softwood Floodplain Forests-Did the Disappearance of Wet Vegetation Accelerate the Invasion Process? Forests 2020, 11, 1218. [Google Scholar] [CrossRef]
- Décamps, H. River margins and environmental change. Ecol. Appl. 1993, 3, 441–445. [Google Scholar] [CrossRef]
- Naiman, R.J.; Décamps, H.; Pastor, J.; Johnston, C.A. The potential importance of boundaries to fluvial ecosystems. J. N. Am. Benthol. Soc. 1988, 7, 289–306. [Google Scholar] [CrossRef]
- Nucci, A.; Angiolini, C.; Landi, M.; Bacchetta, G. Regional and local patterns of riparian flora: Comparison between insular and continental mediterranean rivers. Ecoscience 2012, 19, 213–224. [Google Scholar] [CrossRef]
- Bolpagni, R.; Lastrucci, L.; Brundu, G.; Hussner, A. Multiple roles of alien Plants in aquatic ecosystems: From processes to modelling. Front. Plant Sci. 2020, 11, 1299. [Google Scholar] [CrossRef]
- Gentili, R.; Armiraglio, S.; Rossi, G.; Sgorbati, S.; Baroni, C. Floristic patterns, ecological gradients and biodiversity in the composite channels (Central Alps, Italy). Flora 2010, 205, 388–398. [Google Scholar] [CrossRef]
- Pettit, N.E.; Froend, R.H.; Davis, P.M. Identifying the natural flow regime and the relationship with riparian vegetation for two contrasting western Australian rivers. Regul. River. 2001, 17, 201–215. [Google Scholar] [CrossRef]
- Ferreira, M.T.; Aguiar, F.C. Riparian and aquatic vegetation in Mediterranean-type streams (western Iberia). Limnetica 2006, 25, 411–424. [Google Scholar] [CrossRef]
- Mejías, J.A.; Arroyo, J.; Marañón, T. Ecology and biogeography of plant communities associated with the post Plio-Pleistocene relict Rhododendron ponticum subsp. baeticum in southern Spain. J. Biogeogr. 2006, 34, 456–472. [Google Scholar] [CrossRef] [Green Version]
- Aguiar, F.C.; Ferreira, M.T. Human-disturbed landscapes: Effects on composition and integrity of riparian woody vegetation in the Tagus River basin, Portugal. Environ. Conserv. 2005, 32, 30–41. [Google Scholar] [CrossRef]
- Cooper, S.D.; Page, H.M.; Wiseman, S.W.; Klose, K.; Bennett, D.; Even, T.; Sadro, S.; Nelson, C.E.; Dudley, T.L. Physicochemical and biological responses of streams to wildfire severity in riparian zones. Freshwater Biol. 2015, 60, 2600–2619. [Google Scholar] [CrossRef]
- Filipe, A.F.; Lawrence, J.E.; Bonada, N. Vulnerability of stream biota to climate change in mediterranean climate regions: A synthesis of ecological responses and conservation challenges. Hydrobiologia 2013, 719, 331–351. [Google Scholar] [CrossRef] [Green Version]
- Hershkovitz, Y.; Gasith, A. Resistance, resilience, and community dynamics in mediterranean-climate streams. Hydrobiologia 2013, 719, 59–75. [Google Scholar] [CrossRef]
- Robson, B.J.; Chester, E.T.; Mitchell, B.D.; Matthews, T.G. Disturbance and the role of refuges in mediterranean climate streams. Hydrobiologia 2013, 719, 77–91. [Google Scholar] [CrossRef]
- Stella, J.C.; Rodríguez-González, P.M.; Dufour, S.; Bendix, J. Riparian vegetation research in Mediterranean-climate regions: Common patterns, ecological processes, and considerations for management. Hydrobiologia 2013, 719, 291–315. [Google Scholar] [CrossRef]
- Lozanovska, I.; Bejarano, M.D.; Martins, M.J.; Nilsson, C.; Ferreira, M.T.; Aguiar, F.C. Functional Diversity of Riparian Woody Vegetation Is Less Affected by River Regulation in the Mediterranean Than Boreal Region. Front. Plant Sci. 2020, 11, 857. [Google Scholar] [CrossRef] [PubMed]
- Gasith, A.; Resh, V.H. Streams in Mediterranean climate regions: Abiotic influences and biotic responses to predictable seasonal events. Annu. Rev. Ecol. Syst. 1999, 30, 51–81. [Google Scholar] [CrossRef] [Green Version]
- Bonada, N.; Resh, V.H. Mediterranean-climate streams and rivers: Geographically separated but ecologically comparable freshwater systems. Hydrobiologia 2013, 719, 1–29. [Google Scholar] [CrossRef] [Green Version]
- Stromberg, J.C.; Boudell, J.A. Floods, drought, and seed mass of riparian plant species. J. Arid Environ. 2013, 97, 99–107. [Google Scholar] [CrossRef]
- Bendix, J.; Cowell, C.M. Fire, floods and woody debris: Interactions between biotic and geomorphic processes. Geomorphology 2010, 116, 297–304. [Google Scholar] [CrossRef]
- Arnaud, P.; Lavabre, J. La modélisation stochastique des pluies horaires et leur transformation en débits pour la prédétermination des crues. Rev. Des Sci. De L’eau/J. Water Sci. 2000, 13, 441–462. [Google Scholar] [CrossRef] [Green Version]
- Lázaro, R.; Rodrigo, F.S.; Gutiérrez, L.; Domingo, F.; Puigdefábregas, J. Analysis of a 30-year rainfall record (1967–1997) in semi-arid SE Spain for implications on vegetation. J. Arid Environ. 2001, 48, 373–395. [Google Scholar] [CrossRef]
- Mayes, J. Rainfall variability in the Maltese Islands: Changes, Causes and Consequences. Geography 2001, 86, 121–130. [Google Scholar]
- Alpert, P.; Ben-Gai, T.; Baharad, A.; Benjamini, Y.; Yekutieli, D.; Colacino, M.; Diodato, L.; Ramis, C.; Homar, V.; Romero, R.; et al. The paradoxical increase of Mediterranean extreme daily rainfall in spite of decrease in total values. Geophys. Res. Lett. 2002, 29, 1536. [Google Scholar] [CrossRef] [Green Version]
- Gabriele, S.; Villani, P. The estimation of rainfall frequency in a Mediterranean environment due to extraordinary combinations of hydrological and climatic conditions. IAHS Publ. 2002, 271, 45–50. [Google Scholar]
- Homar, V.; Romero, R.; Ramis, C.; Alonso, S. Numerical study of the October 2000 torrential precipitation event over eastern Spain: Analysis of the synoptic-scale stationarity. Ann. Geophys. 2002, 20, 2047–2066. [Google Scholar] [CrossRef]
- Obled, C.; Bontron, G.; Garçon, R. Quantitative precipitation forecasts: A statistical adaptation of model outputs through an analogues sorting approach. Atmos. Res. 2002, 63, 303–324. [Google Scholar] [CrossRef]
- Rosso, R.; Rulli, M.C. An integrated simulation method for flash-flood risk assessment: 2. Effects of changes in land-use under a historical perspective. Hydrol. Earth Syst. Sci. 2002, 6, 285–294. [Google Scholar] [CrossRef] [Green Version]
- Ayalon, A.; Bar-Matthews, M.; Kaufman, A. Climatic conditions during marine oxygen isotope stage 6 in the eastern Mediterranean region from the isotopic composition of speleothems of Soreq Cave, Israel. Geology 2002, 30, 303–306. [Google Scholar] [CrossRef]
- Gonzalez-Hidalgo, J.C.; de Luis, M.; Raventós, J.; Sanchez, J.R. Daily rainfall trend in the Valencia Region of Spain. Theor. Appl. Climatol. 2003, 75, 117–130. [Google Scholar] [CrossRef]
- Belmonte, A.M.C.; Beltrán, F.S. Flood events in Mediterranean ephemeral streams (ramblas) in Valencia region, Spain. Catena 2001, 45, 229–249. [Google Scholar] [CrossRef] [Green Version]
- Alessandroni, M.G.; Remedia, G. The most severe floods of the Tiber River in Rome. IAHS Publ. 2002, 271, 129–132. [Google Scholar]
- Rigo, T.; Llasat, M.D.C. Flash floods and heavy rain events in Catalonia: Analysis of the 1996–2000 period. IAHS Publ. 2003, 278, 269–275. [Google Scholar]
- Neppel, L.; Bouvier, C.; Desbordes, M.; Vinet, F. A possible origin for the increase in floods in the Mediterranean region. Rev. Sci. Eau 2003, 16, 475–494. [Google Scholar]
- Sala, M. Floods triggered by natural conditions and by human activities in a Mediterranean coastal environment. Geogr. Ann. A 2003, 85, 301–312. [Google Scholar] [CrossRef]
- Palutikof, J.P.; Goodess, C.M.; Watkins, S.J.; Holt, T. Generating rainfall and temperature scenarios at multiple sites: Examples from the Mediterranean. J. Clim. 2002, 15, 3529–3548. [Google Scholar] [CrossRef]
- Pinto, J.G. Influence of large-scale atmospheric circulation and baroclinic waves on the variability of mediterranean rainfall. Ph.D. Thesis, Universität zu Köln, Cologne, Germany, 2002. [Google Scholar]
- Vandenschrick, G.; van Wesemael, B.; Frot, E.; Pulido-Bosch, A.; Molina, L.; Stiévenard, M.; Souchez, R. Using stable isotope analysis (δD and δ18O) to characterise the regional hydrology of the Sierra de Gador, south east Spain. J. Hydrol. 2002, 265, 43–55. [Google Scholar] [CrossRef]
- Piras, M.; Mascaro, G.; Deidda, R.; Vivoni, E.R. Impacts of climate change on precipitation and discharge extremes through the use of statistical downscaling approaches in a Mediterranean basin. Sci. Total Environ. 2016, 543, 952–964. [Google Scholar] [CrossRef]
- Padedda, B.M.; Pulina, S.; Magni, P.; Sechi, N.; Lugliè, A. Phytoplankton Dynamics in Relation to Environmental Changes in a Phytoplankton-Dominated Mediterranean Lagoon (Cabras Lagoon, Italy). Adv. Oceanogr. Limnol. 2012, 3, 147–169. [Google Scholar] [CrossRef]
- Cristiano, E.; Urru, S.; Farris, S.; Ruggiu, D.; Deidda, R.; Viola, F. Analysis of potential benefits on flood mitigation of a CAM green roof in Mediterranean urban areas. Build. Environ. 2020, 183, 107179. [Google Scholar] [CrossRef]
- Schiller, G.; Korol, L.; Shklar, G. Habitat effects on adaptive genetic variation in Pinus halepensis Mill. provenances. For. Genet. 2004, 11, 325–335. [Google Scholar]
- Llorens, P.; Poyatos, R.; Muzylo, A.; Rubio, C.M.; Latron, J.; Delgado, J.; Gallart, F. Hydrology in a Mediterranean mountain environment–The Vallcebre research basins (North Eastern Spain). III. Vegetation and water fluxes. IAHS Publ. 2010, 336, 186–191. [Google Scholar]
- Maxime, C.; Hendrik, D. Effects of climate on diameter growth of co-occurring Fagus sylvatica and Abies alba along an altitudinal gradient. Trees 2011, 25, 265–276. [Google Scholar] [CrossRef]
- Coll, M.; Peñuelas, J.; Ninyerola, M.; Pons, X.; Carnicer, J. Multivariate effect gradients driving forest demographic responses in the Iberian Peninsula. Forest Ecol. Manag. 2013, 303, 195–209. [Google Scholar] [CrossRef]
- Lempereur, M.; Martin-StPaul, N.K.; Damesin, C.; Joffre, R.; Ourcival, J.-M.; Rocheteau, A.; Rambla, S. Growth duration is a better predictor of stem increment than carbon supply in a Mediterranean oak forest: Implications for assessing forest productivity under climate change. New Phytol. 2015, 207, 579–590. [Google Scholar] [CrossRef]
- García-Palacios, P.; Prieto, I.; Ourcival, J.-M.; Hättenschwiler, S. Disentangling the litter quality and soil microbial contribution to leaf and fine root litter decomposition responses to reduced rainfall. Ecosystems 2016, 19, 490–503. [Google Scholar] [CrossRef]
- Misson, L.; Degueldre, D.; Collin, C.; Rodriguez, R.; Rocheteau, A.; Ourcival, J.-M.; Rambal, S. Phenological responses to extreme droughts in a Mediterranean forest. Glob. Chang. Biol. 2010, 17, 1036–1048. [Google Scholar] [CrossRef]
- de Dios Miranda, J.; Jorquera, M.J.; Pugnaire, F.I. Phenological and reproductive responses of a semiarid shrub to pulsed watering. Plant Ecol. 2014, 215, 769–777. [Google Scholar] [CrossRef]
- Liu, D.; Ogaya, R.; Barbeta, A.; Yang, X.; Peñuelas, J. Contrasting impacts of continuous moderate drought and episodic severe droughts on the aboveground-biomass increment and litterfall of three coexisting Mediterranean woody species. Glob. Change Biol. 2015, 21, 4196–4209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Joët, T.; Ourcival, J.-M.; Capelli, M.; Dussert, S.; Morin, X. Explanatory ecological factors for the persistence of desiccation-sensitive seeds in transient soil seed banks: Quercus ilex as a case study. Ann. Bot. 2016, 117, 165–176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, D.; Estiarte, M.; Ogaya, R.; Yang, X.; Peñuelas, J. Shift in community structure in an early-successional Mediterranean shrubland driven by long-term experimental warming and drought and natural extreme droughts. Glob. Chang. Biol. 2017, 23, 4267–4279. [Google Scholar] [CrossRef]
- Alon, M.; Sternberg, M. Effects of extreme drought on primary production, species composition and species diversity of a Mediterranean annual plant community. J. Veg. Sci. 2019, 30, 1045–1061. [Google Scholar] [CrossRef]
- Gavinet, J.; Ourcival, J.-M.; Gauzere, J.; García de Jalón, L.; Limousin, J.-M. Drought mitigation by thinning: Benefits from the stem to the stand along 15 years of experimental rainfall exclusion in a holm oak coppice. Forest Ecol. Manag. 2020, 473, 118266. [Google Scholar] [CrossRef]
- Cotrufo, M.F.; Alberti, G.; Inglima, I.; Marjanović, H.; LeCain, D.; Zaldei, A.; Peressotti, A.; Miglietta, F. Decreased summer drought affects plant productivity and soil carbon dynamics in a Mediterranean woodland. Biogeosciences 2011, 8, 2729–2739. [Google Scholar] [CrossRef] [Green Version]
- Linares, J.C.; Delgado-Huertas, A.; Carreira, J.A. Climatic trends and different drought adaptive capacity and vulnerability in a mixed Abies pinsapo-Pinus halepensis forest. Clim. Chang. 2011, 105, 67–90. [Google Scholar] [CrossRef]
- Matías, L.; Zamora, R.; Castro, J. Sporadic rainy events are more critical than increasing of drought intensity for woody species recruitment in a Mediterranean community. Oecologia 2012, 169, 833–844. [Google Scholar] [CrossRef] [PubMed]
- Barbeta, A.; Ogaya, R.; Peñuelas, J. Dampening effects of long-term experimental drought on growth and mortality rates of a Holm oak forest. Glob. Chang. Biol. 2013, 19, 3133–3144. [Google Scholar] [CrossRef] [PubMed]
- De Dios Miranda, J.; Padilla, F.M.; Pugnaire, F.I. Response of a Mediterranean semiarid community to changing patterns of water supply. Perspect. Plant Ecol. Evol. Syst. 2009, 11, 255–266. [Google Scholar] [CrossRef]
- De Dios Miranda, J.; Padilla, F.M.; Lázaro, R.; Pugnaire, F.I. Do changes in rainfall patterns affect semiarid annual plant communities? J. Veg. Sci. 2009, 20, 269–276. [Google Scholar] [CrossRef]
- Besson, C.K.; Lobo-do-Vale, R.; Rodrigues, M.L.; Almeida, P.; Herd, A.; Grant, O.M.; David, T.S.; Schmidt, M.; Otieno, D.; Keenan, T.F.; et al. Cork oak physiological responses to manipulated water availability in a Mediterranean woodland. Agric. For. Meteorol. 2014, 184, 230–242. [Google Scholar] [CrossRef]
- Ruiz-Labourdette, D.; Génova, M.; Schmitz, M.F.; Urrutia, R.; Pineda, F.D. Summer rainfall variability in European Mediterranean mountains from the sixteenth to the twentieth century reconstructed from tree rings. Int. J. Biometeorol. 2014, 58, 1627–1639. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez, A.; Durán, J.; Rey, A.; Boudouris, I.; Valladares, F.; Gallardo, A.; Yuste, J.C. Interactive effects of forest die-off and drying-rewetting cycles on C and N mineralization. Geoderma 2019, 333, 81–89. [Google Scholar] [CrossRef]
- Ohana-Levi, N.; Givati, A.; Paz-Kagan, T.; Karnieli, A. Forest composition effect on wildfire pattern and runoff regime in a Mediterranean watershed. Ecohydrology 2017, 11, 1936. [Google Scholar] [CrossRef]
- Cardil, A.; Vega-García, C.; Ascoli, D.; Molina-Terrén, D.M.; Silva, C.A.; Rodrigues, M. How does drought impact burned area in Mediterranean vegetation communities? Sci. Total Environ. 2019, 693, 133603. [Google Scholar] [CrossRef]
- García-Llamas, P.; Suárez-Seoane, S.; Taboada, A.; Fernández-Manso, A.; Quintano, C.; Fernández-García, V.; Fernández-Guisuraga, J.M.; Marcos, E.; Calvo, L. Environmental drivers of fire severity in extreme fire events that affect Mediterranean pine forest ecosystems. For. Ecol. Manag. 2019, 433, 24–32. [Google Scholar] [CrossRef]
- Delač, D.; Pereira, P.; Bogunović, I.; Kisić, I. Short-Term Effects of Pile Burn on N Dynamic and N Loss in Mediterranean Croatia. Agronomy 2020, 10, 1340. [Google Scholar] [CrossRef]
- Morán-Ordóñez, A.; Duane, A.; Gil-Tena, A.; De Cáceres, M.; Aquilué, N.; Guerra, C.; Geijzendorffer, I.R.; Fortin, M.-J.; Brotons, L. Future impact of climate extremes in the Mediterranean: Soil erosion projections when fire and extreme rainfall meet. Land Degrad. Dev. 2020, 31, 3040–3054. [Google Scholar] [CrossRef]
- Rinat, Y.; Marra, F.; Zoccatelli, D.; Morin, E. Controls of flash flood peak discharge in Mediterranean basins and the special role of runoff-contributing areas. J. Hydrol. 2018, 565, 846–860. [Google Scholar] [CrossRef]
- Ballesteros-Canovas, J.A.; Bombino, G.; D’Agostino, D.; Denisi, P.; Labate, A.; Stoffel, M.; Zema, D.A.; Zimbone, S.M. Tree-ring based, regional-scale reconstruction of flash floods in Mediterranean mountain torrents. Catena 2020, 189, 104481. [Google Scholar] [CrossRef]
- Marques, I.G.; Campelo, F.; Rivaes, R.; Albuquerque, A.; Ferreira, M.T.; Rodríguez-González, P.M. Tree rings reveal long-term changes in growth resilience in Southern European riparian forests. Dendrochronologia 2018, 52, 167–176. [Google Scholar] [CrossRef]
- Bertini, G.; Amoriello, T.; Fabbio, G.; Piovosi, M. Forest growth and climate change: Evidences from the ICP-Forests intensive monitoring in Italy. iForest 2011, 4, 262–267. [Google Scholar] [CrossRef] [Green Version]
- Pilaš, I.; Medved, I.; Medak, J.; Medak, D. Response strategies of the main forest types to climatic anomalies across Croatian biogeographic regions inferred from FAPAR remote sensing data. Forest Ecol. Manag. 2014, 326, 58–78. [Google Scholar] [CrossRef]
- Costa-e-Silva, F.; Correia, A.C.; Piayda, A.; Dubbert, M.; Rebmann, C.; Cuntz, M.; Werner, C.; David, J.S.; Pereira, J.S. Effects of an extremely dry winter on net ecosystem carbon exchange and tree phenology at a cork oak woodland. Agr. For. Meteorol. 2015, 204, 48–57. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.N.; Jin, H.Y.; Kwak, M.J.; Khaine, I.; You, H.N.; Lee, T.Y.; Ahn, T.H.; Woo, S.Y. Why does Quercus suber species decline in Mediterranean areas? J. Asia-Pac. Biodivers. 2017, 10, 337–341. [Google Scholar] [CrossRef]
- Vacca, A.; Aru, F.; Ollesch, G. Short-term Impact of Coppice Management on Soil in a Quercus ilex l. Stand of Sardinia. Land Degrad. Dev. 2017, 28, 553–565. [Google Scholar] [CrossRef] [Green Version]
- Aguilar, C.; Guzmán, E.; Burguet, M.; Polo, M.J.; Taguas, E.V. Hydrological Response of a Semiarid Olive Orchard Microcatchment Under Theoretical Climate Change Scenarios. Soil Sci. 2016, 181, 283–292. [Google Scholar] [CrossRef]
- Uzun, A.; Ustaoğlu, B. Impacts of El Nino Southern Oscillation (ENSO) and North Atlantic Oscillation (NAO) on the Olive Yield in the Mediterranean Region, Turkey. In Proceedings of the 8th International Conference on Agro-Geoinformatics (Agro-Geoinformatics), Istanbul, Turkey, 16–19 July 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Rodríguez, B.C.; Zuazo, V.H.D.; Rodríguez, M.S.; Ruiz, B.G.; García-Tejero, I.F. Soil Erosion and the Efficiency of the Conservation Measures in Mediterranean Hillslope Farming (SE Spain). Eurasian Soil Sci. 2021, 54, 792–806. [Google Scholar] [CrossRef]
- Palese, A.M.; Ringersma, J.; Baartman, J.E.M.; Peters, P.; Xiloyannins, C. Runoff and sediment yield of tilled and spontaneous grass-covered olive groves grown on sloping land. Soil Res. 2015, 53, 542–552. [Google Scholar] [CrossRef]
- Ramos, M.C. Soil losses in rainfed Mediterranean vineyards under climate changes scenarios. The effects of drainage terraces. Agriculture 2016, 1, 124–143. [Google Scholar] [CrossRef]
- Comino, J.R.; Senciales, J.M.; Ramos, M.C.; Martínez-Casasnovas, J.A.; Lasanta, T.; Brevik, E.C.; Ries, J.B.; Sinoga, J.D.R. Understanding soil erosion processes in Mediterranean sloping vineyards (Montes de Málaga, Spain). Geoderma 2017, 296, 47–59. [Google Scholar] [CrossRef] [Green Version]
- Cerdà, A.; Keesstra, S.D.; Rodrigo-Comino, J.; Novara, A.; Pereira, P.; Brevik, E.; Giménez-Morera, A.; Fernández-Raga, M.; Pulido, M.; di Prima, S.; et al. Runoff initiation, soil detachment and connectivity are enhanced as a consequence of vineyards plantations. J. Environ. Manag. 2017, 202, 268–275. [Google Scholar] [CrossRef] [Green Version]
- Comino, J.R.; Sinoga, J.D.R.; González, J.M.S.; Guerra-Merchán, A.; Seeger, M.; Ries, J.B. High variability of soil erosion and hydrological processes in Mediterranean hillslope vineyards (Montes de Málaga, Spain). Catena 2016, 145, 274–284. [Google Scholar] [CrossRef]
- Lenz, T.I.; Facelli, J.M. Correlations between environmental factors, the biomass of exotic annual grasses and the frequency of native perennial grasses. Aust. J. Bot. 2006, 54, 655–667. [Google Scholar] [CrossRef]
- Castro, S.P.; Cleland, E.E.; Wagner, R.; Al Sawad, R.; Lipson, D.A. Soil microbial responses to drought and exotic plants shift carbon metabolism. ISME J. 2019, 13, 1776–1787. [Google Scholar] [CrossRef]
- Godfree, R.C.; Knerr, N.; Godfree, D.; Busby, J.; Robertson, B.; Encinas-Viso, F. Historical reconstruction unveils the risk of mass mortality and ecosystem collapse during pancontinental megadrought. Proc. Natl. Acad. Sci. USA 2019, 116, 15580–15589. [Google Scholar] [CrossRef] [Green Version]
- Lavorel, S. Ecological diversity and resilience of Mediterranean vegetation to disturbance. Divers. Distrib. 1999, 5, 3–13. [Google Scholar] [CrossRef]
- Le Houérou, H.N. Global change: Population, land-use and vegetation in the Mediterranean Basin by the mid-21st century. In Greenhouse Effect, Sea Level and Drought; Springer: Dordrecht, The Netherlands, 1990; pp. 301–367. [Google Scholar]
- Pausas, J.G. Response of plant functional types to changes in the fire regime in Mediterranean ecosystems: A simulation approach. J. Veg. Sci. 1999, 10, 717–722. [Google Scholar] [CrossRef]
- Pausas, J.G. Resprouting of Quercus suber in NE Spain after fire. J. Veg. Sci. 1997, 8, 703–706. [Google Scholar] [CrossRef] [Green Version]
- Pereira, J.S.; Chaves, M.M. Plant responses to drought under climate change in Mediterranean-type ecosystems. In Global Change and Mediterranean-Type Ecosystems; Springer: New York, NY, USA, 1995; pp. 140–160. [Google Scholar]
- Rosenzweig, C.; Tubiello, F.N. Impacts of Global Climate Change on Mediterranean Agrigulture: Current Methodologies and Future Directions. An Introductory Essay. Mitig. Adapt. Strateg. Glob. Chang. 1997, 1, 219–232. [Google Scholar] [CrossRef]
- Cossu, A.; De Waele, J.; Di Gregorio, F. Coastal karst geomorphosites at risk? A case study: The floods of 6-11 December 2004 in central-east Sardinia. Geol. Soc. Lond. Spec. Publ. 2007, 279, 85–95. [Google Scholar] [CrossRef]
- De Waele, J.; Martina, M.L.V.; Sanna, L.; Cabras, S.; Cossu, Q.A. Flash flood hydrology in karstic terrain: Flumineddu Canyon, central-east Sardinia. Geomorphology 2010, 120, 162–173. [Google Scholar] [CrossRef]
- Cittadini, M.; Mancini, M.; Tilocca, G.; Fresia, I.; Ravazzani, G.; Malcotti, R. Flash Flood and Pluvial Flooding. Why Sardinia? Ispra, Ministero dell’Ambiente, Regione Sardegna Agenzia di Distretto Idrografico: Cagliari, Italy, 2010. [Google Scholar]
- Frongia, S.; Ruiu, A.; Sechi, G.M. Evaluation of water depth-damage functions in built-up areas in Sardinia (Italy). Water Utility J. 2018, 20, 37–48. [Google Scholar]
- Niedda, M.; Amponsah, W.; Marchi, L.; Zoccatelli, D.; Marra, F.; Crema, S.; Pirastru, M.; Marrosu, R.; Borga, M. Il ciclone Cleopatra del 18 novembre 2013 in Sardegna: Analisi e modellazione dell’evento di piena. Quad. Idronomia Mont. 2014, 32, 47–58. [Google Scholar]
- Righini, M.; Surian, N.; Wohl, E.; Marchi, L.; Comiti, F.; Amponsah, W.; Borga, M. Geomorphic response to an extreme flood in two Mediterranean rivers (northeastern Sardinia, Italy): Analysis of controlling factors. Geomorphology 2017, 290, 184–199. [Google Scholar] [CrossRef]
- Franci, F.; Boccardo, P.; Mandanici, E.; Roveri, E.; Bitelli, G. Flood mapping using VHR satellite imagery: A comparison between different classification approaches. In Earth Resources and Environmental Remote Sensing/GIS Applications VII; SPIE: Edinburgh, UK, 2016; Volume 10005, pp. 1–9. [Google Scholar] [CrossRef] [Green Version]
- Faccini, F.; Luino, F.; Paliaga, G.; Roccati, A.; Turconi, L. Flash Flood Events along the West Mediterranean Coasts: Inundations of Urbanized Areas Conditioned by Anthropic Impacts. Land 2021, 10, 620. [Google Scholar] [CrossRef]
- Caloiero, T.; Coscarelli, R.; Gaudio, R. Spatial and temporal variability of daily precipitation concentration in the Sardinia region (Italy). Int. J. Climatol. 2019, 39, 5006–5021. [Google Scholar] [CrossRef]
- Bodini, A.; Cossu, Q.A. Vulnerability assessment of Central-East Sardinia (Italy) to extreme rainfall events. Nat. Hazards Earth Syst. Sci. 2010, 10, 61–72. [Google Scholar] [CrossRef]
Category | Sub-Category | No. Articles |
---|---|---|
Rainfall events | Modelling | 36 |
Estimates by radar | 8 | |
Rainfall pattern | 54 | |
Rainfall distribution | 8 | |
Torrential precipitation events | 71 | |
Precipitation effect on animals | 1 | |
Vegetation | 14 | |
Total: 192 | ||
Floods | Vegetation | 4 |
Flood forecasting systems | 18 | |
Flood models | 19 | |
Flood frequency | 5 | |
Flood events: study cases | 30 | |
Flooding hazard/risk | 16 | |
Flood distribution | 2 | |
Socio-economic effects floods | 4 | |
Ecological response of floods | 3 | |
Total: 101 | ||
Storm | Vegetation | 2 |
Storm/cyclone | 2 | |
Storm model/estimate/forecasting | 9 | |
Storm events | 7 | |
Storm impact | 2 | |
Thunderstorm | 1 | |
Rainstorm | 1 | |
Total: 24 | ||
Medicane | 2 | |
Extreme weather events | Vegetation | 4 |
Extreme events model/assessment | 25 | |
Extreme events | 3 | |
Total: 32 | ||
Drought | Vegetation | 18 |
Drought pattern | 4 | |
Drought events | 6 | |
Animal resilience to drought | 1 | |
Drought assessment | 1 | |
Total: 30 | ||
Global/Climate change | Vegetation | 34 |
Global/climate change | 35 | |
Climate change on crops | 12 | |
Climate change simulation | 22 | |
Climate change on precipitation, flood, water ecosystems | 27 | |
Climate change on animal | 3 | |
Climate change forecasting/risk/assessment | 41 | |
Total: 174 | ||
Fires | Vegetation | 6 |
Fire effects | 5 | |
Fire models | 1 | |
Total: 12 | ||
Lightning | 3 | |
Temperature | 2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pinna, M.S.; Loi, M.C.; Calderisi, G.; Fenu, G. Extremes Rainfall Events on Riparian Flora and Vegetation in the Mediterranean Basin: A Challenging but Completely Unexplored Theme. Water 2022, 14, 817. https://doi.org/10.3390/w14050817
Pinna MS, Loi MC, Calderisi G, Fenu G. Extremes Rainfall Events on Riparian Flora and Vegetation in the Mediterranean Basin: A Challenging but Completely Unexplored Theme. Water. 2022; 14(5):817. https://doi.org/10.3390/w14050817
Chicago/Turabian StylePinna, Maria Silvia, Maria Cecilia Loi, Giulia Calderisi, and Giuseppe Fenu. 2022. "Extremes Rainfall Events on Riparian Flora and Vegetation in the Mediterranean Basin: A Challenging but Completely Unexplored Theme" Water 14, no. 5: 817. https://doi.org/10.3390/w14050817
APA StylePinna, M. S., Loi, M. C., Calderisi, G., & Fenu, G. (2022). Extremes Rainfall Events on Riparian Flora and Vegetation in the Mediterranean Basin: A Challenging but Completely Unexplored Theme. Water, 14(5), 817. https://doi.org/10.3390/w14050817