Conservation Need for a Plant Species with Extremely Small Populations Linked to Ephemeral Streams in Adverse Desert Environments
Abstract
:1. Introduction
2. Materials and Methods
3. Result
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Royal Botanic Gardens, Kew. The State of the World’s Plants Report; Royal Botanic Gardens, Kew: Richmond, UK, 2020. [Google Scholar]
- IUCN Red List of Threatened Species. 2020-3. Available online: https://www.iucnredlist.org/ (accessed on 5 September 2021).
- Botanic Gardens Conservation International (BGCI). State of the World’s Trees; BGCI: Richmond, UK, 2021. [Google Scholar]
- Silva, S.V.; Andermann, T.; Zizka, A.; Kozlowski, G.; Silvestro, D. Global Estimation and Mapping of the Conservation Status of Tree Species Using Artificial Intelligence. Front. Plant Sci. 2022, 13, 839792. [Google Scholar] [CrossRef] [PubMed]
- Kamel, M.; Ghazaly, U.M.; Callmander, M.W. Conservation status of the endangered Nubian dragon tree Dracaena ombet in Gebel Elba national park, Egypt. Oryx 2015, 49, 704–709. [Google Scholar] [CrossRef]
- Andres, S.E.; Powell, J.R.; Emery, N.J.; Rymer, P.D.; Gallagher, R.V. Does threatened species listing status predict climate change risk? A case study with Australian Persoonia (Proteaceae) species. Glob. Ecol. Conserv. 2021, 31, e01862. [Google Scholar] [CrossRef]
- Kingsford, R. Ecology of Desert Rivers; Cambridge University Press: Cambridge, UK, 2006. [Google Scholar]
- Sada, D.W.; Fleishman, E.; Murphy, D.D. Associations among spring-dependent aquatic assemblages and environmental and land use gradients in a Mojave Desert mountain range. Divers. Distrib. 2005, 11, 91–99. [Google Scholar] [CrossRef]
- Box, J.B.; Duguid, A.; Read, R.E.; Kimber, R.G.; Knapton, A.; Davis, J.; Bowland, A.E. Central Australian waterbodies: The importance of permanence in a desert landscape. J. Arid Environ. 2008, 72, 1395–1413. [Google Scholar] [CrossRef]
- Vázquez-Domínguez, E.; Hernández-Valdés, A.; Rojas-Santoyo, A.; Zambrano, L. Contrasting genetic structure in two codistributed freshwater fish species of highly seasonal systems. Rev. Mex. Biodivers. 2009, 80, 181–192. [Google Scholar]
- Reid, A.J.; Carlson, A.K.; Creed, I.F.; Eliason, E.J.; Gell, P.A.; Johnson, P.T.; Kidd, K.A.; MacCormack, T.J.; Olden, J.D.; Ormerod, S.J.; et al. Emerging threats and persistent conservation challenges for freshwater biodiversity. Biol. Rev. 2019, 94, 849–873. [Google Scholar] [CrossRef]
- Cantonati, M.; Poikane, S.; Pringle, C.M.; Stevens, L.E.; Turak, E.; Heino, J.; Richardson, J.S.; Bolpagni, R.; Borrini, A.; Cid, N.; et al. Characteristics, main impacts and stewardship of natural and artificial freshwater environments: Consequences for biodiversity conservation. Water 2020, 12, 260. [Google Scholar] [CrossRef]
- Maasri, A.; Jähnig, S.C.; Adamescu, M.C.; Adrian, R.; Baigun, C.; Baird, D.J.; Batista-Morales, A.; Bonada, N.; Brown, L.E.; Cai, Q.; et al. A global agenda for advancing freshwater biodiversity research. Ecol. Lett. 2022, 25, 255–263. [Google Scholar] [CrossRef]
- Dudgeon, D.; Arthington, A.H.; Gessner, M.O.; Kawabata, Z.-I.; Knowler, D.J.; Lévêque, C.; Naiman, R.J.; Prieur-Richard, A.-H.; Soto, D.; Stiassny, M.L.J.; et al. Freshwater biodiversity: Importance, threats, status and conservation challenges. Biol. Rev. 2006, 81, 163–182. [Google Scholar] [CrossRef]
- Vörösmarty, C.J.; McIntyre, P.B.; Gessner, M.O.; Dudgeon, D.; Prusevich, A.; Green, P.; Glidden, S.; Bunn, S.E.; Sullivan, C.A.; Liermann, C.R.; et al. Global threats to human water security and river biodiversity. Nature 2010, 467, 555–561. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malmqvist, B.; Rundle, S. Threats to the running water ecosystems of the world. Environ. Conserv. 2002, 29, 134–153. [Google Scholar] [CrossRef]
- Bates, B.; Kundzewicz, Z.; Wu, S. Climate Change and Water; Intergovernmental Panel on Climate Change (IPCC): Geneva, Switzerland, 2008. [Google Scholar]
- Davis, J.; Pavlova, A.; Thompson, R.; Sunnucks, P. Evolutionary refugia and ecological refuges: Key concepts for conserving Australian arid zone freshwater biodiversity under climate change. Glob. Chang. Biol. 2013, 13, 1970–1984. [Google Scholar]
- Strayer, D.L.; Dudgeon, D. Freshwater biodiversity conservation: Recent progress and future challenges. J. N. Am. Benthol. Soc. 2010, 29, 344–358. [Google Scholar] [CrossRef]
- Woodward, G.; Perkins, D.M.; Brown, L.E. Climate change and freshwater ecosystems: Impacts across multiple levels of organization. Philos. Philos. Trans. R. Soc. B Biol. Sci. 2010, 365, 2093–2106. [Google Scholar] [CrossRef] [PubMed]
- Jaeger, K.L.; Olden, J.D.; Pelland, N.A. Climate change poised to threaten hydrologic connectivity and endemic fishes in dryland streams. Proc. Natl. Acad. Sci. USA 2014, 111, 13894–13899. [Google Scholar] [CrossRef]
- Chen, I.C.; Hill, J.K.; Ohlemüller, R.; Roy, D.B.; Thomas, C.D. Rapid range shifts of species associated with high levels of climate warming. Science 2011, 333, 1024–1026. [Google Scholar] [CrossRef]
- Clavero, M.; Ninyerola, M.; Hermoso, V.; Filipe, A.F.; Pla, M.; Villero, D.; Brotons, L.; Delibes, M. Historical citizen science to understand and predict climate-driven trout decline. Proc. R. Soc. B Biol. Sci. 2017, 284, 20161979. [Google Scholar] [CrossRef]
- Chappuis, E.; Ballesteros, E.; Gacia, E. Distribution and richness of aquatic plants across Europe and Mediterranean countries: Patterns, environmental driving factors and comparison with total plant richness. J. Veg. Sci. 2012, 23, 985–997. [Google Scholar] [CrossRef]
- Hossain, K.; Yadav, S.; Quaik, S.; Pant, G.; Maruthi, A.Y.; Ismail, N. Vulnerabilities of macrophytes distribution due to climate change. Theor. Appl. Climatol. 2017, 129, 1123–1132. [Google Scholar] [CrossRef]
- Sleith, R.S.; Wehr, J.D.; Karol, K.G. Untangling climate and water chemistry to predict changes in freshwater macrophyte distributions. Ecol. Evol. 2018, 8, 2802–2811. [Google Scholar] [CrossRef] [PubMed]
- Pinna, M.S.; Loi, M.C.; Calderisi, G.; Fenu, G. Extremes Rainfall Events on Riparian Flora and Vegetation in the Mediterranean Basin: A Challenging but Completely Unexplored Theme. Water 2022, 14, 817. [Google Scholar] [CrossRef]
- Ragupathy, S.; Seigler, D.S.; Ebinger, J.E.; Maslin, B.R. New combinations in Vachellia and Senegalia (Leguminosae: Mimosoideae) for south and west Asia. Phytotaxa 2014, 162, 174–180. [Google Scholar] [CrossRef]
- Armoza-Zvuloni, R.; Shlomi, Y.; Shem-Tov, R.; Stavi, I.; Abadi, I. Drought and Anthropogenic Effects on Acacia Populations: A Case Study from the Hyper-Arid Southern Israel. Soil Syst. 2021, 5, 23. [Google Scholar] [CrossRef]
- Hobbs, J.J.; Krzywinski, K.; Andersen, G.L.; Talib, M.; Pierce, R.H.; Saadallah, A.E.M. Acacia trees on the cultural landscapes of the Red Sea Hills. Biodivers. Conserv. 2014, 23, 2923–2943. [Google Scholar] [CrossRef]
- Munzbergova, Z.; Ward, D. Acacia trees as keystone species in the Negev desert ecosystems. J. Veg. Sci. 2002, 13, 227–236. [Google Scholar] [CrossRef]
- Nothers, M.; Segev, N.; Kreyling, J.; Hjazin, A.; Groner, E. Desert Vegetation Forty Years after an Oil Spill. J. Environ. Qual. 2017, 46, 568–575. [Google Scholar] [CrossRef]
- Rohner, C.; Ward, D. Large mammalian herbivores and the conservation of arid Acacia stands in the Middle East. Conserv. Biol. 1999, 13, 1162–1171. [Google Scholar] [CrossRef]
- Belsky, A.J.; Mwonga, S.M.; Amundson, R.G.; Duxbury, J.M.; Ali, A.R. Comparative effects of isolated trees on their undercanopy environments in high- and low-rainfall savannas. J. App. Ecol. 1993, 30, 143–155. [Google Scholar] [CrossRef]
- Milton, S.J.; Dean, W.R.J. How useful is the keystone species concept, and can it be applied to Acacia erioloba in the Kalahari desert? Zeitschrift fuer Oekologie und Naturschutz 1995, 4, 147–156. [Google Scholar]
- Stavi, I.; Silver, M.; Avni, Y. Latitude, basin size, and microhabitat effects on the viability of Acacia trees in the Negev and Arava, Israel. Catena 2014, 114, 149–156. [Google Scholar] [CrossRef]
- Al-Rammahi, H.M.; Mohammad, M.K. The current status, ecological and biometrical assessment and threats on Acacia gerrardii negevensis Zohary (Fabaceae) in Al-Najaf Desert, Iraq. Plant Arch. 2020, 20, 4467–4476. [Google Scholar]
- Fenu, G.; Al-Rammahi, H.M.; Mohammad, M.K.; Perrino, E.V.; Rosati, L.; Wagensommer, R.P.; Orsenigo, S. Global and Regional IUCN Red List Assessments: 10. Ital. Bot. 2020, 10, 73–81. [Google Scholar] [CrossRef]
- Townsend, C.C.; Guest, E. Flora of Iraq, 3-Leguminales; Royal Botanic Gardens, Kew: Richmond, UK, 1974. [Google Scholar]
- Thalen, D.C.P. Ecology and Utilization of Desert Shrub Rangelands in Iraq; Springer Science & Business Media: Berlin, Germany, 1979. [Google Scholar]
- Dyer, C. New names for the African Acacia species in Vachellia and Senegalia. South For. J. For. Sci. 2014, 76, 980090. [Google Scholar] [CrossRef] [Green Version]
- IUCN Threats Classification Scheme v. 3.2. 2012. Available online: https://www.iucnredlist.org/technical-documents/classification-schemes/threats-classification-scheme (accessed on 10 January 2021).
- IUCN. Guidelines for Using the IUCN Red List Categories and Criteria: Version 15; Standards and Petitions Committee. 2022. Available online: http://www.iucnredlist.org/documents/RedListGuidelines.pdf (accessed on 1 December 2020).
- Burgman, M.A.; Fox, J.C. Bias in species range estimates from minimum convex polygons: Implications for conservation and options for improved planning. A. Conserv. 2003, 6, 19–28. [Google Scholar] [CrossRef]
- Gargano, D.; Fenu, G.; Medagli, P.; Sciandrello, S.; Bernardo, L. The status of Sarcopoterium spinosum (Rosaceae) at the western periphery of its range: Ecological constraints lead to conservation concerns. Isr. J. Plant Sci. 2007, 55, 1–13. [Google Scholar] [CrossRef]
- Bachman, S.; Moat, J.; Hill, A.W.; Torre, J.; Scott, B. Supporting Red List threat assessments with GeoCAT: Geospatial conservation assessment tool. ZooKeys 2011, 150, 117–126. [Google Scholar] [CrossRef]
- Ahmed, E.S.; Hassan, A.S. The Impact of the Extreme Air Temperatures on the Characteristics of Iraq Weather. Iraqi J. Sci. 2018, 59, 1139–1145. [Google Scholar] [CrossRef]
- Salman, S.A.; Shahid, S.; Ismail, T.; Chung, E.S.; Al-Abadi, A.M. Long-term trends in daily temperature extremes in Iraq. Atmos. Res. 2017, 198, 97–107. [Google Scholar] [CrossRef]
- Bouchenak-Khelladi, Y.; Maurin, O.; Hurter, J.; van der Bank, M. The evolutionary history and biogeography of Mimosoideae (Leguminosae): An emphasis on African acacias. Mol. Phylogen. Evol. 2010, 57, 495–508. [Google Scholar] [CrossRef]
- Kyalangalilwa, B.; Boatwright, J.S.; Daru, B.H.; Maurin, O.; van der Bank, M. Phylogenetic position and revised classification of Acacia sl (Fabaceae: Mimosoideae) in Africa, including new combinations in Vachellia and Senegalia. Bot. J. Linn. Soc. 2013, 172, 500–523. [Google Scholar] [CrossRef]
- Comben, D.F.; McCulloch, G.A.; Brown, G.K.; Walter, G.H. Phylogenetic placement and the timing of diversification in Australia’s endemic Vachellia (Caesalpinioideae, Mimosoid Clade, Fabaceae) species. Aust. Syst. Bot. 2020, 33, 103–109. [Google Scholar] [CrossRef]
- Anufriieva, E.V.; Shadrin, N.V. Extreme hydrological events destabilize aquatic ecosystems and open doors for alien species. Quat. Int. 2018, 475, 11–15. [Google Scholar] [CrossRef]
- Lozano, V. Distribution of Five Aquatic Plants Native to South America and Invasive Elsewhere under Current Climate. Ecologies 2021, 2, 27–42. [Google Scholar] [CrossRef]
- Orsenigo, S.; Abeli, T.; Al-Rammahi, H.M.; Azzaro, D.; Cambria, S.; D’Agostino, M.; Mohammad, M.K.; Tavilla, G.; Fenu, G. Global and Regional IUCN Red List Assessments: 11. Ital. Bot. 2021, 11, 131–143. [Google Scholar] [CrossRef]
- Wilms, T.M.; Wagner, P.; Shobrak, M.; Lutzmann, N.; Böhme, W. Aspects of the ecology of the Arabian spiny-tailed lizard (Uromastyx aegyptia microlepis Blanford, 1875) at Mahazat as-Sayd protected area, Saudi Arabia. Salamandra 2010, 46, 131–140. [Google Scholar]
- Al-Rammahi, H.M.; Mohammad, M.K. Birds of conservation concern at Al-Najaf Desert, Southern Desert of Iraq. Bull. Iraq Nat. Hist. Mus. 2022, 17, 67–87. [Google Scholar] [CrossRef]
- Jdeidi, T.; Masseti, M.; Nader, I.; de Smet, K.; Cuzin, F. The IUCN Red List of Threatened Species. 2010: E.T8976A12944941. Available online: https://www.iucnredlist.org/species/10274/3188449 (accessed on 9 July 2022).
- Al-Sheikhly, O.F.; Haba, M.K.; Barbanera, F.; Csorba, G.; Harrison, D.L. Checklist of the Mammals of Iraq (Chordata: Mammalia). Bonn Zool. Bull. 2015, 64, 33–58. [Google Scholar]
- Heinken, T.; Weber, E. Consequences of habitat fragmentation for plant species: Do we know enough? Perspect. Plant. Ecol. Syst. 2013, 15, 205–2016. [Google Scholar] [CrossRef]
- Garcia-Jacas, N.; Requena, J.; Massó, S.; Vilatersana, R.; Blanché, C.; López-Pujol, J. Genetic diversity and structure of the narrow endemic Seseli farrenyi (Apiaceae): Implications for translocation. PeerJ 2021, 9, e10521. [Google Scholar] [CrossRef]
- Godefroid, S.; Piazza, C.; Rossi, G.; Buord, S.; Stevens, A.D.; Aguraiuja, R.; Cowell, C.; Weekley, C.W.; Vogg, G.; Iriondo, J.M.; et al. How successful are plant species reintroductions? Biol. Conserv. 2011, 144, 672–682. [Google Scholar] [CrossRef]
- Fenu, G.; Bacchetta, G.; Charalambos, S.C.; Fournaraki, C.; Giusso del Galdo, G.P.; Gotsiou, P.; Kyratzis, A.; Piazza, C.; Vicens, M.; Pinna, M.S.; et al. An early evaluation of translocation actions for endangered plant species on Mediterranean islands. Plant Divers. 2019, 41, 94–104. [Google Scholar] [CrossRef] [PubMed]
- Garfì, G.; Carimi, F.; Fazan, L.; Gristina, A.S.; Kozlowski, G.; Livreri Console, S.; Motisi, A.; Pasta, S. From glacial refugia to hydrological microrefugia: Factors and processes driving the persistence of the climate relict tree Zelkova sicula. Ecol. Evol. 2021, 11, 2919–2936. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Chen, Y.; Yang, F.; Wang, D.; Song, K.; Yu, Z.; Sun, W.; Yang, J. Population structure and regeneration dynamics of Firmiana major, a dominant but endangered tree species. For. Ecol. Manag. 2020, 462, 117993. [Google Scholar] [CrossRef]
Locality | No. of Plants (2020) | No. of Mature Plants (2020) | No. of Mature Plants Producing Seeds (2020) | No. of Plants (2021) | No. of Mature Plants (2021) | No. of Mature Plants Producing Seeds (2021) | Seedling Recruitment | Main Threats | Historical Population Trend (Last 10 Years) |
---|---|---|---|---|---|---|---|---|---|
Birkat Al-Talhat | 275 | 122 | 84 | 210 (−23.6%) | 81 | 81 (−4%) | Yes | 5.3; 8.2; 11; 2.3; 6.1; 6.2. | Continuous decline |
Abu Talah stream (mid part) | 204 | 75 | 39 | 204 | 70 | 39 | Yes | 5.3; 8.2; 11; 2.3; 6.1. | Continuous decline |
Abu Talah stream (terminal part) | 52 | 8 | 2 | 50 (−4%) | 6 | 0 (−100%) | Yes | 5.3; 8.2; 11; 2.3; 6.1; 6.2. | Decline |
Weier stream (initial part) | 221 | 80 | 32 | 221 | 80 | 32 | No | 5.3; 8.2; 11; 2.3; 6.1; 6.2. | Stable |
Weier stream (terminal part) | 6 | 2 | 2 | 6 | 0 | 2 | No | 5.3; 8.2; 11; 2.3; 6.1; 3.2; 8.1. | Continuous decline |
Total | 758 | 287 | 159 | 691 (−8.9%) | 237 | 154 (−3.2%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohammad, M.K.; Al-Rammahi, H.M.; Cogoni, D.; Fenu, G. Conservation Need for a Plant Species with Extremely Small Populations Linked to Ephemeral Streams in Adverse Desert Environments. Water 2022, 14, 2638. https://doi.org/10.3390/w14172638
Mohammad MK, Al-Rammahi HM, Cogoni D, Fenu G. Conservation Need for a Plant Species with Extremely Small Populations Linked to Ephemeral Streams in Adverse Desert Environments. Water. 2022; 14(17):2638. https://doi.org/10.3390/w14172638
Chicago/Turabian StyleMohammad, Mohammad K., Hayder M. Al-Rammahi, Donatella Cogoni, and Giuseppe Fenu. 2022. "Conservation Need for a Plant Species with Extremely Small Populations Linked to Ephemeral Streams in Adverse Desert Environments" Water 14, no. 17: 2638. https://doi.org/10.3390/w14172638
APA StyleMohammad, M. K., Al-Rammahi, H. M., Cogoni, D., & Fenu, G. (2022). Conservation Need for a Plant Species with Extremely Small Populations Linked to Ephemeral Streams in Adverse Desert Environments. Water, 14(17), 2638. https://doi.org/10.3390/w14172638