Applications of Heat Exchanger in Solar Desalination: Current Issues and Future Challenges
Abstract
:1. Introduction
2. Heat Exchanger
3. Solar Desalination System with Heat Exchanger
4. Conclusions
- (1)
- Heat exchangers can recover the wasted heat of solar stills and improve their performance.
- (2)
- Heat exchangers are considered important devices attached to the solar desalination system to improve performance at low cost.
- (3)
- The combination of the solar desalination system with a PTC and heat exchanger improved the solar desalination system’s performance compared with the passive solar desalination system.
- (4)
- Sensible heat storage materials in the solar desalination system with a heat exchanger also enhance the distillate output.
- (5)
- Heat exchangers coupled with heat pipes also enhance the distillate productivity of the solar desalination system.
- (6)
- Solar desalination coupled with a heat exchanger improves the nocturnal distillate output of the solar desalination system.
- (7)
- Heat exchangers could also be coupled with the flat plate-type solar collector to enhance the distillate productivity of the solar desalination system.
5. Future Scope
- Computational fluid dynamics (CFD) is also a very important tool to test the performance of a solar desalination system with a heat exchanger.
- Very limited research has been conducted on the solar desalination system with a heat exchanger and sensible heat storage materials.
- An investigation of the performance of latent and combined heat storage materials (sensible, latent heat storage materials) is still unaddressed by researchers.
6. Future Challenges
- A heat exchanger can be used in conjunction with a solar still to increase the amount of distillate produced. However, there will be certain obstacles in the future, and academics will need to handle them appropriately in their studies.
- When saline water is passed through heat exchanger tubes, it has the potential to cause corrosion issues. In order to function with solar desalination systems in the future, it will be necessary to develop heat exchangers that can prevent or significantly minimize corrosion.
- The material of heat exchangers is always important in terms of enhancing the heat transfer efficiency. Therefore, novel and inexpensive but highly efficient materials are required to operate with the solar desalination system. As a result, working on a novel/cheap heat exchanger with a solar desalination system presents a significant challenge to researchers.
- In the course of working with heat exchangers, leakage is considered to be a significant difficulty for researchers. Therefore, an effective method must be employed to detect and prevent leakage when the heat exchanger works with the solar desalination system.
- Another issue for researchers is employing heat exchangers with solar desalination systems with the least fouling.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
H.E. | Heat Exchanger |
CFD | Computational fluid dynamics |
FPC | Flat plate collector |
PTC | Parabolic trough collector |
References
- Panchal, H.N.; Patel, S. Effect of various parameters on augmentation of distillate output of solar still: A review. Technol. Econ. Smart Grids Sustain. Energy 2016, 1, 1–8. [Google Scholar] [CrossRef]
- Mevada, D.; Panchal, H.; Sadasivuni, K.K. Investigation on evacuated tubes coupled solar still with condenser and fins: Experimental, exergo-economic and exergo-environment analysis. Case Stud. Therm. Eng. 2021, 27, 101217. [Google Scholar] [CrossRef]
- Moustafa, E.B.; Hammad, A.H.; Elsheikh, A.H. A new optimized artificial neural network model to predict thermal efficiency and water yield of tubular solar still. Case Stud. Therm. Eng. 2022, 30, 101750. [Google Scholar] [CrossRef]
- Elsheikh, A.H.; Panchal, H.; Ahmadein, M.; Mosleh, A.O.; Sadasivuni, K.K.; Alsaleh, N.A. Productivity forecasting of solar distiller integrated with evacuated tubes and external condenser using artificial intelligence model and moth-flame optimizer. Case Stud. Therm. Eng. 2021, 28, 101671. [Google Scholar] [CrossRef]
- Elsheikh, A.H.; Shanmugan, S.; Sathyamurthy, R.; Kumar Thakur, A.; Issa, M.; Panchal, H.; Muthuramalingam, T.; Kumar, R.; Sharifpur, M. Low-cost bilayered structure for improving the performance of solar stills: Performance/cost analysis and water yield prediction using machine learning. Sustain. Energy Technol. Assess. 2022, 49, 101783. [Google Scholar] [CrossRef]
- Shanmugan, S.; Essa, F.; Gorjian, S.; Kabeel, A.; Sathyamurthy, R.; Manokar, A.M. Experimental study on single slope single basin solar still using TiO2 nano layer for natural clean water invention. J. Energy Storage 2020, 30, 101522. [Google Scholar] [CrossRef]
- Elsheikh, A.H.; Sharshir, S.W.; Mostafa, M.E.; Essa, F.A.; Ahmed Ali, M.K. Applications of nanofluids in solar energy: A review of recent advances. Renew. Sustain. Energy Rev. 2018, 82, 3483–3502. [Google Scholar] [CrossRef]
- Pansal, K.; Ramani, B.; Kumar Sadasivuni, K.; Panchal, H.; Manokar, M.; Sathyamurthy, R.; Suresh, M.; Israr, M. Use of solar photovoltaic with active solar still to improve distillate output: A review. Groundw. Sustain. Dev. 2020, 10, 100341. [Google Scholar] [CrossRef]
- Elsheikh, A.H.; Sharshir, S.W.; Ahmed Ali, M.K.; Shaibo, J.; Edreis, E.M.A.; Abdelhamid, T.; Du, C.; Haiou, Z. Thin film technology for solar steam generation: A new dawn. Sol. Energy 2019, 177, 561–575. [Google Scholar] [CrossRef]
- Panchal, H. Annual performance analysis of various energy storage materials in the upper basin of a double-basin solar still with vacuum tubes. Int. J. Ambient Energy 2020, 41, 435–451. [Google Scholar] [CrossRef]
- Elsheikh, A.H.; Katekar, V.P.; Muskens, O.L.; Deshmukh, S.S.; Elaziz, M.A.; Dabour, S.M. Utilization of LSTM neural network for water production forecasting of a stepped solar still with a corrugated absorber plate. Process. Saf. Environ. Prot. 2021, 148, 273–282. [Google Scholar] [CrossRef]
- Sharshir, S.W.; Elsheikh, A.H.; Peng, G.; Yang, N.; El-Samadony, M.O.A.; Kabeel, A.E. Thermal performance and exergy analysis of solar stills—A review. Renew. Sustain. Energy Rev. 2017, 73, 521–544. [Google Scholar] [CrossRef]
- Patel, M.; Patel, C.; Panchal, H. Performance analysis of conventional triple basin solar still with evacuated heat pipes, corrugated sheets and storage materials. Groundw. Sustain. Dev. 2020, 11, 100387. [Google Scholar] [CrossRef]
- Abd Elaziz, M.; Essa, F.A.; Elsheikh, A.H. Utilization of ensemble random vector functional link network for freshwater prediction of active solar stills with nanoparticles. Sustain. Energy Technol. Assess. 2021, 47, 101405. [Google Scholar] [CrossRef]
- Panchal, H.; Mohan, I. Various methods applied to solar still for enhancement of distillate output. Desalination 2017, 415, 76–89. [Google Scholar] [CrossRef]
- Gandhi, A.M.; Shanmugan, S.; Gorjian, S.; Pruncu, C.I.; Sivakumar, S.; Elsheikh, A.H.; Essa, F.A.; Omara, Z.M.; Panchal, H. Performance enhancement of stepped basin solar still based on OSELM with traversal tree for higher energy adaptive control. Desalination 2021, 502, 114926. [Google Scholar] [CrossRef]
- Gandhi, A.M.; Shanmugan, S.; Kumar, R.; Elsheikh, A.H.; Sharifpur, M.; Bewoor, A.K.; Bamisile, O.; Hoang, A.T.; Ongar, B. SiO2/TiO2 nanolayer synergistically trigger thermal absorption inflammatory responses materials for performance improvement of stepped basin solar stillnatural distiller. Sustain. Energy Technol. Assess. 2022, 52, 101974. [Google Scholar] [CrossRef]
- AbuShanab, W.S.; Elsheikh, A.H.; Ghandourah, E.I.; Moustafa, E.B.; Sharshir, S.W. Performance improvement of solar distiller using hang wick, reflectors and phase change materials enriched with nano-additives. Case Stud. Therm. Eng. 2022, 31, 101856. [Google Scholar] [CrossRef]
- Sharshir, S.W.; Peng, G.; Wu, L.; Yang, N.; Essa, F.A.; Elsheikh, A.H.; Mohamed, S.I.T.; Kabeel, A.E. Enhancing the solar still performance using nanofluids and glass cover cooling: Experimental study. Appl. Therm. Eng. 2017, 113, 684–693. [Google Scholar] [CrossRef]
- Sharshir, S.W.; Ellakany, Y.M.; Algazzar, A.M.; Elsheikh, A.H.; Elkadeem, M.R.; Edreis, E.M.A.; Waly, A.S.; Sathyamurthy, R.; Panchal, H.; Elashry, M.S. A mini review of techniques used to improve the tubular solar still performance for solar water desalination. Process. Saf. Environ. Prot. 2019, 124, 204–212. [Google Scholar] [CrossRef]
- Elsheikh, A.H.; Sharshir, S.W.; Abd Elaziz, M.; Kabeel, A.E.; Guilan, W.; Haiou, Z. Modeling of solar energy systems using artificial neural network: A comprehensive review. Sol. Energy 2019, 180, 622–639. [Google Scholar] [CrossRef]
- Essa, F.A.; Omara, Z.M.; Abdullah, A.S.; Shanmugan, S.; Panchal, H.; Kabeel, A.E.; Sathyamurthy, R.; Alawee, W.H.; Manokar, A.M.; Elsheikh, A.H. Wall-suspended trays inside stepped distiller with Al2O3/paraffin wax mixture and vapor suction: Experimental implementation. J. Energy Storage 2020, 32, 102008. [Google Scholar] [CrossRef]
- Manesh, M.K.; Rabeti, S.M.; Nourpour, M.; Said, Z. Energy, exergy, exergoeconomic, and exergoenvironmental analysis of an innovative solar-geothermal-gas driven polygeneration system for combined power, hydrogen, hot water, and freshwater production. Sustain. Energy Technol. Assess. 2022, 51, 101861. [Google Scholar]
- Morad, M.; El-Maghawry, H.A.; Wasfy, K.I. Improving the double slope solar still performance by using flat-plate solar collector and cooling glass cover. Desalination 2015, 373, 1–9. [Google Scholar] [CrossRef]
- Shyora, A.; Patel, K.; Panchal, H. Comparative analysis of stepped and single basin solar still in climate conditions of Gandhinagar Gujarat during winter. Int. J. Ambient Energy 2021, 42, 1649–1659. [Google Scholar] [CrossRef]
- Panchal, H.N.; Patel, S. An extensive review on different design and climatic parameters to increase distillate output of solar still. Renew. Sustain. Energy Rev. 2017, 69, 750–758. [Google Scholar] [CrossRef]
- Badran, O.; Al-Tahaineh, H. The effect of coupling a flat-plate collector on the solar still productivity. Desalination 2005, 183, 137–142. [Google Scholar] [CrossRef]
- Raju, V.R.; Narayana, R.L. Effect of flat plate collectors in series on performance of active solar still for Indian coastal climatic condition. J. King Saud Univ.-Eng. Sci. 2018, 30, 78–85. [Google Scholar] [CrossRef] [Green Version]
- Madiouli, J.; Lashin, A.; Shigidi, I.; Badruddin, I.A.; Kessentini, A. Experimental study and evaluation of single slope solar still combined with flat plate collector, parabolic trough and packed bed. Sol. Energy 2020, 196, 358–366. [Google Scholar] [CrossRef]
- Fathy, M.; Hassan, H.; Ahmed, M.S. Experimental study on the effect of coupling parabolic trough collector with double slope solar still on its performance. Sol. Energy 2018, 163, 54–61. [Google Scholar] [CrossRef]
- Panchal, H.N. Performance analysis of solar still with cow dung cakes and blue metal stones. Front. Energy 2015, 9, 180–186. [Google Scholar]
- Panchal, H.N. Use of thermal energy storage materials for enhancement in distillate output of solar still: A review. Renew. Sustain. Energy Rev. 2016, 61, 86–96. [Google Scholar] [CrossRef]
- Murugavel, K.K.; Srithar, K. Performance study on basin type double slope solar still with different wick materials and minimum mass of water. Renew. Energy 2011, 36, 612–620. [Google Scholar]
- Omara, Z.; Hamed, M.H.; Kabeel, A. Performance of finned and corrugated absorbers solar stills under Egyptian conditions. Desalination 2011, 277, 281–287. [Google Scholar]
- Mevada, D.; Panchal, H.; Kumar Sadasivuni, K.; Israr, M.; Suresh, M.; Dharaskar, S.; Thakkar, H. Effect of fin configuration parameters on performance of solar still: A review. Groundw. Sustain. Dev. 2020, 10, 100289. [Google Scholar]
- Sharshir, S.W.; Kandeal, A.; Ismail, M.; Abdelaziz, G.B.; Kabeel, A.; Yang, N. Augmentation of a pyramid solar still performance using evacuated tubes and nanofluid: Experimental approach. Appl. Therm. Eng. 2019, 160, 113997. [Google Scholar] [CrossRef]
- Kumar, S.; Dubey, A.; Tiwari, G. A solar still augmented with an evacuated tube collector in forced mode. Desalination 2014, 347, 15–24. [Google Scholar]
- Panchal, H.N.; Shah, P.K. Enhancement of upper basin distillate output by attachment of vacuum tubes with double-basin solar still. Desalinat. Water Treat. 2015, 55, 587–595. [Google Scholar]
- Sharshir, S.W.; Elsheikh, A.H.; Edreis, E.M.A.; Ali, M.K.A.; Sathyamurthy, R.; Kabeel, A.E.; Zang, J.; Yang, N. Improving the solar still performance by using thermal energy storage materials: A review of recent developments. Desalinat. Water Treat. 2019, 165, 1–15. [Google Scholar] [CrossRef]
- Mevada, D.; Panchal, H.; Ahmadein, M.; Zayed, M.E.; Alsaleh, N.A.; Djuansjah, J.; Moustafa, E.B.; Elsheikh, A.H.; Sadasivuni, K.K. Investigation and performance analysis of solar still with energy storage materials: An energy-exergy efficiency analysis. Case Stud. Therm. Eng. 2022, 29, 101687. [Google Scholar]
- Elsheikh, A.; Sharshir, S.; Kabeel, A.; Sathyamurthy, R. Application of Taguchi method to determine the optimal water depth and glass cooling rate in solar stills. Sci. Iran. 2021, 28, 731–742. [Google Scholar]
- Ghandourah, E.I.; Sangeetha, A.; Shanmugan, S.; Zayed, M.E.; Moustafa, E.B.; Tounsi, A.; Elsheikh, A.H. Performance assessment of a novel solar distiller with a double slope basin covered by coated wick with lanthanum cobalt oxide nanoparticles. Case Stud. Therm. Eng. 2022, 101859. [Google Scholar] [CrossRef]
- Panchal, H.; Sathyamurthy, R. Experimental analysis of single-basin solar still with porous fins. Int. J. Ambient Energy 2020, 41, 563–569. [Google Scholar] [CrossRef]
- Rajaseenivasan, T.; Srithar, K. Performance investigation on solar still with circular and square fins in basin with CO2 mitigation and economic analysis. Desalination 2016, 380, 66–74. [Google Scholar] [CrossRef]
- El-Sebaii, A.; El-Naggar, M. Year round performance and cost analysis of a finned single basin solar still. Appl. Therm. Eng. 2017, 110, 787–794. [Google Scholar] [CrossRef]
- Panchal, H.; Patel, V.; Prajapati, V.; Patel, D.; Patel, H.; Patel, S. Experimental analysis of diesel engine exhaust gas coupled with water desalination for improved potable water production. In Proceedings of the ASME International Mechanical Engineering Congress and Exposition, Houston, TX, USA, 13–19 November 2015; pp. 1–5. [Google Scholar]
- Said, Z.; Sundar, L.S.; Tiwari, A.K.; Ali, H.M.; Sheikholeslami, M.; Bellos, E.; Babar, H. Recent advances on the fundamental physical phenomena behind stability, dynamic motion, thermophysical properties, heat transport, applications, and challenges of nanofluids. Phys. Rep. 2021, 946, 1–94. [Google Scholar] [CrossRef]
- Mahmoudan, A.; Esmaeilion, F.; Hoseinzadeh, S.; Soltani, M.; Ahmadi, P.; Rosen, M. A geothermal and solar-based multigeneration system integrated with a TEG unit: Development, 3E analyses, and multi-objective optimization. Appl. Energy 2022, 308, 118399. [Google Scholar]
- Saravanan, N.M.; Rajakumar, S.; Moshi, A.A.M. Experimental investigation on the performance enhancement of single basin double slope solar still using kanchey marbles as sensible heat storage materials. Mater. Today Proc. 2021, 39, 1600–1604. [Google Scholar] [CrossRef]
- El-Said, E.M.S.; Abd Elaziz, M.; Elsheikh, A.H. Machine learning algorithms for improving the prediction of air injection effect on the thermohydraulic performance of shell and tube heat exchanger. Appl. Therm. Eng. 2021, 185, 116471. [Google Scholar] [CrossRef]
- Joshi, P.; Tiwari, G.N. Energy matrices, exergo-economic and enviro-economic analysis of an active single slope solar still integrated with a heat exchanger: A comparative study. Desalination 2018, 443, 85–98. [Google Scholar] [CrossRef]
- El-Said, E.M.S.; Elsheikh, A.H.; El-Tahan, H.R. Effect of curved segmental baffle on a shell and tube heat exchanger thermohydraulic performance: Numerical investigation. Int. J. Therm. Sci. 2021, 165. [Google Scholar] [CrossRef]
- Yadav, Y.P. Performance analysis of a solar still coupled to a heat exchanger. Desalination 1993, 91, 135–144. [Google Scholar] [CrossRef]
- Chorak, A.; Maakoul, A.E.; Laknizi, A.; Abdellah, A.B.; Essadiqi, E. Modeling and design of heat exchangers in a solar-multi effect distillation plant. In Proceedings of the 2015 3rd International Renewable and Sustainable Energy Conference (IRSEC), Marrakech, Morocco, 10–13 December 2015; pp. 1–6. [Google Scholar]
- Hosseini, A.; Banakar, A.; Gorjian, S. Development and performance evaluation of an active solar distillation system integrated with a vacuum-type heat exchanger. Desalination 2018, 435, 45–59. [Google Scholar] [CrossRef]
- Kabeel, A.E.; Arunkumar, T.; Denkenberger, D.C.; Sathyamurthy, R. Performance enhancement of solar still through efficient heat exchange mechanism—A review. Appl. Therm. Eng. 2017, 114, 815–836. [Google Scholar] [CrossRef]
- Sahota, L.; Tiwari, G.N. Analytical characteristic equation of nanofluid loaded active double slope solar still coupled with helically coiled heat exchanger. Energy Convers. Manag. 2017, 135, 308–326. [Google Scholar] [CrossRef]
- Dhivagar, R.; Sundararaj, S. Thermodynamic and water analysis on augmentation of a solar still with copper tube heat exchanger in coarse aggregate. J. Therm. Anal. Calorim. 2019, 136, 89–99. [Google Scholar] [CrossRef]
- Hammadi, S.H. Integrated solar still with an underground heat exchanger for clean water production. J. King Saud Univ-Eng. Sci. 2020, 32, 339–345. [Google Scholar] [CrossRef]
- Bhargva, M.; Yadav, A. Experimental comparative study on a solar still combined with evacuated tubes and a heat exchanger at different water depths. Int. J. Sustain. Eng. 2020, 13, 218–229. [Google Scholar] [CrossRef]
- Chaanaoui, M.; Ettahi, K.; Abderafi, S.; Vaudreuil, S.; Bounahmidi, T. Comparative analysis between optimum configurations of finned tube heat exchanger: Application for solar drying. Case Stud. Therm. Eng. 2020, 22, 100750. [Google Scholar] [CrossRef]
- Mohammadi, K.; Taghvaei, H.; Rad, E.G. Experimental investigation of a double slope active solar still: Effect of a new heat exchanger design performance. Appl. Therm. Eng. 2020, 180, 115875. [Google Scholar] [CrossRef]
- Kumar, A.; Singh, M.; Anand, J.D. Transient performance of a double-basin solar still integrated with a heat exchanger. Energy 1989, 14, 643–652. [Google Scholar] [CrossRef]
- Kumar, A.; Tiwari, G.N. Use of waste hot water in double slope solar still through heat exchanger. Energy Convers. Manag. 1990, 30, 81–89. [Google Scholar] [CrossRef]
- Mahian, O.; Kianifar, A.; Heris, S.Z.; Wen, D.; Sahin, A.Z.; Wongwises, S. Nanofluids effects on the evaporation rate in a solar still equipped with a heat exchanger. Nano Energy 2017, 36, 134–155. [Google Scholar] [CrossRef]
- Al-Ameen, Y.; Ianakiev, A.; Evans, R. Thermal performance of a solar assisted horizontal ground heat exchanger. Energy 2017, 140, 1216–1227. [Google Scholar] [CrossRef] [Green Version]
Author(s) | Configuration | Observations |
---|---|---|
Yadav [53] | Double-slope solar still with HE |
|
Chorak et al. [54] | Shell- and tube-type HE |
|
Hosseini et al. [55] | PTC and shell- and tube-type HE |
|
Sahota et al. [57] | Helical coil-type HE |
|
Dhivagar and Sundararaj [58] | Copper material HE |
|
Hammadi [58] | Ground Heat exchanger |
|
Bhargava and Yadav [60] | HE with evacuated tubes |
|
Chaanaoui et al. [61] | Fin tube-type heat exchanger |
|
Mohammadi et al. [62] | Novel shape, parallel, serpentine heat exchangers |
|
Kumar et al. [63] | Double-slope solar still with HE |
|
Kumar and Tiwari [64] | HE with solar still |
|
Mahian et al. [65] | Heat exchanger with nanomaterial |
|
Al-Ameen et al. [66] | Heat exchanger with Soil |
|
Joshi and Tiwari [51] | Heat exchanger with FPC |
|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elsheikh, A.H.; Panchal, H.N.; Sengottain, S.; A. Alsaleh, N.; Ahmadein, M. Applications of Heat Exchanger in Solar Desalination: Current Issues and Future Challenges. Water 2022, 14, 852. https://doi.org/10.3390/w14060852
Elsheikh AH, Panchal HN, Sengottain S, A. Alsaleh N, Ahmadein M. Applications of Heat Exchanger in Solar Desalination: Current Issues and Future Challenges. Water. 2022; 14(6):852. https://doi.org/10.3390/w14060852
Chicago/Turabian StyleElsheikh, Ammar H., Hitesh N. Panchal, Shanmugan Sengottain, Naser A. Alsaleh, and Mahmoud Ahmadein. 2022. "Applications of Heat Exchanger in Solar Desalination: Current Issues and Future Challenges" Water 14, no. 6: 852. https://doi.org/10.3390/w14060852
APA StyleElsheikh, A. H., Panchal, H. N., Sengottain, S., A. Alsaleh, N., & Ahmadein, M. (2022). Applications of Heat Exchanger in Solar Desalination: Current Issues and Future Challenges. Water, 14(6), 852. https://doi.org/10.3390/w14060852