Different Irrigation Pressure and Filter on Emitter Clogging in Drip Phosphate Fertigation Systems
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experiment Materials
2.2. Experiment Methods
2.3. Evaluation Indexes
2.4. Statistical Analyses
3. Results
3.1. Emitter Average Relative Discharge and Irrigation Uniformity
3.2. Clogging of Emitters at Different Pressures
3.3. Clogging Substances
4. Discussion
4.1. Operating Status of the System at Low Irrigation Pressures
4.2. Irrigation Pressures on Emitter Clogging
4.3. Clogging Substance Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vaneeckhaute, C.; Janda, J.; Vanrolleghem, P.A.; Tack, F.; Meers, E. Phosphorus use efficiency of bio-based fertilizers: Bioavailability and fractionation. Pedosphere 2016, 26, 310–325. [Google Scholar] [CrossRef] [Green Version]
- Yu, C.Q.; Huang, X.; Chen, H.; Godfray, H.C.J.; Wright, J.S.; Hall, J.W.; Gong, P.; Ni, S.Q.; Qiao, S.C. Huang Managing nitrogen to restore water quality in China. Nature 2019, 567, 516–520. [Google Scholar] [CrossRef] [PubMed]
- Mikkelsen, R.L. Phosphorus fertilization through drip irrigation. J. Prod. Agric. 1989, 2, 279–286. [Google Scholar] [CrossRef]
- Wang, Z.; Yang, X.Q.; Li, J.S. Effect of phosphorus-coupled nitrogen fertigation on clogging in drip emitters when applying saline water. Irrig. Sci. 2020, 38, 337–351. [Google Scholar] [CrossRef]
- Li, K.Y.; Niu, W.Q.; Zhang, R.C.; Liu, L. Accelerative effect of fertigation on emitter clogging by muddy water irrigation. Trans. CSAE 2015, 31, 81–90. [Google Scholar]
- Zhou, H.X.; Li, Y.K.; Xiao, Y.; Liu, Z.Y. Different operation patterns on mineral components of emitters clogging substances in drip phosphorus fertigation system. Irrig. Sci. 2019, 37, 691–707. [Google Scholar] [CrossRef]
- Tang, P.; Li, H.; Issaka, Z.; Chen, C. Effect of manifold layout and fertilizer solution concentration on fertilization and flushing times and uniformity of drip irrigation systems. Agric. Water Manag. 2018, 200, 71–79. [Google Scholar] [CrossRef]
- Fan, J.L.; Zhang, F.C.; Wu, L.F.; Yan, S.C.; Xiang, Y.Z. Field evaluation of fertigation uniformity in drip irrigation system with pressure differential tank. Trans. CSAE 2016, 32, 96–101. [Google Scholar]
- Liu, L.; Niu, W.; Wu, Z.G.; Guan, Y.; Yuan, L.I. Risk and inducing mechanism of acceleration emitter clogging with fertigation through drip irrigation systems. Trans. CSAM 2017, 48, 228–236. [Google Scholar]
- Liu, L.; Niu, W.Q.; Guan, Y.H.; Wu, Z.G.; Ayantobo, O.O. Effects of urea fertigation on emitter clogging in drip irrigation system with muddy water. J. Irrig. Drain. Eng. 2019, 145, 04019020. [Google Scholar] [CrossRef]
- Ma, C.J.; Xiao, Y.; Puig-Bargués, J.; Shukla, M.K.; Tang, X.L.; Hou, P.; Li, Y.K. Using phosphate fertilizer to reduce emitter clogging of drip fertigation systems with high salinity water. J. Environ. Manag. 2020, 263, 110366. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Chu, G. Science Phosphate fertilizer form and application strategy affect phosphorus mobility and transformation in a drip-irrigated calcareous soil. J. Plant Nutr. Soil Sci. 2015, 178, 914–922. [Google Scholar] [CrossRef]
- Capra, A.B. Scicolone Emitter and filter tests for wastewater reuse by drip irrigation. Agric. Water Manag. 2004, 68, 135–149. [Google Scholar] [CrossRef]
- Tripathi, V.K.; Rajput, T.B.S.; Patel, N. Performance of different filter combinations with surface and subsurface drip irrigation systems for utilizing municipal wastewater. Irrig. Sci. 2014, 32, 379–391. [Google Scholar]
- Wu, W.Y.; Huang, Y.; Liu, H.L.; Yin, S.Y.; Niu, Y. Reclaimed water filtration efficiency and drip irrigation emitter performance with different combinations of sand and disc filters. Irrig. Drain. 2015, 64, 362–369. [Google Scholar]
- Fan, X.K.; Wu, P.T.; Niu, W.Q.; Zhang, L.; Wang, F. The Methods of Improving System’s Irrigation Uniformity under Low-pressure Drip Irrigation. J. Irrig. Drain. 2008, 27, 18–20, (In Chinese with English Abstract). [Google Scholar]
- Kumar, M.; Rajput, T.; Patel, N. Patel Effect of system pressure and solute concentration on fertilizer injection rate of a venturi for fertigation. Indian Soc. Agric. Eng. 2012, 49, 9–13. [Google Scholar]
- Zheng, C.; Wu, P.T.; Zhang, L.; Zhu, D.L.; Chen, X.; Chen, J.Y. Flow characteristics in labyrinth channel under dynamic water pressure. Trans. CSAM 2015, 46, 167–172, (In Chinese with English Abstract). [Google Scholar]
- Ma, X.; Gong, S.; Wang, J.; Yu, Y. Anti-clogging Performance of Dental Labyrinth Emitters under Rated Pressure and Low Operating Pressure. Trans. CSAM 2011, 42, 86–90+134. [Google Scholar]
- Zheng, C.; Wu, P.; Zhang, L.; Zhu, D.; Zhao, X.; An, B.D. An Particles movement characteristics in labyrinth channel under different dynamic water pressure modes. Trans. CSAM 2017, 48, 294–301. [Google Scholar]
- Han, S.Q.; Li, Y.K.; Zhou, B.; Liu, Z.Y.; Feng, J.; Xiao, Y. An in-situ accelerated experimental testing method for drip irrigation emitter clogging with inferior water. Agric. Water Manag. 2019, 212, 136–154. [Google Scholar] [CrossRef]
- Zhang, L.; Wu, P.T.; Zhu, D.L.; Zheng, C. Zheng Effect of pulsating pressure on labyrinth emitter clogging. Irrig. Sci. 2017, 35, 267–274. [Google Scholar] [CrossRef]
- Duran-Ros, M.; Puig-Bargues, J.; Arbat, G.; Barragán, J.; de Cartagena, F.R. Performance and backwashing efficiency of disc and screen filters in microirrigation systems. Biosyst. Eng. 2009, 103, 35–42. [Google Scholar] [CrossRef]
- Solé-Torres, C.; Puig-Bargués, J.; Duran-Ros, M.; Arbat, G.; Pujol, J.; de Cartagena, F.R. Effect of different sand filter underdrain designs on emitter clogging using reclaimed effluents. Agric. Water Manag. 2019, 223, 105683. [Google Scholar] [CrossRef]
- Christiansen, J.E. Hydraulics of sprinkling systems for irrigation. Am. Soc. Civ. Eng. 1942, 107, 221–239. [Google Scholar] [CrossRef]
- Li, G.B.; Li, Y.K.; Xu, T.W.; Liu, Y.Z.; Jin, H.; Yang, P.L.; Ren, S.M.; Tian, Z.F. Effects of average velocity on the growth and surface topography of biofilms attached to the reclaimed wastewater drip irrigation system laterals. Irrig. Sci. 2012, 30, 103–113. [Google Scholar] [CrossRef]
- Duran-Ros, M.; Puig-Bargués, J.; Arbat, G.; Barragán, J.; De Cartagena, F.R. Effect of filter, emitter and location on clogging when using effluents. Agric. Water Manag. 2009, 96, 67–79. [Google Scholar] [CrossRef]
- Yu, L.M.; Li, N.; Yang, Q.L.; Liu, X.G. Liu Influence of Flushing Pressure before Irrigation on the Anti-Clogging Performance of Labyrinth Channel Emitters. Irrig. Drain. 2018, 67, 191–198. [Google Scholar] [CrossRef]
- Li, Q.; Song, P.; Zhou, B.; Xiao, Y.; Muhammad, T.; Liu, Z.; Zhou, H.; Li, Y. Mechanism of intermittent fluctuated water pressure on emitter clogging substances formation in drip irrigation system utilizing high sediment water. Agric. Water Manag. 2019, 215, 16–24. [Google Scholar] [CrossRef]
- Bozkurt, S.; Ozekici, B. The effects of fertigation management in the different type of in-line emitters on trickle irrigation system performance. J. Appl. Sci. 2006, 6, 1165–1171. [Google Scholar] [CrossRef]
- Rittman, B.E. The effect of shear stress on biofilm loss rate. Biotechnol. Bioeng. 1982, 24, 501–506. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.H.; Zhao, H.M.; Fang, H.W.; Zhang, Y.F. Zhang Cross-sectional information on pore structure and element distribution of sediment particles by SEM and EDS. Scanning 2017, 2017, 9876935. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hao, F.Z.; Li, J.S.; Wang, Z.; Li, Y.F. Li Effect of ions on clogging and biofilm formation in drip emitters applying secondary sewage effluent. Irrig. Drain. 2017, 66, 687–698. [Google Scholar] [CrossRef]
- Li, Y.K.; Feng, J.; Xue, S.; Muhammad, T.; Chen, X.Z.; Wu, N.Y.; Li, W.S.; Zhou, B. Formation mechanism for emitter composite-clogging in drip irrigation system. Irrig. Sci. 2019, 37, 169–181. [Google Scholar] [CrossRef]
Water Source | pH | Total Hardness (mg/L) | Ca2+ (mg/L) | K+ (mg/L) | Mg2+ (mg/L) | HCO3− (mg/L) | SO42− (mg/L) | Cl− (mg/L) |
---|---|---|---|---|---|---|---|---|
Shiyang River Water | 7.9 | 275 | 78 | 38 | 28 | 216 | 124 | 40 |
Emitters | Structure of the Emitter Flow Path | Rated Pressure (kPa) | Rated Discharge (Lh−1) | Discharge Coefficient | Flow Index | Emitter Spacing (cm) | Width w (mm) | Height h (mm) | Length l (mm) |
---|---|---|---|---|---|---|---|---|---|
Labyrinth emitters | 60 | 1.98 | 9.86 | 0.49 | 15 | 1 | 1.5 | 6 | |
Flat emitters | 100 | 2.03 | 6.12 | 0.48 | 30 | 1 | 2 | 2 |
Plots | Emitter Type | Dripline Number | Filter | Irrigation Pressure (kPa) | Plots | Emitter Type | Dripline Number | Filter | Irrigation Pressure (kPa) |
---|---|---|---|---|---|---|---|---|---|
A Control (no fertilizer) | FE | A1 | DF125 | 80 | E Control (no fertilizer) | LE | E1 | DF 125 | 40 |
A2 | SF125 | E2 | SF 125 | ||||||
A3 | SF200 | E3 | SF 200 | ||||||
A4 | / | E4 | / | ||||||
B | B1 | DF125 | 80 | F | F1 | DF 125 | 40 | ||
B2 | SF125 | F2 | SF 125 | ||||||
B3 | SF200 | F3 | SF 200 | ||||||
B4 | / | F4 | / | ||||||
C | C1 | DF125 | 90 | G | G1 | DF125 | 50 | ||
C2 | SF125 | G2 | SF125 | ||||||
C3 | SF200 | G3 | SF200 | ||||||
C4 | / | G4 | / | ||||||
D | D1 | DF125 | 100 | H | H1 | DF125 | 60 | ||
D2 | SF125 | H2 | SF125 | ||||||
D3 | SF200 | H3 | SF200 | ||||||
D4 | / | H4 | / |
Dripline Number | Head | Middle | Tail | Dripline Number | Head | Middle | Tail |
---|---|---|---|---|---|---|---|
(0–6 m) | (21–27 m) | (42–48 m) | (0–6 m) | (21–27 m) | (42–48 m) | ||
B1 | 96.85 | 96.85 | 94.03 | F1 | 98.27 | 97.50 | 95.95 |
B2 | 94.13 | 93.51 | 91.82 | F2 | 97.99 | 96.07 | 95.41 |
B3 | 76.23 | 78.71 | 75.44 | F3 | 93.52 | 83.63 | 81.30 |
B4 | 73.48 | 78.52 | 73.74 | F4 | 91.04 | 84.36 | 80.92 |
C1 | 98.74 | 98.62 | 97.72 | G1 | 97.38 | 99.85 | 96.37 |
C2 | 97.90 | 98.79 | 96.34 | G2 | 98.24 | 96.63 | 95.22 |
C3 | 96.25 | 94.98 | 92.42 | G3 | 96.37 | 98.97 | 95.71 |
C4 | 95.34 | 93.41 | 91.38 | G4 | 98.16 | 97.01 | 94.90 |
D1 | 98.33 | 98.02 | 96.79 | H1 | 98.47 | 97.27 | 98.90 |
D2 | 97.61 | 96.73 | 96.47 | H2 | 97.57 | 98.62 | 97.09 |
D3 | 96.42 | 97.61 | 95.87 | H3 | 98.18 | 97.13 | 96.04 |
D4 | 97.85 | 96.38 | 95.61 | H4 | 96.91 | 98.98 | 98.01 |
Emitter Type | Source | Significance Level | ||
---|---|---|---|---|
CU1 | CU2 | CU3 | ||
FE | Irrigation pressure | 0.041 * | 0.037 * | 0.035 * |
Filter type | 0.362 n.s. | 0.396 n.s. | 0.481 n.s. | |
Irrigation pressure × Filter type | 0.008 ** | 0.008 ** | 0.006 ** | |
LE | Irrigation pressure | 0.038 * | 0.034 * | 0.032 * |
Filter type | 0.213 n.s. | 0.289 n.s. | 0.350 n.s. | |
Irrigation pressure × Filter type | 0.007 ** | 0.006 ** | 0.004 ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, C.; Wang, R.; Wang, W.; Hu, X.; Wu, W.; Liu, F. Different Irrigation Pressure and Filter on Emitter Clogging in Drip Phosphate Fertigation Systems. Water 2022, 14, 853. https://doi.org/10.3390/w14060853
Liu C, Wang R, Wang W, Hu X, Wu W, Liu F. Different Irrigation Pressure and Filter on Emitter Clogging in Drip Phosphate Fertigation Systems. Water. 2022; 14(6):853. https://doi.org/10.3390/w14060853
Chicago/Turabian StyleLiu, Chunye, Rui Wang, Wene Wang, Xiaotao Hu, Wanying Wu, and Fulai Liu. 2022. "Different Irrigation Pressure and Filter on Emitter Clogging in Drip Phosphate Fertigation Systems" Water 14, no. 6: 853. https://doi.org/10.3390/w14060853
APA StyleLiu, C., Wang, R., Wang, W., Hu, X., Wu, W., & Liu, F. (2022). Different Irrigation Pressure and Filter on Emitter Clogging in Drip Phosphate Fertigation Systems. Water, 14(6), 853. https://doi.org/10.3390/w14060853