Sugar Beet Processing Wastewater Treatment by Microalgae through Biosorption
Abstract
:1. Introduction
2. Materials and Methods
2.1. Wastewater Sampling and Pretreatment
2.2. Selecting of Microalgae Strains and Cultivation Conditions
2.2.1. Selection of Most Adaptive Microalgae Strain
2.2.2. Cultivation Condition in Preliminary Experiment
2.2.3. Biofilm-Based Microalgal Cultivation in the Main Experiment
2.3. Anaerobic and Aerobic Controls in the Main Experiment
2.4. Chemical Characterization of Wastewater
2.5. Metal Analysis in the Initial Wastewater and Wastewater after Algae Cultivation
3. Results
3.1. Preliminary Experiment
Removal Efficiency of Microalgae in the Preliminary Experiment
3.2. The Main Experiment
Characteristics of Sugar Plant Wastewater in the Main Experiment
3.3. Removal Efficiency of Microalgae in the Main Experiment
3.3.1. pH and Oxygen Content during Wastewater Treatment
3.3.2. Nitrogen and Phosphorus Removal
3.3.3. Metal Ion Removal from Wastewater
3.3.4. COD, BOD, and TOC Removal
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- CFFS1 Sugar Statistics 2020; Comitee Europeen Des Fabricants de Sucre: Brussels, Belgium, 2020.
- Žbontar Zver, L.; Glavič, P. Water Minimization in Process Industries: Case Study in Beet Sugar Plant. Resour. Conserv. Recycl. 2005, 43, 133–145. [Google Scholar] [CrossRef]
- Sharma, S.; Simsek, H. Sugar Beet Industry Process Wastewater Treatment Using Electrochemical Methods and Optimization of Parameters Using Response Surface Methodology. Chemosphere 2020, 238, 124669. [Google Scholar] [CrossRef] [PubMed]
- Vaccari, G.; Tamburini, E.; Sgualdino, G.; Urbaniec, K.; Klemes, J. Overview of the Environmental Problems in Beet Sugar Processing: Possible Solutions. J. Clean. Prod. 2005, 13, 499–507. [Google Scholar] [CrossRef]
- Mohsenpour, S.F.; Hennige, S.; Willoughby, N.; Adeloye, A.; Gutierrez, T. Integrating Micro-Algae into Wastewater Treatment: A Review. Sci. Total Environ. 2021, 752, 142168. [Google Scholar] [CrossRef]
- Almomani, F.A.; Örmeci, B. Performance of Chlorella Vulgaris, Neochloris Oleoabundans, and Mixed Indigenous Microalgae for Treatment of Primary Effluent, Secondary Effluent and Centrate. Ecol. Eng. 2016, 95, 280–289. [Google Scholar] [CrossRef]
- Ross, M.E.; Davis, K.; McColl, R.; Stanley, M.S.; Day, J.G.; Semião, A.J.C. Nitrogen Uptake by the Macro-Algae Cladophora Coelothrix and Cladophora Parriaudii: Influence on Growth, Nitrogen Preference and Biochemical Composition. Algal Res. 2018, 30, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Hongyang, S.; Yalei, Z.; Chunmin, Z.; Xuefei, Z.; Jinpeng, L. Cultivation of Chlorella Pyrenoidosa in Soybean Processing Wastewater. Bioresour. Technol. 2011, 102, 9884–9890. [Google Scholar] [CrossRef]
- Travieso, L.; Benítez, F.; Sánchez, E.; Borja, R.; Martín, A.; Colmenarejo, M.F. Batch Mixed Culture of Chlorella Vulgaris Using Settled and Diluted Piggery Waste. Ecol. Eng. 2006, 28, 158–165. [Google Scholar] [CrossRef]
- Usha, M.T.; Sarat Chandra, T.; Sarada, R.; Chauhan, V.S. Removal of Nutrients and Organic Pollution Load from Pulp and Paper Mill Effluent by Microalgae in Outdoor Open Pond. Bioresour. Technol. 2016, 214, 856–860. [Google Scholar] [CrossRef]
- Posadas, E.; García-Encina, P.A.; Domínguez, A.; Díaz, I.; Becares, E.; Blanco, S.; Muñoz, R. Enclosed Tubular and Open Algal-Bacterial Biofilm Photobioreactors for Carbon and Nutrient Removal from Domestic Wastewater. Ecol. Eng. 2014, 67, 156–164. [Google Scholar] [CrossRef]
- Zewdie, D.T.; Ali, A.Y. Cultivation of Microalgae for Biofuel Production: Coupling with Sugarcane-Processing Factories. Energy Sustain. Soc. 2020, 10, 27. [Google Scholar] [CrossRef]
- Van der Poel, P.W.; Schiweck, H.; Schwartz, T. Sugar Technology. Beet and Cane Sugar Manufacture; Berlin Verlag Dr. Albert Bartens: Berlin, Germany, 1998. [Google Scholar]
- Hu, W. Dry Weight and Cell Density of Individual Algal and Cyanobacterial Cells for Algae. Master’s Thesis, University of Missouri, Columbia, MO, USA, 2014. [Google Scholar]
- Sailaja, B.; Meti, B.S. Treatment of Sugar Process Waste Water and Biogas Production Using Algal Biomass. Int. J. Eng. Res. Technol. 2014, 3, 61–67. [Google Scholar]
- Petrović Olga, G.S. Mikrobiološko Ispitivanje Kvaliteta Površinskih Voda. 1998. Available online: https://open.uns.ac.rs/handle/123456789/24294 (accessed on 16 January 2022).
- Köster, W.; Egli, T.; Ashbolt, N.; Botzenhart, K.; Burlion, N.; Endo, T.; Grimont, P.A.; Guillot, E.; Mabilat, C.; Newport, L.; et al. Analytical Methods for Microbiological Water Quality Testing. Anal. Methods Glycerol. 1979, 8, 237. [Google Scholar] [CrossRef]
- SRPS ISO 6060: 1994; Water Quality-Determination of the Chemical Oxygen Demand. ISO: Geneva, Switzerland, 1994.
- SRPS ISO 8245:2007; Water Quality-Guidelines for the Determination of Total Organic Carbon (TOC). ISO: Geneva, Switzerland, 2007.
- ISO 7890-3:1988; Water Quality—Determination of Nitrate—Part 3: Spectrometric Method Using Sulfosalicylic Acid. ISO: Geneva, Switzerland, 1988.
- ISO 6777:1984; Water Quality-Determination of Nitrite-Molecular Absorption Spectrometric Method. ISO: Geneva, Switzerland, 1984.
- ISO 26777:2009; Water Quality-Determination of Nitrite-Molecular Absorption Spectrometric Method. ISO: Geneva, Switzerland, 2009.
- Eze, V.C.; Velasquez-Orta, S.B.; Hernández-García, A.; Monje-Ramírez, I.; Orta-Ledesma, M.T. Kinetic Modelling of Microalgae Cultivation for Wastewater Treatment and Carbon Dioxide Sequestration. Algal Res. 2018, 32, 131–141. [Google Scholar] [CrossRef]
- Solimeno, A.; Parker, L.; Lundquist, T.; García, J. Integral Microalgae-Bacteria Model (BIO_ALGAE): Application to Wastewater High Rate Algal Ponds. Sci. Total Environ. 2017, 601–602, 646–657. [Google Scholar] [CrossRef] [Green Version]
- ISO 6869:2000; Animal Feeding Stuffs—Determination of the Contents of Calcium, Copper, Iron, Manganese, Potassium, Sodium and Zinc—Method Using Atomic Absorption Spectrometry. ISO: Geneva, Switzerland, 2001.
- Cheng, P.; Wang, Y.; Liu, T.; Liu, D. Biofilm Attached Cultivation of Chlorella Pyrenoidosa Is a Developed System for Swine Wastewater Treatment and Lipid Production. Front. Plant Sci. 2017, 8, 1594. [Google Scholar] [CrossRef]
- Mantzorou, A.; Ververidis, F. Microalgal Biofilms: A Further Step over Current Microalgal Cultivation Techniques. Sci. Total Environ. 2018, 651, 3187–3201. [Google Scholar] [CrossRef]
- Xu, Z.; Wang, H.; Cheng, P.; Chang, T.; Chen, P.; Zhou, C.; Ruan, R. Development of Integrated Culture Systems and Harvesting Methods for Improved Algal Biomass Productivity and Wastewater Resource Recovery—sA Review. Sci. Total Environ. 2020, 746, 141039. [Google Scholar] [CrossRef]
- Li, Y.; Chen, Y.-F.; Chen, P.; Min, M.; Zhou, W.; Martinez, B.; Zhu, J.; Ruan, R. Characterization of a Microalga Chlorella Sp. Well Adapted to Highly Concentrated Municipal Wastewater for Nutrient Removal and Biodiesel Production. Bioresour. Technol. 2011, 102, 5138–5144. [Google Scholar] [CrossRef]
- Dragone, G.; Fernandes, B.; Vicente, A.; Teixeira, J. Third Generation Biofuels from Microalgae. In Current Research, Technology and Education Topics in Applied Microbiology and Microbial Biotechnology; Elsevier Ltd.: Melbourne, Australia, 2010; Volume 2, pp. 1355–1366. [Google Scholar]
- Cerón-García, M.C.; Fernandez-Sevilla, J.M.; Molina-Grima, E.; Camacho, F. Mixotrophic Growth of the Microalga Phaeodactylum Tricornutum: Influence of Different Nitrogen and Organic Carbon Sources on Productivity and Biomass Composition. Process Biochem. 2005, 40, 297–305. [Google Scholar] [CrossRef]
- Rajta, A.; Bhatia, R.; Setia, H.; Pathania, P. Role of Heterotrophic Aerobic Denitrifying Bacteria in Nitrate Removal from Wastewater. J. Appl. Microbiol. 2020, 128, 1261–1278. [Google Scholar] [CrossRef]
- Becker, E.W. Microalgae, Biotechnology and Microbiology; Cambridge University Press: Cambridge, UK, 1994. [Google Scholar]
- Fogg, G.E. Algal Cultures and Phytoplankton Ecology, 2nd ed.; The University of Wisconsin Press: Madison, WI, USA, 1975. [Google Scholar]
- Larsdotter, K.; Jansen, J.L.C.; Dalhammar, G. Biologically Mediated Phosphorus Precipitation in Wastewater Treatment with Microalgae. Environ. Technol. 2007, 28, 953–960. [Google Scholar] [CrossRef]
- Hawrot-Paw, M.; Koniuszy, A.; Gałczynska, M.; Zajac, G.; Szyszlak-Bargłowicz, J. Production of Microalgal Biomass Using Aquaculture Wastewater as Growth Medium. Water 2020, 12, 106. [Google Scholar] [CrossRef] [Green Version]
- Zhao, B.; Su, Y. Process Effect of Microalgal-Carbon Dioxide Fixation and Biomass Production: A Review. Renew. Sustain. Energy Rev. 2014, 31, 121–132. [Google Scholar] [CrossRef]
- Griffiths, E.W. Removal and Utilization of Wastewater Nutrients for Algae Biomass and Biofuels. Master’s Thesis, Utah State University, Logan, UT, USA, 2009. [Google Scholar]
- Sánchez Zurano, A.; Gómez Serrano, C.; Acién-Fernández, F.G.; Fernández-Sevilla, J.M.; Molina-Grima, E. Modeling of Photosynthesis and Respiration Rate for Microalgae–Bacteria Consortia. Biotechnol. Bioeng. 2021, 118, 952–962. [Google Scholar] [CrossRef] [PubMed]
- Delgadillo-Mirquez, L.; Lopes, F.; Taidi, B.; Pareau, D. Nitrogen and Phosphate Removal from Wastewater with a Mixed Microalgae and Bacteria Culture. Biotechnol. Adv. 2016, 11, 18–26. [Google Scholar] [CrossRef] [PubMed]
- Aslan, S.; Kapdan, I.K. Batch Kinetics of Nitrogen and Phosphorus Removal from Synthetic Wastewater by Algae. Ecol. Eng. 2006, 28, 64–70. [Google Scholar] [CrossRef]
- McGaughy, K.; Abu Hajer, A.; Drabold, E.; Bayless, D.; Reza, M.T. Algal Remediation of Wastewater Produced from Hydrothermally Treated Septage. Sustainability 2019, 11, 3454. [Google Scholar] [CrossRef] [Green Version]
- Falkowski, P.G.; Raven, J.A. Aquatic Photosynthesis; STU-Stud.; Princeton University Press: Princeton, NJ, USA, 2007; ISBN 9780691115511. [Google Scholar]
- Choi, H.J. Intensified Production of Microalgae and Removal of Nutrient Using a Microalgae Membrane Bioreactor (MMBR). Appl. Biochem. Biotechnol. 2014, 175, 2195–2205. [Google Scholar] [CrossRef]
- Suresh Kumar, K.; Dahms, H.U.; Won, E.J.; Lee, J.S.; Shin, K.H. Microalgae-A Promising Tool for Heavy Metal Remediation. Ecotoxicol. Environ. Saf. 2015, 113, 329–352. [Google Scholar] [CrossRef]
- Kumar, S.K.; Ganesan, K.; Subba Rao, P.V. Phycoremediation of Heavy Metals by the Three-Color Forms of Kappaphycus Alvarezii. J. Hazard. Mater. 2007, 143, 590–592. [Google Scholar] [CrossRef] [PubMed]
- Krustok, I.; Nehrenheim, E.; Odlare, M. Cultivation of Microalgae for Potential Heavy Metal Reduction in a Wastewater Treatment Plant. In Proceedings of the International Conference on Applied Energy ICAE 2012, Suzhou, China, 5–8 July 2012. [Google Scholar]
- Muñoz, R.; Guieysse, B. Algal–Bacterial Processes for the Treatment of Hazardous Contaminants: A Review. Water Res. 2006, 40, 2799–2815. [Google Scholar] [CrossRef] [PubMed]
- Goharshadi, E.K.; Moghaddam, M.B. Adsorption of Hexavalent Chromium Ions from Aqueous Solution by Graphene Nanosheets: Kinetic and Thermodynamic Studies. Int. J. Environ. Sci. Technol. 2015, 12, 2153–2160. [Google Scholar] [CrossRef]
- Mubashar, M.; Naveed, M.; Mustafa, A.; Ashraf, S.; Baig, K.S.; Alamri, S.; Siddiqui, M.H.; Zabochnicka-światek, M.; Szota, M.; Kalaji, H.M. Experimental Investigation of Chlorella Vulgaris and Enterobacter Sp. Mn17 for Decolorization and Removal of Heavy Metals from Textile Wastewater. Water 2020, 12, 3034. [Google Scholar] [CrossRef]
- Wang, X.X.; Wu, Y.H.; Zhang, T.Y.; Xu, X.Q.; Dao, G.H.; Hu, H.Y. Simultaneous Nitrogen, Phosphorous, and Hardness Removal from Reverse Osmosis Concentrate by Microalgae Cultivation. Water Res. 2016, 94, 215–224. [Google Scholar] [CrossRef]
- Monteiro, C.; Castro, P.; Malcata, F. Metal Uptake by Microalgae: Underlying Mechanisms and Practical Applications. Biotechnol. Prog. 2012, 28, 299–311. [Google Scholar] [CrossRef]
- Bishnoi, N.; Pant, A.; Nagpal, G. Biosorption of Copper from Aqueous Solution Using Algal Biomass. J. Sci. Ind. Res. 2004, 63, 813–816. [Google Scholar]
- Chanpiwat, P.; Sthiannopkao, S.; Kim, K.-W. Metal Content Variation in Wastewater and Biosludge from Bangkok’s Central Wastewater Treatment Plants. Microchem. J. 2010, 95, 326–332. [Google Scholar] [CrossRef]
Preliminary Experiment | ||||
---|---|---|---|---|
Parameter | Units | Initial | Final | Removal Efficiency, % |
pH | – | 5.6 | 9.3 | – |
Total P | mg P/L | 0.104 ± 0.002 | – | – |
Orthophosphates | mg P/L | 0.024 ± 0 | 0.018 ± 0 | 25 |
Nitrite | mg N/L | <0.005 | – | – |
Nitrate | mg N/L | 0.034 ± 0 | – | – |
TKN | mg N/L | 42.2 ± 1.83 | 3.03 ± 0.02 | 92.8 |
COD | mg O2/L | 1046.4 ± 10.39 | 62 ± 0.7 | 94.07 |
BOD | mg O2/L | 715.5 ± 4.9 | <4 | 99.4 |
TOC | mg C/l | – | – | – |
Suspended solid residue | mg/L | 184.5 ± 6.36 | 15 ± 0.7 | 91.8 |
Dry residue | mg/L | 1370.5 ± 13.4 | 974.5 ± 3.18 | 28.8 |
Ash | mg/L | 897.5 ± 4.94 | 312 ± 1.41 | 65.2 |
Experimental Samples | Control Samples | |||||
---|---|---|---|---|---|---|
Parameter | Units | Initial | Final | Removal Efficiency, % | Aerobic Control after 6 Weeks (without Algae) | Anaerobic Control after 6 Weeks (without Algae) |
pH | – | 6.63 | 9.4 | – | – | – |
Total P | mg P/L | 1.13 ± 0.01 | 0.547 ± 0.003 | 51.6 | 0.7 ± 0.008 | 0.68 ± 0.008 |
orthophosphates | mg P/L | 1.1 ± 0.01 | 0.141 ± 0.004 | 87.2 | 0.6 ± 0.04 | 0.29 ± 0.002 |
Nitrite | mg N/L | 0.15 ± 0.07 | 0.005 ± 0 | 96.7 | 0.065 ± 0.001 | 0.1415 ± 0.003 |
Nitrate | mg N/L | 1.59 ± 0.01 | 0.063 ± 0 | 96.0 | <0.02 | <0.02 |
TKN | mg N/L | 141 ± 1.4 | 62.05 ± 4.31 | 56.0 | 121 ± 2.82 | 125.5 ± 0.7 |
COD | mg O2/L | 8613 ± 5.0 | 541.5 ± 2.12 | 93.7 | 982 ± 4.24 | 5516 ± 24.04 |
BOD | mg O2/L | 4922 ± 3.5 | 93 ± 4.24 | 98.1 | 107.5 ± 4.9 | 5116 ± 22.6 |
TOC | mg C/l | 4461 ± 1.41 | 192 ± 2.83 | 95.7 | – | – |
Suspended solid Residue | mg/L | 413 ± 2.1 | <12 | 97.08 | 1757 ± 14.1 | 376.5 ± 4.9 |
Dry residue | mg/L | 15303 ± 35.5 | 1744 ± 23.3 | – | 708 ± 16.9 | 5865 ± 101.8 |
Ash | mg/L | 2240 ± 37.4 | 1285 ± 32.5 | – | 423 ± 4.24 | 1119 ± 16.9 |
Metal | Preliminary Experiment Initial Wastewater (mg/L) | Main Experiment Initial Wastewater (mg/L) | Main Experiment Wastewater after Algae Cultivation (mg/L) | Main Experiment Removal Efficiency, % |
---|---|---|---|---|
Ca | 14.95 | 16.62 | 2.88 | 82.7 |
Na | 7.16 | 3.24 | 26.20 | |
Cu | 0.005 | 0.0033 | 0.0028 | 15.1 |
Pb | – | – | – | – |
Cd | – | – | – | – |
Fe | 0.43 | 0.30 | 0.21 | 30 |
Mn | 0.07 | 0.17 | 0.004 | 97.6 |
Mg | 2.72 | 2.93 | 2.74 | 6.5 |
Zn | 0.06 | 0.009 | 0.01 | – |
K | 1.4 | 4.05 | 6.37 | – |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khakimova, N.; Maravić, N.; Davidović, P.; Blagojević, D.; Bečelić-Tomin, M.; Simeunović, J.; Pešić, V.; Šereš, Z.; Mandić, A.; Pojić, M.; et al. Sugar Beet Processing Wastewater Treatment by Microalgae through Biosorption. Water 2022, 14, 860. https://doi.org/10.3390/w14060860
Khakimova N, Maravić N, Davidović P, Blagojević D, Bečelić-Tomin M, Simeunović J, Pešić V, Šereš Z, Mandić A, Pojić M, et al. Sugar Beet Processing Wastewater Treatment by Microalgae through Biosorption. Water. 2022; 14(6):860. https://doi.org/10.3390/w14060860
Chicago/Turabian StyleKhakimova, Nadiia, Nikola Maravić, Petar Davidović, Dajana Blagojević, Milena Bečelić-Tomin, Jelica Simeunović, Vesna Pešić, Zita Šereš, Anamarija Mandić, Milica Pojić, and et al. 2022. "Sugar Beet Processing Wastewater Treatment by Microalgae through Biosorption" Water 14, no. 6: 860. https://doi.org/10.3390/w14060860
APA StyleKhakimova, N., Maravić, N., Davidović, P., Blagojević, D., Bečelić-Tomin, M., Simeunović, J., Pešić, V., Šereš, Z., Mandić, A., Pojić, M., & Mišan, A. (2022). Sugar Beet Processing Wastewater Treatment by Microalgae through Biosorption. Water, 14(6), 860. https://doi.org/10.3390/w14060860