A Review on Coagulation/Flocculation in Dewatering of Coal Slurry
Abstract
:1. Introduction
2. Coagulation
3. Flocculation
3.1. Cationic Polymers
3.2. Anionic Polymers
3.3. Nonionic Polymers
4. Role of Different Factors in Coal Slurry Flocculation Process Using Polymeric Flocculants
4.1. Composition of Coal Tailings
4.2. Effects of pH on the Performance of Polymeric Flocculants
4.3. Water Hardness
4.4. Properties of Polymers
4.5. Mixing Condition
5. Interaction Mechanism of Flocculants
5.1. Interaction Mechanism for Anionic Flocculants
5.2. Interaction Mechanism for Cationic Flocculants
5.3. Interaction Mechanism for Nonionic Flocculants
6. Combination of Coagulants and Flocculants
7. Efficient Selection of Flocculants
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Parton, W.J. Coal Washery Plants. Ind. Eng. Chem. 1947, 39, 646–652. [Google Scholar] [CrossRef]
- Murphy, C.; Bennett, C.; Olinger, G.; Cousins, B. Alternatives to coal mine tailings impoundment–evaluation of three dewatering methods at rockspring coal mine. Proc. Water Miner. Processing Seattle WA 2012, 301–309. [Google Scholar]
- ABS. Water Account Australia, 2008–2009; Australian Bureau of Statistics: Sydney, Australia, 2010. [Google Scholar]
- ABS. Water Supply and Use by Type. 4610.0 Water Account 2016-17; Released February 2019; Australian Bureau of Statistics: Sydney, Australia, 2019. [Google Scholar]
- Sarapulova, G.I.; Logunova, N.I. Local treatment of coal-water slurries from thermal power plants with the use of coagulants. Therm. Eng. 2015, 62, 293–298. [Google Scholar] [CrossRef]
- Fourie, A. Preventing catastrophic failures and mitigating environmental impacts of tailings storage facilities. Procedia Earth Planet. Sci. 2009, 1, 1067–1071. [Google Scholar] [CrossRef] [Green Version]
- Spain, A.; Tibbett, M. Coal mine tailings: Development after revegetation with salt-tolerant tree species. In Proceedings of the 2012 Seventh International Conference on Mine Closure, Brisbane, Australia, 25–27 September 2012; Australian Centre for Geomechanics: Crawley, Australia, 2012; pp. 583–594. [Google Scholar]
- Alam, N.; Ozdemir, O.; Hampton, M.A.; Nguyen, A.V. Dewatering of coal plant tailings: Flocculation followed by filtration. Fuel 2011, 90, 26–35. [Google Scholar] [CrossRef]
- Ofori, P.; Nguyen, A.V.; Firth, B.; McNally, C.; Hampton, M.A. The role of surface interaction forces and mixing in enhanced dewatering of coal preparation tailings. Fuel 2012, 97, 262–268. [Google Scholar] [CrossRef]
- Hogg, R.; Bunnaul, P.; Suharyono, H. Chemical and physical variables in polymer-induced flocculation. Min. Metall. Explor. 1993, 10, 81–85. [Google Scholar] [CrossRef]
- Leyes, E. Part 434-Coal mining point source category BPT, BAT, BCT limitations and new source performance standards. In Code of Federal Regulations, Parts 425 to 699, Revised as of 1 July 1993; US Goverment Printing: Washington, DC, USA, 1993; pp. 228–239. [Google Scholar]
- Lee, C.S.; Robinson, J.; Chong, M.F. A review on application of flocculants in wastewater treatment. Process Saf. Environ. Prot. 2014, 92, 489–508. [Google Scholar] [CrossRef]
- Joo, D.J.; Shin, W.S.; Choi, J.H.; Choi, S.J.; Kim, M.C.; Han, M.H.; Ha, T.W.; Kim, Y.H. Decolorization of reactive dyes using inorganic coagulants and synthetic polymer. Dye. Pigment. 2007, 73, 59–64. [Google Scholar] [CrossRef]
- Duan, J.; Gregory, J. Coagulation by hydrolysing metal salts. Adv. Colloid Interface Sci. 2003, 100, 475–502. [Google Scholar] [CrossRef]
- Coca, J.; Bueno, J.L.; Sastre, H. Zeta-Potential and the Effect of Coagulants on Coal Slurries. J. Chem. Eng. Jpn. 1983, 16, 335–338. [Google Scholar] [CrossRef] [Green Version]
- Osborne, D.G. Flocculant behaviour with coal—Shale slurries. Int. J. Miner. Processing 1974, 1, 243–260. [Google Scholar] [CrossRef]
- Sarika, R.; Kalogerakis, N.; Mantzavinos, D. Treatment of olive mill effluents: Part II. Complete removal of solids by direct flocculation with poly-electrolytes. Environ. Int. 2005, 31, 297–304. [Google Scholar] [CrossRef]
- Shewa, W.A.; Dagnew, M. Revisiting Chemically Enhanced Primary Treatment of Wastewater: A Review. Sustainability 2020, 12, 5928. [Google Scholar] [CrossRef]
- Smith-Palmer, T.; Pelton, R. Flocculation of particles. In Encyclopedia of Surface and Colloid Science; CRC Press: Boca Raton, FL, USA, 2015; pp. 2761–2776. [Google Scholar]
- Suopajärvi, T.; Liimatainen, H.; Hormi, O.; Niinimäki, J. Coagulation–flocculation treatment of municipal wastewater based on anionized nanocelluloses. Chem. Eng. J. 2013, 231, 59–67. [Google Scholar] [CrossRef]
- Yevmenova, G.; Baichenko, A. Raising effectiveness of polymeric flocculants for coal slime aggregation. J. Min. Sci. 2000, 36, 518–522. [Google Scholar] [CrossRef]
- Sharma, B.R.; Dhuldhoya, N.C.; Merchant, U.C. Flocculants—An Ecofriendly Approach. J. Polym. Environ. 2006, 14, 195–202. [Google Scholar] [CrossRef]
- Wang, C.; Harbottle, D.; Liu, Q.; Xu, Z. Current state of fine mineral tailings treatment: A critical review on theory and practice. Miner. Eng. 2014, 58, 113–131. [Google Scholar] [CrossRef]
- O’Shea, J.P.; Qiao, G.G.; Franks, G.V. Solid-liquid separations with a temperature-responsive polymeric flocculant: Effect of temperature and molecular weight on polymer adsorption and deposition. J Colloid Interface Sci 2010, 348, 9–23. [Google Scholar] [CrossRef] [PubMed]
- Bolto, B.; Gregory, J. Organic polyelectrolytes in water treatment. Water Res. 2007, 41, 2301–2324. [Google Scholar] [CrossRef] [PubMed]
- Boshrouyeh Ghandashtani, M.; Costine, A.; Edraki, M.; Baumgartl, T. The impacts of high salinity and polymer properties on dewatering and structural characteristics of flocculated high-solids tailings. J. Clean. Prod. 2022, 342, 130726. [Google Scholar] [CrossRef]
- Witecki, K.; Polowczyk, I.; Kowalczuk, P.B. Chemistry of wastewater circuits in mineral processing industry—A review. J. Water Process Eng. 2022, 45, 102509. [Google Scholar] [CrossRef]
- Zhou, Y.; Franks, G.V. Flocculation mechanism induced by cationic polymers investigated by light scattering. Langmuir 2006, 22, 6775–6786. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.; Bu, X.; Alheshibri, M.; Zhan, H.; Xie, G. Floc structure and dewatering performance of kaolin treated with cationic polyacrylamide degraded by hydrodynamic cavitation. Chem. Eng. Commun. 2021, 1–11. [Google Scholar] [CrossRef]
- Patra, A.S.; Patra, P.; Chowdhury, S.; Mukherjee, A.K.; Pal, S. Cationically functionalized amylopectin as an efficient flocculant for treatment of coal suspension. Colloids Surf. A Physicochem. Eng. Asp. 2020, 586, 124229. [Google Scholar] [CrossRef]
- Vajihinejad, V.; Gumfekar, S.P.; Bazoubandi, B.; Rostami Najafabadi, Z.; Soares, J.B. Water soluble polymer flocculants: Synthesis, characterization, and performance assessment. Macromol. Mater. Eng. 2019, 304, 1800526. [Google Scholar] [CrossRef] [Green Version]
- Chen, R.; Fan, Y.; Dong, X.; Ma, X.; Feng, Z.; Chang, M.; Li, N. Impact of pH on interaction between the polymeric flocculant and ultrafine coal with atomic force microscopy (AFM). Colloids Surf. A Physicochem. Eng. Asp. 2021, 622, 126698. [Google Scholar] [CrossRef]
- Jewell, R.J.; Fourie, A.B. Paste and Thickened Tailings: A Guide; Australian Centre for Geomechanics, The University of Western Australia: Crawley, Australia, 2006. [Google Scholar]
- Chen, Q.; Tao, Y.; Zhang, Q.; Qi, C. The rheological, mechanical and heavy metal leaching properties of cemented paste backfill under the influence of anionic polyacrylamide. Chemosphere 2022, 286, 131630. [Google Scholar] [CrossRef]
- Fan, Y.; Ma, X.; Dong, X.; Song, S.; Chen, R.; Dong, Y. Effect of shear-induced breakage and reflocculation on the floc structure, settling, and dewatering of coal tailings. Physicochem. Probl. Miner. Processing 2020, 56, 363–373. [Google Scholar] [CrossRef]
- Li, X. Selective flocculation performance of amphiphilic quaternary ammonium salt in kaolin and bentonite suspensions. Colloids Surf. A Physicochem. Eng. Asp. 2022, 636, 128140. [Google Scholar] [CrossRef]
- Fijałkowska, G.; Wiśniewska, M.; Szewczuk-Karpisz, K. Adsorption and electrokinetic studies in kaolinite/anionic polyacrylamide/chromate ions system. Colloids Surf. A Physicochem. Eng. Asp. 2020, 603, 125232. [Google Scholar] [CrossRef]
- Mpofu, P.; Addai-Mensah, J.; Ralston, J. Investigation of the effect of polymer structure type on flocculation, rheology and dewatering behaviour of kaolinite dispersions. Int. J. Miner. Processing 2003, 71, 247–268. [Google Scholar] [CrossRef]
- Witham, M.; Grabsch, A.; Owen, A.; Fawell, P. The effect of cations on the activity of anionic polyacrylamide flocculant solutions. Int. J. Miner. Processing 2012, 114, 51–62. [Google Scholar] [CrossRef]
- Pimpalkar, S.N.; Suresh, N.; Singh, G. Flocculation studies on high-ash coal slurry for improved clarification of water. Int. J. Environ. Sci. Technol. 2021, 1–22. [Google Scholar] [CrossRef]
- Fan, Y.; Ma, X.; Dong, X.; Feng, Z.; Dong, Y. Characterisation of floc size, effective density and sedimentation under various flocculation mechanisms. Water Sci. Technol. 2020, 82, 1261–1271. [Google Scholar] [CrossRef]
- Tao, D.; Parekh, B.K.; Liu, J.T.; Chen, S. An investigation on dewatering kinetics of ultrafine coal. Int. J. Miner. Processing 2003, 70, 235–249. [Google Scholar] [CrossRef]
- Tao, D.; Groppo, J.; Parekh, B. Enhanced ultrafine coal dewatering using flocculation filtration processes. Miner. Eng. 2000, 13, 163–171. [Google Scholar] [CrossRef]
- Tao, D.; Groppo, J.; Parekhm, B. Effects of vacuum filtration parameters on ultrafine coal dewatering. Coal Perparation 2000, 21, 315–335. [Google Scholar] [CrossRef]
- Parekh, B.K. Dewatering of fine coal and refuse slurries-problems and possibilities. Procedia Earth Planet. Sci. 2009, 1, 621–626. [Google Scholar] [CrossRef] [Green Version]
- Ofori, P.; Nguyen, A.V.; Firth, B.; McNally, C.; Ozdemir, O. Shear-induced floc structure changes for enhanced dewatering of coal preparation plant tailings. Chem. Eng. J. 2011, 172, 914–923. [Google Scholar] [CrossRef]
- Ghernaout, D.; Ghernaout, B. Sweep flocculation as a second form of charge neutralisation—A review. Desalination Water Treat. 2012, 44, 15–28. [Google Scholar] [CrossRef]
- Sabah, E.; Cengiz, I. An evaluation procedure for flocculation of coal preparation plant tailings. Water Res. 2004, 38, 1542–1549. [Google Scholar] [CrossRef] [PubMed]
- Lin, Z.; Li, P.; Hou, D.; Kuang, Y.; Wang, G. Aggregation Mechanism of Particles: Effect of Ca2+ and Polyacrylamide on Coagulation and Flocculation of Coal Slime Water Containing Illite. Minerals 2017, 7, 30. [Google Scholar] [CrossRef]
- Xu, Z.; Liu, J.; Choung, J.; Zhou, Z. Electrokinetic study of clay interactions with coal in flotation. Int. J. Miner. Processing 2003, 68, 183–196. [Google Scholar] [CrossRef]
- Zhang, M.; Liu, J.; Wang, Y. Effects of water hardness on the dispersion of fine coal and kaolinite in coal slurry. J. China Coal Soc. 2008, 9, 1058–1063. [Google Scholar]
- Gui, X.; Xing, Y.; Rong, G.; Cao, Y.; Liu, J. Interaction forces between coal and kaolinite particles measured by atomic force microscopy. Powder Technol. 2016, 301, 349–355. [Google Scholar] [CrossRef]
- Clark, A.Q.; Herrington, T.M.; Petzold, J.C. The flocculation of kaolin suspensions with anionic polyacrylamides of varying molar mass and anionic character. Colloids Surf. 1990, 44, 247–261. [Google Scholar] [CrossRef]
- De Kretser, R.G. The Rheological Properties and De-Watering of Slurried Coal Mine Tailings; University of Melbourne: Parkville, Australia, 1995. [Google Scholar]
- Richardson, P.; Connelly, L. Industrial coagulants and flocculants. In Reagents in Mineral Technology; Routledge: London, UK, 1988; pp. 519–558. [Google Scholar]
- Hogg, R. Flocculation and dewatering. Int. J. Miner. Processing 2000, 58, 223–236. [Google Scholar] [CrossRef]
- Scheiner, B.; Wilemon, G. Applied flocculation efficiency: A comparison of polyethylene oxide and polyacrylamides. Flocculation Biotechnol. Sep. Syst. 1987, 4, 175–185. [Google Scholar]
- Peng, F.F.; Di, P. Effect of multivalent salts—Calcium and aluminum on the flocculation of kaolin suspension with anionic polyacrylamide. J. Colloid Interface Sci. 1994, 164, 229–237. [Google Scholar] [CrossRef]
- Somasundaran, P.; Chia, Y.H.; Gorelik, R. Adsorption of polyacrylamides on kaolinite and its flocculation and stabilization. In Polymer Adsorption and Dispersion Stability; American Chemical Society: Washington, DC, USA, 1984; pp. 393–410. [Google Scholar] [CrossRef]
- Taylor, M.L.; Morris, G.E.; Self, P.G.; Smart, R.S. Kinetics of adsorption of high molecular weight anionic polyacrylamide onto kaolinite: The flocculation process. J. Colloid. Interface Sci. 2002, 250, 28–36. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.-Q.; Liu, Q.; Liu, J.-T. Extended DLVO theory applied to coal slime-water suspensions. J. Cent. South Univ. 2012, 19, 3558–3563. [Google Scholar] [CrossRef]
- Żbik, M.; Horn, R.G. Hydrophobic attraction may contribute to aqueous flocculation of clays. Colloids Surf. A Physicochem. Eng. Asp. 2003, 222, 323–328. [Google Scholar] [CrossRef]
- Olphen, H.V. An Introduction to Clay Colloid Chemistry. J. Pharm. Sci. 1963, 53, 230. [Google Scholar] [CrossRef]
- Baichenko, A.A.; Mel’tinisov, M.; Galina, G.; Ivanova, T. Study of flocculation of coal-clay suspensions from hydraulic minin. Sov. Min. 1989, 25, 292–296. [Google Scholar] [CrossRef]
- Sabah, E.; Erkan, Z.E. Interaction mechanism of flocculants with coal waste slurry. Fuel 2006, 85, 350–359. [Google Scholar] [CrossRef]
- DoymuŞ, K. The effect of ionic electrolytes and pH on the zeta potential of fine coal particles. Turk. J. Chem. 2007, 31, 589–597. [Google Scholar]
- Johnson, S.B.; Franks, G.V.; Scales, P.J.; Boger, D.V.; Healy, T.W. Surface chemistry–rheology relationships in concentrated mineral suspensions. Int. J. Miner. Processing 2000, 58, 267–304. [Google Scholar] [CrossRef]
- Nasser, M.; James, A. Settling and sediment bed behaviour of kaolinite in aqueous media. Sep. Purif. Technol. 2006, 51, 10–17. [Google Scholar] [CrossRef]
- Tjipangandjara, K.; Somasundaran, P. Effects of the conformation of polyacrylic acid on the dispersion-flocculation of alumina and kaolinite fines. Adv. Powder Technol. 1992, 3, 119–127. [Google Scholar] [CrossRef]
- Kumar, S.; Bhattacharya, S.; Mandre, N. Characterization and flocculation studies of fine coal tailings. J. South. Afr. Inst. Min. Metall. 2014, 114, 945–949. [Google Scholar]
- Besra, L.; Sengupta, D.; Roy, S.; Ay, P. Influence of polymer adsorption and conformation on flocculation and dewatering of kaolin suspension. Sep. Purif. Technol. 2004, 37, 231–246. [Google Scholar] [CrossRef]
- Ciftci, H.; Isık, S. Settling characteristics of coal preparation plant fine tailings using anionic polymers. Korean J. Chem. Eng. 2017, 34, 2211–2217. [Google Scholar] [CrossRef]
- Kamble, S.; Agrawal, S.; Cherumukkil, S.; Sharma, V.; Jasra, R.V.; Munshi, P. Revisiting Zeta Potential, the Key Feature of Interfacial Phenomena, with Applications and Recent Advancements. ChemistrySelect 2022, 7, e202103084. [Google Scholar] [CrossRef]
- Gregory, J. Rates of flocculation of latex particles by cationic polymers. J. Colloid Interface Sci. 1973, 42, 448–456. [Google Scholar] [CrossRef]
- Das, B.; Prakash, S.; Biswal, S.; Reddy, P. Settling characteristics of coal washery tailings using synthetic polyelectrolytes with fine magnetite. J. -South Afr. Inst. Min. Metall. 2006, 106, 707. [Google Scholar]
- Zhang, Z.; Nong, H.; Zhuang, L.; Liu, J. Effect of water hardness on the settling characteristics of coal tailings. Energy Sources Part A Recovery Util. Environ. Eff. 2017, 39, 1317–1322. [Google Scholar] [CrossRef]
- Yarar, B. Evaluation of flocculation and filtration procedures applied to WSRC sludge. In Report No: WSRC-TR-2001–00213; Colorado School of Mines: Golden, CO, USA, 2001; pp. 1–34. [Google Scholar]
- Alamgir, A.; Harbottle, D.; Masliyah, J.; Xu, Z. Al-PAM assisted filtration system for abatement of mature fine tailings. Chem. Eng. Sci. 2012, 80, 91–99. [Google Scholar] [CrossRef]
- Friend, J.; Kitchener, J. Some physico—chemical aspects of the separation of finely-divided minerals by selective flocculation. Chem. Eng. Sci. 1973, 28, 1071–1080. [Google Scholar] [CrossRef]
- Ersoy, B. Effect of pH and polymer charge density on settling rate and turbidity of natural stone suspensions. Int. J. Miner. Processing 2005, 75, 207–216. [Google Scholar] [CrossRef]
- Nasser, M.; James, A. Effect of polyacrylamide polymers on floc size and rheological behaviour of kaolinite suspensions. Colloids Surf. A: Physicochem. Eng. Asp. 2007, 301, 311–322. [Google Scholar] [CrossRef]
- Alagha, L.; Wang, S.; Yan, L.; Xu, Z.; Masliyah, J. Probing adsorption of polyacrylamide-based polymers on anisotropic Basal planes of kaolinite using quartz crystal microbalance. Langmuir 2013, 29, 3989–3998. [Google Scholar] [CrossRef]
- Oruç, F.; Sabah, E. Effect of mixing conditions on flocculation performance of fine coal tailings. In Proceedings of the XXIII International Mineral Processing Congress, Turkey, Istanbul, 3–8 September 2006; pp. 3–8. [Google Scholar]
- Gustafsson, J.; Nordenswan, E.; Rosenholm, J.B. Effect of pH on the sedimentation, ζ-potential, and rheology of anatase suspensions. Colloids Surf. A Physicochem. Eng. Asp. 2003, 212, 235–247. [Google Scholar] [CrossRef]
- Gregory, J.; O’Melia, C.R. Fundamentals of flocculation. Crit. Rev. Environ. Control 1989, 19, 185–230. [Google Scholar] [CrossRef]
- Bajpai, M.; Katoch, S.S.; Kadier, A.; Singh, A. A review on electrocoagulation process for the removal of emerging contaminants: Theory, fundamentals, and applications. Environ Sci. Pollut. Res. 2022, 29, 15252–15281. [Google Scholar] [CrossRef] [PubMed]
- Pearse, M.; Barnett, J. Chemical treatments for thickening and filtration. Filtr. Sep. 1980, 17, 465–468. [Google Scholar]
- Werneke, M. Application of Synthetic Polymers in Coal Preparation; Society of Mining Engineering of AIME: Englewood, CO, USA, 1979; pp. 79–106. [Google Scholar]
- Caskey, J.; Primus, R. The effect of anionic polyacrylamide molecular conformation and configuration on flocculation effectiveness. Environ. Prog. 1986, 5, 98–103. [Google Scholar] [CrossRef]
- Tyulenev, M.; Evmenova, G.; Evmenov, S.; Zhironkin, S.; Khoreshok, A.; Vöth, S.; Cehlár, M.; Nuray, D.; Janocko, J.; Anyona, S.; et al. Slurry Water Regeneration after Hydraulic Mining. E3S Web Conf. 2018, 41, 01019. [Google Scholar] [CrossRef]
- Razali, M.A.A.; Ahmad, Z.; Ahmad, M.; Ariffin, A. Treatment of pulp and paper mill wastewater with various molecular weight of polyDADMAC induced flocculation. Chem. Eng. J. 2011, 166, 529–535. [Google Scholar] [CrossRef]
- Reuter, J.; Hartan, H. Structure and reaction kinetics of polyelectrolytes and their use in solid-liquid processing. Aufbereit. Tech. 1986, 11, 598–606. [Google Scholar]
- Duong, C.; Choung, J.; Xu, Z.; Szymanski, J. A novel process for recovering clean coal and water from coal tailings. Description 2000, 13, 173–181. [Google Scholar] [CrossRef]
- Biggs, S.; Habgood, M.; Jameson, G.J. Aggregate structures formed via a bridging flocculation mechanism. Chem. Eng. J. 2000, 80, 13–22. [Google Scholar] [CrossRef]
- Lee, K.E.; Morad, N.; Teng, T.T.; Poh, B.T. Development, characterization and the application of hybrid materials in coagulation/flocculation of wastewater: A review. Chem. Eng. J. 2012, 203, 370–386. [Google Scholar] [CrossRef]
- Yu, X.; Somasundaran, P. Role of polymer conformation in interparticle-bridging dominated flocculation. J. Colloid Interface Sci. 1996, 177, 283–287. [Google Scholar] [CrossRef] [Green Version]
- Sher, F.; Malik, A.; Liu, H. Industrial polymer effluent treatment by chemical coagulation and flocculation. J. Environ. Chem. Eng. 2013, 1, 684–689. [Google Scholar] [CrossRef]
- Ersoy, B. Description of flocculants used in cleaning of waste water of marble processing plant. In Proceedings of the 4th Marble Symposium, Chamber of Mining Engineers. Turkey, Istanbul, January 2003; pp. 449–462. [Google Scholar]
- Maćczak, P.; Kaczmarek, H.; Ziegler-Borowska, M. Recent Achievements in Polymer Bio-Based Flocculants for Water Treatment. Materials 2020, 13, 3951. [Google Scholar] [CrossRef]
- Liang, L.; Peng, Y.; Tan, J.; Xie, G. A review of the modern characterization techniques for flocs in mineral processing. Miner. Eng. 2015, 84, 130–144. [Google Scholar] [CrossRef]
- Angle, C.W.; Smith-Palmer, T.; Wentzell, B.R. The effects of cationic polymers on flocculation of a coal thickener feed in washery water as a function of pH. J. Appl. Polym. Sci. 1997, 64, 783–789. [Google Scholar] [CrossRef]
- Blanco, A.; Fuente, E.; Negro, C.; Tijero, J. Flocculation monitoring: Focused beam reflectance measurement as a measurement tool. Can. J. Chem. Eng. 2002, 80, 734–740. [Google Scholar] [CrossRef]
- Foshee, W.; Swan, M.; Klimpel, R. Improvement in coal preparation-water clarification through polymer flocculation. Min. Eng. 1982, 34, 5240779. [Google Scholar]
- Chen, R.; Dong, X.; Fan, Y.; Ma, X.; Dong, Y.; Chang, M. Interaction between STAC and coal/kaolinite in tailing dewatering: An experimental and molecular-simulation study. Fuel 2020, 279, 118224. [Google Scholar] [CrossRef]
- Kumar, A.; Tewary, B.; Banerjee, M.; Ahmad, M. A simplified approach for removal of suspended coal fines from black water discharge of mining and its allied industries. J. Mines Met. Fuels 2010, 58, 346–348. [Google Scholar]
- Sabah, E.; Yüzer, H.; Celik, M. Characterization and dewatering of fine coal tailings by dual-flocculant systems. Int. J. Miner. Processing 2004, 74, 303–315. [Google Scholar] [CrossRef]
- Chong, M.F. Direct flocculation process for wastewater treatment. In Advances in Water Treatment and Pollution Prevention; Springer: Berlin/Heidelberg, Germany, 2012; pp. 201–230. [Google Scholar]
- Radoiu, M.T.; Martin, D.I.; Calinescu, I.; Iovu, H. Preparation of polyelectrolytes for wastewater treatment. J. Hazard. Mater. 2004, 106, 27–37. [Google Scholar] [CrossRef]
- Nguyen, C.V.; Nguyen, A.V.; Doi, A.; Dinh, E.; Nguyen, T.V.; Ejtemaei, M.; Osborne, D. Advanced solid-liquid separation for dewatering fine coal tailings by combining chemical reagents and solid bowl centrifugation. Sep. Purif. Technol. 2021, 259, 118172. [Google Scholar] [CrossRef]
- Mamghaderi, H.; Aghababaei, S.; Gharabaghi, M.; Noaparast, M.; Albijanic, B.; Rezaei, A. Investigation on the effects of chemical pretreatment on the iron ore tailing dewatering. Colloids Surf. A Physicochem. Eng. Asp. 2021, 625, 126855. [Google Scholar] [CrossRef]
- Leiva, W.H.; Piceros, E.; Robles, P.; Jeldres, R.I. Impact of hydrodynamic conditions on the structure of clay-based tailings aggregates flocculated in freshwater and seawater. Miner. Eng. 2022, 176, 107313. [Google Scholar] [CrossRef]
- Konduri, M.K.; Fatehi, P. Influence of pH and ionic strength on flocculation of clay suspensions with cationic xylan copolymer. Colloids Surf. A Physicochem. Eng. Asp. 2017, 530, 20–32. [Google Scholar] [CrossRef]
- Bulaeva, A.M. Efficient selection of flocculants-the key to success. In Proceedings of the XVIII International Coal Preparation Congress, Saint Petersburg, Russia, 28 June–1 July 2016; Springer: Cham, Switzerland, 2016; pp. 985–989. [Google Scholar]
- Somasundaran, P.; Moudgil, B.M. Reagents in Mineral Technology. Marcel Dekker 1988, 27, 765. [Google Scholar] [CrossRef]
- Zou, W.; Zhao, J.; Sun, C. Adsorption of Anionic Polyacrylamide onto Coal and Kaolinite Calculated from the Extended DLVO Theory Using the van Oss-Chaudhury-Good Theory. Polymers 2018, 10, 113. [Google Scholar] [CrossRef] [Green Version]
- Özdemir, N.; Özgen, S.; Sabah, E. Modeling and Optimization of the Flocculation Process of Multi-Component Coal Waste Slurry Using Hybrid Polymer. Int. J. Coal Prep. Util. 2021, 1–15. [Google Scholar] [CrossRef]
- Fuchida, S.; Tajima, S.; Nishimura, T.; Tokoro, C. Kinetic Modeling and Mechanisms of Manganese Removal from Alkaline Mine Water Using a Pilot Scale Column Reactor. Minerals 2022, 12, 99. [Google Scholar] [CrossRef]
- Gomes, F.P.; Barreto, M.S.C.; Amoozegar, A.; Alleoni, L.R.F. Immobilization of lead by amendments in a mine-waste impacted soil: Assessing Pb retention with desorption kinetic, sequential extraction and XANES spectroscopy. Sci. Total Environ. 2022, 807, 150711. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Dong, Y.; Zhao, J.; Gong, B.; Meng, Z.; Lin, J. Combined Treatments of Underground Coal Slurry: Laboratory Testing and Field Application. Water 2021, 13, 3047. [Google Scholar] [CrossRef]
- Igwegbe, C.A.; Onukwuli, O.D.; Ighalo, J.O.; Umembamalu, C.J.; Adeniyi, A.G. Comparative analysis on the electrochemical reduction of colour, COD and turbidity from municipal solid waste leachate using aluminium, iron and hybrid electrodes. Sustain. Water Resour. Manag. 2021, 7, 39. [Google Scholar] [CrossRef]
- Igwegbe, C.A.; Onukwuli, O.D.; Ighalo, J.O.; Umembamalu, C.J. Electrocoagulation-flocculation of aquaculture effluent using hybrid iron and aluminium electrodes: A comparative study. Chem. Eng. J. Adv. 2021, 6, 100107. [Google Scholar] [CrossRef]
- Jabbar, K.Q.; Barzinjy, A.A.; Hamad, S.M. Iron oxide nanoparticles: Preparation methods, functions, adsorption and coagulation/flocculation in wastewater treatment. Environ. Nanotech. Monit. Manag. 2022, 17, 100661. [Google Scholar] [CrossRef]
Pollutant or Pollutant Property | Maximum for Any One Day 1 (mg/L) | Average of Daily Values for 30 Consecutive Days (mg/L) |
---|---|---|
Total Iron | 7.0 | 3.5 |
Total Manganese | 4.0 | 2.0 |
Total suspended solids | 70 | 35 |
pH | Nl 2 | nl 2 |
Chemical Material | Coagulants | ||||
---|---|---|---|---|---|
FeCl3 | Lime | Alum | PACL | Fe2(SO4)3 | |
Price, €/tonne | 250–450 | 130 | 175–200 | 250–400 | 250–350 |
Chemical Material | Anionic Flocculants | Cationic Flocculants | ||
---|---|---|---|---|
AN 934 | FLOCAN | FO-4350 | FO-4700 | |
Price, €/tonne | 2550 | 2500 | 2800 | 2980 |
Flocculant Name | Charge Type | Molecular Weight | Parameter | Optimum Results | Reference |
---|---|---|---|---|---|
Magnifloc 591-C | Cationic | 200,000 relative molecular weight | Suspended solids | 98.7% removal | [93] |
Superfloc 218 plus | Anionic | 1,000,000 relative molecular weight | 64.7% removal | ||
Superfloc 127 plus | Nonionic | 1,000,000 relative molecular weight | 88.2% removal | ||
Magnafloc 525 | Anionic | Low-medium | Max Sedimentation rate | 0.41 cm/s | [90] |
Magnafloc 1440 | Cationic | High | 0.55 cm/s | ||
Magnafloc 5250 | Anionic | Low | Change in volume of the sediment bed | [8] | |
Magnafloc LT425 | Cationic | Low | |||
Praestol 2540 | Anionic | Medium | Optimum sedimentation rate at special dosage | 450 mm/min | [72] |
Praestol 2515 | Anionic | Low | 400 mm/min | ||
Magnofloc 351 | Nonionic | - | 130 mm/min | ||
Praestol 857 BS | Cationic | High | 50 mm/min | ||
CMX | Cationic | 102,000 g/mol | Removal of 75% Kaolin & removal of 96% bentonite | [112] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khazaie, A.; Mazarji, M.; Samali, B.; Osborne, D.; Minkina, T.; Sushkova, S.; Mandzhieva, S.; Soldatov, A. A Review on Coagulation/Flocculation in Dewatering of Coal Slurry. Water 2022, 14, 918. https://doi.org/10.3390/w14060918
Khazaie A, Mazarji M, Samali B, Osborne D, Minkina T, Sushkova S, Mandzhieva S, Soldatov A. A Review on Coagulation/Flocculation in Dewatering of Coal Slurry. Water. 2022; 14(6):918. https://doi.org/10.3390/w14060918
Chicago/Turabian StyleKhazaie, Atousa, Mahmoud Mazarji, Bijan Samali, Dave Osborne, Tatiana Minkina, Svetlana Sushkova, Saglara Mandzhieva, and Alexander Soldatov. 2022. "A Review on Coagulation/Flocculation in Dewatering of Coal Slurry" Water 14, no. 6: 918. https://doi.org/10.3390/w14060918
APA StyleKhazaie, A., Mazarji, M., Samali, B., Osborne, D., Minkina, T., Sushkova, S., Mandzhieva, S., & Soldatov, A. (2022). A Review on Coagulation/Flocculation in Dewatering of Coal Slurry. Water, 14(6), 918. https://doi.org/10.3390/w14060918