Water Supply Management Index: Leon, Guanajuato, Mexico
Abstract
:1. Introduction
2. Methodology
- Information was collected on performance indicators, which were grouped into the components listed in Table 1;
- Based on the approach of these five components, a multi-criteria analysis (AHP) was applied to determine the importance of each component;
- Then, FL theory was applied to determine the trends and/or evolution of the different indicators. R software (Core Team, 2020) was used for this analysis;
- Finally, the AHP and FL methodologies were combined to integrate the Water Supply Management Index in order to evaluate the current situation of water resources from an integrated approach.
Components | Indicators | Less than | Between | Greater than | Information Source |
---|---|---|---|---|---|
Quantity | Potable water coverage (PWC) (%) | 85 | 85–95 | 95 | [22] |
Micrometering (Mimed) (%) | 35 | 35–85 | 85 | ||
Macrometering (Mamed) (%) | 50 | 50–90 | 90 | ||
Endowment (Edt) (l/inhab/day) | 160 | 160–350 | 350 | ||
Physical efficiency (PE) (%) | 40 | 40–80 | 80 | ||
Quality | Sewage coverage (SC) (%) | 75 | 75–95 | 95 | [22] |
Treated volume (TV) (%) | 30 | 30–80 | 80 | [22] | |
Water disinfection (WD) (%) | 84 | 84–97 | 97 | [23] | |
Water quality, potability (WQP) (%) | 85 | 85–100 | 100 | ||
Reliability and Continuity | 24 h service outlets (HSO) (%) | 35 | 35–95 | 95 | [22] |
Hours in zones with intermittent supply (HZI) (h) | 6.5 | 6.5–16.5 | 16.5 | ||
User expectations | Average water service fee for domestic use (AWD) ($/m3) | 0 | 0–14 | 14 | [24] |
Cost recovery of the services provided | Work relation (WR) (%) | 80 | 80–130 | 130 | [22] |
Net benefit per m3 (NB) | 0 | 0–3 | 3 | [25] | |
Cost–price relation (C-P) | 1 | 1–10 | 10 | [22] |
2.1. SAPAL
2.2. The Analytic Hierarchy Process [AHP]
2.3. Fuzzy Logic [FL]
3. Results
3.1. AHP
3.2. Data Analysis Using Fuzzy Logic
3.2.1. Physical Efficiency Indicator
3.2.2. Water Endowment Indicator
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- ONU (United Nations Organization). The Sustainable Development Goals Report 2018; United Nations: New York, NY, USA, 2018; Available online: https://unstats.un.org/sdgs/?aspxerrorpath=/sdgs/report/2018 (accessed on 13 February 2022).
- WWAP (UNESCO World Water Assessment Programme). United Nations World Water Development Report: Leaving No One Behind 2019; UNESCO: Mexico City, Mexico, 2019; Available online: https://en.unesco.org/themes/water-security/wwap/wwdr/2019#download (accessed on 13 February 2022).
- Jiménez, B.; Torregrosa, M.; Aboites, L. Water in Mexico: Channels and Channels; Mexican Academy of Sciences: Mexico City, Mexico, 2010; Available online: https://sswm.info/sites/default/files/reference_attachments/JIM%C3%89NEZ%20et%20al%202010.%20Agua%20en%20M%C3%A9xico%20cauces%20y%20encauces.pdf (accessed on 13 February 2022).
- CONAGUA (National Water Commission). National Water Program. National Development Plan; Secretaría de Medio Ambiente y Recursos Naturales: Mexico City, Mexico, 2010. [Google Scholar]
- DOF (Official Journal of the Federation. National) Development Plan (2019–2024). Government of Mexico, 4–70. Available online: http://www.dof.gob.mx/nota_detalle.php?codigo=5565599&fecha=12/07/2019 (accessed on 13 February 2022).
- Flores, F.; Rodríguez, M.; Alcocer, V. Priority Management Indicators in Water Utilities, Mexico; Mexican Institute of Water Technology: Jiutepec, Mexico, 2012; Available online: http://www.pigoo.gob.mx/Informes/HC12061_INDICADORESDEGESTIONPRIORITARIOSENORGANISMOSOPERADORES.pdf (accessed on 13 February 2022).
- Tagle, D.; Caldera, A. Neoliberal corporatization in water management in Mexico. Lessons from Leon, Guanajuato. Technol. Water Sci. 2021, 12, 207–271. [Google Scholar] [CrossRef]
- Flores, H. Evaluation of the Impacts of Industrialization in the Bajío of Guanajuato. Ph.D. Thesis, University of Guanajuato, Mexico, 14 October 2019; pp. 1–313. [Google Scholar]
- García, M. Analysis of sustainable development in local areas. Application of fuzzy set theory. Soc. Sci. 2016, 54, 173–197. [Google Scholar]
- Greco, S.; Ishizaka, A.; Tasiou, M.; Torrisi, G. On the Methodological Framework of Composite Indices: A Review of the Issues of Weighting, Aggregation, and Robustness. Soc. Indic. Res. 2019, 141, 61–94. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez, F. Human Development Reports; United Nations Development Programme: New York, NY, USA, 2010. [Google Scholar]
- Preciado, M.; Güitrón, A.; Hidalgo, A. Application of the WSI Sustainability Index in the Lerma-Chapala Basin. Technol. Water Sci. 2013, 4, 93–113. [Google Scholar]
- Juwana, I. Development of a Water Sustainability Index for West Java, Indonesia. Ph.D. Thesis, University Victoria, Footscray, Australia, 2012. [Google Scholar]
- Sandoval, S.; McKinney, D.; Loucks, D.P. Sustainability Index for Water Resources Planning and Management. J. Water Resour. Plan. Manag. 2011, 137, 381–390. [Google Scholar] [CrossRef] [Green Version]
- Chaves, H.; Alipaz, S. An integrated indicator based on basin hydrology, environment, life, and policy: The Watershed Sustainability Index. Water Resour. Manag. 2007, 21, 883–895. [Google Scholar] [CrossRef]
- Esty, D.C.; Levy, M.; Srebotnjak, T.; de Sherbinin, A. Environmental Sustainability Index: Benchmarking National Environmental Stewardship; Yale University: New Haven, CT, USA, 2005; p. 102. [Google Scholar]
- Lawrence, P.; Meigh, J.; Sullivan, C. The Water Poverty Index: An International Comparison. Available online: https://www.researchgate.net/publication/235737531_The_Water_Povery_Index_an_International_Comparison (accessed on 13 February 2022).
- Policy Research Initiative. Canadian Water Sustainability Index. Available online: https://www.canada.ca/en/environment-climate-change/services/environmental-indicators/water.html (accessed on 13 February 2022).
- Sullivan, C. Calculating a Water Poverty Index. World Development. Water supply Tariff Information System (SITAP) 2002. Volume 30, pp. 1195–1210. Available online: https://www.ircwash.org/sites/default/files/Sullivan-2002-Water_0.pdf (accessed on 13 February 2022).
- OCDE. Towards Sustainable Development Environmental Indicators; OCDE: París, France, 1998. [Google Scholar]
- Buenfil, M.; Gutiérrez, M.; Ruiz, J.T.; Noria, G. Guide to Water Utility. Water Supply, Sewerage and Sanitation. 2009. Available online: https://agua.org.mx/biblioteca/guia-para-organismos-operadores-agua-potable-alcantarillado-ysaneamiento/ (accessed on 13 February 2022).
- Hansen, M.; Rodríguez, J. Priority Management Indicators in Water Utilities; Final report HC1915.1. Coordination and Sub-coordination of Urban Hydraulics; IMTA: Progresso, Mexico, 2019; pp. 1–124. Available online: http://www.pigoo.gob.mx/rep/InformeHC1915_PIGOO_Ed_2019.pdf (accessed on 13 February 2022).
- CONAGUA (National Water Commission). Situation of the water supply, sewerage and sanitation Subsector. In General of Water Supply, Drainage and Sanitation; CONAGUA: Mexico City, Mexico, 2020; pp. 1–168. Available online: https://www.gob.mx/cms/uploads/attachment/file/680584/DSAPAS_2020.pdf (accessed on 13 February 2022).
- United Nations (ONU). Global Water Challenges; The United Nations General Assembly. In Explicitly Recognizes the Human Right to Water and Sanitation; UnTED Nations (ONU): New York, NY, USA, 2010; Available online: https://www.un.org/es/global-issues/water (accessed on 13 February 2022).
- CEAG (Guanajuato State Water Commission). Diagnóstico Sectorial de Agua Potable y Saneamiento; Sectoral Diagnosis of Water Supply and Sanitation Guanajuato, Mexico: Guanajuato, Mexico, 2011. [Google Scholar]
- INEGI (National Institute of Statistics and Geography). censo de población y vivienda. In Subsistema de Información Demográfica y Social; INEGI: Aguascalientes, Mexico, 2020; Available online: https://www.inegi.org.mx/programas/ccpv/2020/ (accessed on 13 February 2022).
- INEGI (National Institute of Statistics and Geography). Intercensal Survey. Demographic and Social Information Subsystem Mexico 2015. Available online: https://www.inegi.org.mx/programas/intercensal/2015/ (accessed on 13 February 2022).
- Ayuntamiento, H. Work plan; We Are Great, We Are Strong, We Are Leon 2021–2024. pp. 1–44. Available online: https://www.leon.gob.mx/plan-de-trabajo.pdf (accessed on 13 February 2022).
- Caldera, A.; Tagle, D. Guanajuato: Change in its water management. In Water in Guanajuato; University of Guanajuato: Guanajuato, Mexico, 2020; pp. 33–64. [Google Scholar]
- Conagua [Comisión Nacional del Agua]. Update of the Average Annual Availability of Water in the Aquifer of the Valley of Leon, Estado de Guanajuato; Conagua: Coyoacán, México, 2020; p. 1113. Available online: https://sigaims.conagua.gob.mx/dam20/pdf20/DR_1113.pdf (accessed on 13 February 2022).
- CONAGUA (National Water Commission). Situation of the Water Supply, Sewerage and Sanitation Subsector, Estado de Guanajuato. General Technical Groundwater Management, Mexico. 2021, pp. 1–38. Available online: https://files.conagua.gob.mx/conagua/publicaciones/Publicaciones/SGAPDS-2-21-a.pdf (accessed on 13 February 2022).
- Tagle, D.; Caldera, A.; Fuente, M. Normativity, public water management and market environmentalism in Mexico: An analysis from political projects 2012–2018. Water Technol. Sci. 2019, 10, 1–34. [Google Scholar] [CrossRef]
- Aznar, J.; Estruch, A. Valuation of Environmental Assets, 2nd ed; Universitat Politécnica de Valéncia: Valencia, España, 2015; pp. 1–241. [Google Scholar]
- Saaty, T.L. Decision making with the analytic hierarchy process. Int. J. Serv. Sci. 2008, 1, 83–98. [Google Scholar] [CrossRef] [Green Version]
- Yagmur, L. Multi-criterio evaluation and priority analysis for localization equipment in a thermal power plant using the AHP (analytic hierarchy process). Energy 2015, 94, 476–482. [Google Scholar] [CrossRef]
- Starkl, M.; Brunner, N.; Das, S.; Singh, A. Sustainability Assessment for Wastewater Treatment Systems in Developing Countries. Water 2022, 14, 241. [Google Scholar] [CrossRef]
- Jafari, S.; Aghel, M.; Sohani, A.; Hoseinzadeh, S. Geographical Preference for Installation of Solar Still Water Desalination Technologies in Iran: An Analytical Hierarchy Process (AHP)-Based Answer. Water 2022, 14, 265. [Google Scholar] [CrossRef]
- Ndhlovu, G.Z.; Woyessa, Y.E. Integrated Assessment of Groundwater Potential Using Geospatial Techniques in Southern Africa: A Case Study in the Zambezi River Basin. Water 2021, 13, 2610. [Google Scholar] [CrossRef]
- Ni, C.-F.; Tran, Q.-D.; Lee, I.-H.; Truong, M.-H.; Hsu, S.M. Mapping Interflow Potential and the Validation of Index-Overlay Weightings by Using Coupled Surface Water and Groundwater Flow Model. Water 2021, 13, 2452. [Google Scholar] [CrossRef]
- Ling, J.; Germain, E.; Murphy, R.; Saroj, D. Designing a Sustainability Assessment Framework for Selecting Sustainable Wastewater Treatment Technologies in Corporate Asset Decisions. Sustainability 2021, 13, 3831. [Google Scholar] [CrossRef]
- Dano, U.L. An AHP-based assessment of flood triggering factors to enhance resiliency in Dammam, Saudi Arabia. GeoJournal 2021. [Google Scholar] [CrossRef]
- Aznar, J.; Guijarro, F. New valuation methods. In Multicriteria Models; Universidad Politécnica de Valencia: Valencia, Spain, 2008. [Google Scholar]
- Saaty, T.L. The Analytic Hierarchy Process: Planning, Priority Setting; Resource Allocation; McGraw-Hill: New York, NY, USA, 1980. [Google Scholar]
- Nantes, E. El Método Analytic Hierarchy Process para la toma de decisiones. Repaso de la metodología y aplicaciones. Investig. Oper. 2019, 46, 54–73. [Google Scholar]
- Navarro, I.J.; Yepes, V.; Marti, J.V. Pairwise comparison as a method of assessing cross-cutting competences in sustainability. In VI Congress of Educational Innovation and Network Teaching. IN-RED 2020; Editorial Universitat Politècnica de València: Valencia, Spain, 2021; pp. 670–679. [Google Scholar] [CrossRef]
- Saaty, T.L. A Scalingmethod for priorities in hierarchical structures. J. Math. Psychol. 1977, 15, 234–281. [Google Scholar] [CrossRef]
- Delgado, X.; Pérez-García, R.; Izquierdo, J.; Mora-Rodríguez, J. Analytic Hierarchy Process for Assessing Externalities in Water Leakage Management. Math. Comput. Model. 2010, 52, 1194–1202. [Google Scholar] [CrossRef]
- Saaty, T.L. The Analytic Network Process; RWS Pub: Pittsburgh, PA, USA, 2001. [Google Scholar]
- Finan, J.S.; Hurley, W.J. The analytic hierarchy process: Does adjusting a pairwise comparison matrix to improve the consistency ratio help? Comput. Oper. Res. 1997, 24, 749–755. [Google Scholar] [CrossRef]
- Aranguren, S.; Muzachiodi, S. Implications of Data Mining. Thesis, Convenio UTN-ISIPER. Universidad Nacional de Entre Ríos: Entre Ríos, Argentina. Available online: http://bibliotecafcyt.uader.edu.ar/cgi-bin/opacmarc/wxis?IsisScript=opac/xis/opac.xis&task=BIB-RECORD&db=fcyt&curr=2&total=3&cid=/tmp/fileXZxKFC (accessed on 13 February 2022).
- Smith, R. (Ed.) Prior Analytics; Hackett Publishing Company: Indianapolis, IN, USA, 1989. [Google Scholar]
- Zadeh, L.A. Fuzzy sets. Inf. Control. 1965, 8, 338–353. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.; Chen, Z.; Ye, Y.; Chen, G.; Zeng, F.; Zhao, C. A Fuzzy Logic Model for Early Warning of Algal Blooms in a Tidal-Influenced River. Water 2021, 13, 3118. [Google Scholar] [CrossRef]
- Morales, J. Análisis de Probabilidades Borrosas y de Regresión Borrosa. Aplicaciones. Master’s Thesis, Universidad Central “Marta Abreu” de las Villas, Santa Clara, Cuba, 2010; pp. 1–90. Available online: https://dspace.uclv.edu.cu/handle/123456789/10795 (accessed on 12 January 2022).
- Macian, H. Use of Fuzzy Logic in the Management of Reservoirs Applied to the Sorbe Esla and Mijares Rivers. Master’s Thesis, Universidad Politécnica de Valencia, Valencia, Spain, 2012; pp. 1–244. [Google Scholar]
- Hipel, K.W. Fuzzy sets methodologies in a multicriteria modeling. Fuzzy information and decision processes In Theory and Application in Digital Control; North-Holland Publishing Co: Amsterdam, The Netherlands, 1982. [Google Scholar]
- Kindler, J. Rationalizing water requirements with the aid of fuzzy allocation model. J. Water Resour. Plan. Manag. 1992, 118, 308–323. [Google Scholar] [CrossRef]
- Şen, Z. Fuzzy Logic and Hydrological Modeling; CRC Press: Boca Raton, FL, USA; Taylor—Francis Group: Milton Park, UK, 2010. [Google Scholar]
- García, P.; Lazzari, L. Quality assessment at the university. In Notebook of Cimbage, Network of Magazines of Latin America and the Caribbean; University of Buenos Aires: Buenos Aires, Argentina, 2000. [Google Scholar]
- Feller, W. An Introduction to Probability Theory and Its Applications, 2nd ed.; John Willey & Sons: New York, NY, USA, 1971. [Google Scholar]
- Menger, K. Statistical metrics. Proc. Natl. Acad. Sci. USA 1942, 28, 535–537. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zadeh, L.A. Is there a need for fuzzy logic? Inf. Sci. 2008, 178, 2751–2779. [Google Scholar] [CrossRef]
- James, J.; Buckley, E.E. Introduction to Fuzzy Logic and Fuzzy Sets; Physik Springer Verlag Company: New York, NY, USA, 2002. [Google Scholar]
- Zadeh, L.A. Fuzzy Algorithms. Inf. Control. 1968, 12, 8. [Google Scholar] [CrossRef] [Green Version]
- Del Cerro Sánchez, T.; Laina, P. Fuzzy Logic; Universidad Carlos III de Madrid: Madrid, Spain, 2014; Volume 8. [Google Scholar]
- R Core Team. A language and environment for statistical computing; R Foundation for Statistical Computing: Vienna, Austria, 2020. Available online: https://www.R-project.org/ (accessed on 10 January 2022).
- Sánchez, P. Water management and the development of environmental indicators in Mexico and Canada: A comparative analysis. J. Lat. Am. Geogr. 2012, 11, 145–165. [Google Scholar] [CrossRef]
- Pietrucha-Urbanik, K.; Rak, J.R. Consumers’ Perceptions of the Supply of Tap Water in Crisis Situations. Energies 2020, 13, 3617. [Google Scholar] [CrossRef]
Quantity Component | ||||
---|---|---|---|---|
Indicator | Values | Linguistic Terms | Fuzzy Value | Graph |
Potable water coverage (%) | PWC ≥ 95 | Excellent | 1 | |
92.5 < PWC ≤ 95 | Very high | 0.75–1 | ||
90 < PWC ≤ 92.5 | High | 0.50–0.75 | ||
87.5 < PWC ≤ 90 | Good | 0.25–0.50 | ||
85 < PWC ≤ 87.5 | Low | 0–0.25 | ||
PWC ≤ 85 | Very low | 0 | ||
Micrometering (%) | Mimed ≥ 85 | Excellent | 1 | |
72.5 < Mimed ≤ 85 | Very high | 0.75–1 | ||
60 < Mimed ≤ 72.5 | High | 0.50–0.75 | ||
47.5 < Mimed ≤ 60 | Good | 0.25–0.50 | ||
35 < Mimed ≤ 47.5 | Low | 0–0.25 | ||
Mimed ≤ 35 | Very low | 0 | ||
Macrometering (%) | Mamed ≥ 90 | Excellent | 1 | |
80 < Mamed ≤ 90 | Very high | 0.75–1 | ||
70 < Mamed ≤ 80 | High | 0.50–0.75 | ||
60 < Mamed ≤ 70 | Good | 0.25–0.50 | ||
50 < Mamed ≤ 60 | Low | 0–0.25 | ||
Mamed ≤ 50 | Very low | 0 | ||
Endowment (l/inhab/day) | Edt ≤ 160 | Optimal endowment | 1 | |
160 < Edt ≤ 208 | Medium endowment | 0.75–1 | ||
208 < Edt ≤ 255 | Medium-high endowment | 0.50–0.75 | ||
255 < Edt ≤ 303 | High endowment | 0.25–0.50 | ||
303 < Edt ≤ 350 | Very high endowment | 0–0.25 | ||
Edt ≥350 | Extremelly high | 0 | ||
Physical Efficiency (%) | PE ≥ 80 | Very good | 1 | |
70 < PE ≤ 80 | Good | 0.75–1 | ||
60 < PE ≤ 70 | Media high | 0.5–0.75 | ||
50 < PE ≤ 60 | Medium | 0.25–0.5 | ||
40 < PE ≤ 50 | Low | 0–0.25 | ||
PE ≤ 40 | Very low | 0 | ||
Sewage coverage (%) | SC ≥ 95 | Excellent | 1 | |
90 < SC ≤ 95 | Very high | 0.75–1 | ||
85 < SC ≤ 90 | High | 0.50–0.75 | ||
80 < SC ≤ 85 | Good | 0.25–0.50 | ||
75 < SC ≤ 80 | Low | 0–0.25 | ||
SC ≤ 75 | Very low | 0 | ||
Treated Volume (%) | TV ≥ 80 | Excellent coverage | 1 | |
67.5 < TV ≤ 80 | Very good coverage | 0.75–1 | ||
55 < TV ≤ 67.5 | Good coverage | 0.50–0.75 | ||
42.5 < VT ≤ 55 | Medium coverage | 0.25–0.50 | ||
30 < TV ≤ 42.5 | Bad coverage | 0–0.25 | ||
TV ≤ 30 | Very bad coverage | 0 | ||
Water disinfection (%) | WD ≥ 97 | High | 1 | |
93.8 < WD ≤ 97 | Very good | 0.75–1 | ||
90.5 < WD ≤ 93.8 | Good | 0.50–0.75 | ||
87.3 < WD ≤ 90.5 | Medium | 0.25–0.50 | ||
84 < WD ≤ 87.3 | Bad | 0–0.25 | ||
WD ≤ 84 | Very bad | 0 | ||
Water quality, Potability (%) | WQP ≥ 100 | High | 1 | |
96.3 < WQP ≤ 100 | Very Good | 0.75–1 | ||
92.5 < WQP ≤ 96.3 | Good | 0.50–0.75 | ||
88.8 < WQP ≤ 92.5 | Medium | 0.25–0.50 | ||
85 < WQP ≤ 88.8 | Bad | 0–0.25 | ||
WQP ≤ 85 | Very bad | 0 | ||
Reliability and Continuity Component | ||||
24-h service outlets (%) | HSO ≥ 95 | Excellent | 1 | |
80 < HSO ≤ 95 | Very High | 0.75–1 | ||
65 < HSO ≤ 80 | High | 0.50–0.75 | ||
50 < HSO ≤ 65 | Good | 0.25–0.50 | ||
35 < HSO ≤ 50 | Low | 0–0.25 | ||
HSO ≤ 35 | Very Low | 0 | ||
Hours in zones with intermitent supply (h) | HZI ≥ 16.5 | High | 1 | |
14 < HZI ≤ 16.5 | Very good | 0.75–1 | ||
11.5 < HZI ≤ 14 | Good | 0.50–0.75 | ||
9 < HZI ≤ 11.5 | Medium | 0.25–0.50 | ||
6.5 < HZI ≤ 9 | Low | 0–0.25 | ||
HZI ≤ 6.5 | Very low | 0 | ||
User Expectations | ||||
Average water service fee for domestic use ($/m3) | AWD ≤ 0 | No cost | 1 | |
0 < AWD ≤ 3.5 | Very affordable | 0.75–1 | ||
3.5 < AWD ≤ 7.0 | Affordable | 0.50–0.75 | ||
7.0 < AWD ≤ 10.5 | Moderately affordable | 0.25–0.50 | ||
10.5 < AWD ≤ 14 | Not very affordable | 0–0.25 | ||
AWD ≥ 14 | Very unaffordable | 0 | ||
Cost recovery of the Services Provided | ||||
Work Relation (%) | WR ≤ 80 | Profit | 1 | |
80 < WR ≤ 93 | Acceptable profit | 0.74–1 | ||
93 < WR ≤ 105 | Acceptable loss | 0.50–0.74 | ||
105 <WR ≤ 118 | Loss | 0.24–0.50 | ||
118 < WR ≤ 130 | High loss | 0–0.24 | ||
WR ≥ 130 | Deficit | 0 | ||
Cost–Price relation | C-P ≥ 10 | Very high profit | 1 | |
7.8 < C-P ≤ 10 | High profit | 0.75–1 | ||
5.5 < C-P ≤ 7.8 | Medium profit | 0.50–0.75 | ||
3.3 < C-P ≤ 5.5 | Acceptable profit | 0.25–0.50 | ||
1 < C-P ≤ 3.3 | Low profit | 0–0.25 | ||
C-P ≤ 1 | Very low profit | 0 | ||
Net Benefit per m3 | NB ≥ 3 | Very high financial autonomy | 1 | |
2.3 < NB ≤ 3 | High financial autonomy | 0.77–1 | ||
1.5 <NB ≤ 2.3 | Medium financial autonomy | 0.50–0.77 | ||
0.8 < NB ≤ 1.5 | Very acceptable financial autonomy | 0.27–0.50 | ||
0 < NB ≤ 0.8 | Acceptable autonomy | 0–0.27 | ||
NB ≤ 0 | Financial deficit | 0 |
Indicator | Membership Function | Graph |
---|---|---|
(a) Physical Efficiency | Gamma Function | |
(b) Water Endowment | L function: is defined as 1 minus the Gamma function. |
Year | Quantity C1 = 0.4563 | Quality C2 = 0.2562 | Reliability and Continuity C3 = 0.1621 | Cost Recovery of the Services Provided C5 = 0.0413 | User Expectations C4 = 0.081 | Water Supply Management Index |
---|---|---|---|---|---|---|
2002 | 0.393 | 0.148 | 0.095 | 0.003 | 0.00 | 0.64 |
2003 | 0.392 | 0.148 | 0.095 | 0.003 | 0.02 | 0.65 |
2004 | 0.396 | 0.211 | 0.111 | 0.003 | 0.02 | 0.74 |
2005 | 0.402 | 0.183 | 0.102 | 0.002 | 0.01 | 0.70 |
2006 | 0.408 | 0.210 | 0.102 | 0.003 | 0.01 | 0.73 |
2007 | 0.403 | 0.213 | 0.111 | 0.003 | 0.01 | 0.74 |
2008 | 0.400 | 0.219 | 0.153 | 0.003 | 0.00 | 0.78 |
2009 | 0.394 | 0.254 | 0.160 | 0.023 | 0.00 | 0.83 |
2010 | 0.393 | 0.255 | 0.160 | 0.017 | 0.00 | 0.82 |
2011 | 0.407 | 0.255 | 0.160 | 0.021 | 0.00 | 0.84 |
2012 | 0.407 | 0.255 | 0.160 | 0.018 | 0.00 | 0.84 |
2013 | 0.415 | 0.256 | 0.160 | 0.036 | 0.00 | 0.87 |
2014 | 0.416 | 0.256 | 0.160 | 0.029 | 0.00 | 0.86 |
2015 | 0.410 | 0.256 | 0.152 | 0.036 | 0.00 | 0.85 |
2016 | 0.411 | 0.256 | 0.150 | 0.036 | 0.00 | 0.85 |
2017 | 0.408 | 0.256 | 0.162 | 0.025 | 0.00 | 0.85 |
Average | 0.40 | 0.23 | 0.14 | 0.02 | 0.004 | 0.79 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mendoza Gómez, M.; Tagle-Zamora, D.; Morales Martínez, J.L.; Caldera Ortega, A.R.; Mora Rodríguez, J.d.J.; Delgado-Galván, X. Water Supply Management Index: Leon, Guanajuato, Mexico. Water 2022, 14, 919. https://doi.org/10.3390/w14060919
Mendoza Gómez M, Tagle-Zamora D, Morales Martínez JL, Caldera Ortega AR, Mora Rodríguez JdJ, Delgado-Galván X. Water Supply Management Index: Leon, Guanajuato, Mexico. Water. 2022; 14(6):919. https://doi.org/10.3390/w14060919
Chicago/Turabian StyleMendoza Gómez, Mayra, Daniel Tagle-Zamora, Jorge Luis Morales Martínez, Alex Ricardo Caldera Ortega, José de Jesús Mora Rodríguez, and Xitlali Delgado-Galván. 2022. "Water Supply Management Index: Leon, Guanajuato, Mexico" Water 14, no. 6: 919. https://doi.org/10.3390/w14060919
APA StyleMendoza Gómez, M., Tagle-Zamora, D., Morales Martínez, J. L., Caldera Ortega, A. R., Mora Rodríguez, J. d. J., & Delgado-Galván, X. (2022). Water Supply Management Index: Leon, Guanajuato, Mexico. Water, 14(6), 919. https://doi.org/10.3390/w14060919