Groundwater Flow System-Based Dynamic System Approach for Geofluids and Their Resources
Abstract
:1. Introduction
2. Review and Discussion of the Key Concepts
2.1. Basin-Scale Groundwater Flow Systems and Related Resources
2.2. System Approaches in Geofluid Research
3. Proposal for Geofluid Research
3.1. Dynamic System Approach for Geofluids and Their Resources
3.2. Workflow and Guideline for Geofluid Research
3.2.1. Workflow for Geofluid Research
- (1)
- Basin-scale groundwater flow system evaluation (Figure 4) means the understanding of the pathways and processes of a basin-scale groundwater flow based on the complex analysis of: (i) measured data (hydraulic, temperature, hydrochemical), (ii) hydrostratigraphic build up (characterization of aquifers and aquitards), and (iii) the past and present groundwater flow related phenomena and processes. The evaluation results in a so-called “real flow system model”. It provides the boundary conditions and validation for the subsequent numerical simulations of past, present and future flow systems. (ENeRAG examples for application: [32,33,34,35]).
- (2)
- (3)
- Mass or contaminant transport simulations can be used for instance in groundwater vulnerability assessment and Managed Aquifer Recharge (MAR) evaluation, whilst heat transport simulations can be applied for instance in geothermal (groundwater and bedrock) energy utilization. (ENeRAG examples for application: [25,36,40,41,42,43].)
- (4)
- (5)
- Use of stable, radioactive and radiogenic isotopes as environmental tracers, as well as stochastic and spatial statistical modeling can significantly improve the modeling results, such as groundwater vulnerability and mineral potential evaluation. (ENeRAG examples for application: [41,42,43,46,47,48].)
3.2.2. Detailed Methodological Guidelines
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Deming, D. Introduction to Hydrogeology; McGraw-Hill College: New York, NY, USA, 2002; 480p. [Google Scholar]
- Ingebritsen, S.E.; Sanford, W.; Neuzil, C. Groundwater in Geological Processes, 2nd ed.; Cambridge University Press: Cambridge, UK, 2006. [Google Scholar]
- Tóth, J. Groundwater as a geologic agent: An overview of the causes, processes, and manifestations. Hydrogeol. J. 1999, 7, 1–14. [Google Scholar] [CrossRef]
- Tissot, B.P.; Welte, D.H. A New Approach to Oil and Gas Exploration; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 1978; pp. 105–109. [Google Scholar]
- Brace, W.F. Permeability of crystalline and argillaceous rocks. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 1980, 17, 241–251. [Google Scholar] [CrossRef]
- Neuzil, C.E. Groundwater flow in low-permeability environments. Water Resour. Res. 1986, 22, 1163–1195. [Google Scholar] [CrossRef]
- Neuzil, C.E. How permeable are clays and shales? Water Resour. Res. 1994, 30, 145–150. [Google Scholar] [CrossRef]
- Jiang, X.W.; Cherry, J.; Wan, L. Flowing wells: Terminology, history and role in the evolution of groundwater science. Hydrol. Earth Syst. Sci. 2020, 24, 6001–6019. [Google Scholar] [CrossRef]
- Witherspoon, P.A.; Neuman, S.P. Evaluating a slightly permeable caprock in aquifer gas storage: I. Caprock of infinite thickness. Trans. Am. Inst. Min. Eng. 1967, 240, 949–955. [Google Scholar] [CrossRef]
- Tóth, J. Hydraulic continuity in large sedimentary basins. Hydrogeol. J. 1995, 3, 4–16. [Google Scholar] [CrossRef]
- Tóth, J. Gravitational Systems of Groundwater Flow—Theory, Evaluation, Utilization; University Press: Cambridge, UK, 2009; 310p. [Google Scholar]
- Bredehoeft, J.D. The Toth Revolution. Groundwater 2018, 56, 157–159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zijl, W. Creep Flow Systems in the Earth Crust: A Complement to Groundwater Flow Systems. Geophys. Res. Abstr. 2019, 21, 1. [Google Scholar]
- Mádl-Szőnyi, J.; Czauner, B.; Iván, V.; Tóth, Á.; Simon, S.; Erőss, A.; Bodor, P.; Havril, T.; Boncz, L.; Sőreg, V. Confined carbonates—Regional scale hydraulic interaction or isolation? Mar. Petrol. Geol. 2019, 107, 591–612. [Google Scholar] [CrossRef]
- Garven, G. Continental-scale groundwater flow and geologic processes. Annu. Rev. Earth Planet. Sci. 1995, 23, 89–117. [Google Scholar] [CrossRef]
- Tóth, J. A theory of groundwater motion in small drainage basins in central Alberta, Canada. J. Geophys. Res. 1962, 67, 4375–4388. [Google Scholar] [CrossRef]
- Tóth, J. A theoretical analysis of groundwater flow in small drainage basins. J. Geophys. Res. 1963, 68, 4795–4812. [Google Scholar] [CrossRef]
- Tóth, J. Groundwater discharge: A common generator of diverse geologic and morphologic phenomena. Hydrol. Sci. J. 1971, 16, 7–24. [Google Scholar] [CrossRef]
- Tóth, Á.; Havril, T.; Simon, S.; Galsa, A.; Santos, F.A.M.; Müller, I.; Mádl-Szőnyi, J. Groundwater flow pattern and related environmental phenomena in complex geologic setting based on integrated model construction. J. Hydrol. 2016, 539, 330–344. [Google Scholar] [CrossRef]
- Hubbert, M.K. The theory of ground-water motion. J. Geol. 1940, 48, 785–944. [Google Scholar] [CrossRef]
- Hubbert, M.K. Entrapment of petroleum under hydrodynamic conditions. AAPG Bull. 1956, 37, 1954–2026. [Google Scholar]
- Tóth, J. Cross-formational gravity-flow of groundwater: A mechanism of the transport and accumulation of petroleum (the generalized hydraulic theory of petroleum migration). In Problems of Petroleum Migration, Studies in Geology; Roberts, W.H., III, Cordell, R.J., Eds.; AAPG: Tulsa, OK, USA, 1980; pp. 121–167. [Google Scholar]
- Czauner, B.; Mádl-Szőnyi, J. Regional hydraulic behavior of structural zones and sedimentological heterogeneities in an overpressured sedimentary basin. Mar. Petrol. Geol. 2013, 48, 260–274. [Google Scholar] [CrossRef]
- Szijártó, M.; Galsa, A.; Tóth, Á.; Mádl-Szőnyi, J. Numerical investigation of the combined effect of forced and free thermal convection in synthetic groundwater basins. J. Hydrol. 2019, 572, 364–379. [Google Scholar] [CrossRef]
- Szijártó, M.; Galsa, A.; Tóth, Á.; Mádl-Szőnyi, J. Numerical analysis of the potential for mixed thermal convection in the Buda Thermal Karst, Hungary. J. Hydrol. Reg. Stud. 2021, 34, 100783. [Google Scholar] [CrossRef]
- Wyborn, L.A.I.; Heinrich, C.A.; Jaques, A.L. Australian Proterozoic Mineral Systems: Essential ingredients and mappable criteria. In Proceedings of the AusIMM Annual Conference, Darwin, NT, Australia, 5–9 August 1994; pp. 109–115. [Google Scholar]
- McCuaig, T.C.; Beresford, S.; Hronsky, J. Translating the mineral system approach into an effective exploration targeting system. Ore Geol. Rev. 2010, 38, 128–138. [Google Scholar] [CrossRef]
- McCuaig, C.; Hronsky, J. The Mineral System Concept: The Key to Exploration Targeting. In Building Exploration Capability for the 21st century; Kelly, K.D., Golden, H.C., Eds.; Society of Economic Geologists: Littleton, CO, USA, 2014; pp. 153–175. [Google Scholar]
- Moeck, I.S. Catalog of geothermal play types based on geologic controls. Renew. Sustain. Energy Rev. 2014, 37, 867–882. [Google Scholar] [CrossRef] [Green Version]
- Magoon, L.B.; Dow, W.G. The petroleum system. In The Petroleum System—From Source to Trap; Magoon, L.B., Dow, W.G., Eds.; AAPG Special Volumes: Washington, DC, USA, 1994; Volume 60, pp. 3–24. [Google Scholar]
- IAH (International Association of Hydrogeologists). Strategic Overview Series. Available online: https://iah.org/education/professionals/strategic-overview-series (accessed on 29 January 2022).
- Mádlné Szőnyi, J. A regionális pórusnyomásviszonyok jelentősége a termálvíz feltárásban és a készletek megújulásában. Magyar Tudomány 2019, 180, 1796–1807. [Google Scholar]
- Czauner, B.; Mádlné Szőnyi, J. Szemelvények az elmúlt két évtized ELTE-n végzett, medenceléptékű hidrogeológiai kutatásaiból. Földtani Közlöny 2020, 150, 545–570. [Google Scholar] [CrossRef]
- Csondor, K.; Czauner, B.; Csobaji, L.; Győri, O.; Erőss, A. Characterization of the regional groundwater flow systems in south Transdanubia (Hungary) to understand karst evolution and development of hydrocarbon and geothermal resources. Hydrogeol. J. 2020, 28, 2803–2820. [Google Scholar] [CrossRef]
- Garamhegyi, T.; Székely, F.; Carrillo-Rivera, J.J.; Mádl-Szőnyi, J. Revision of archive recovery tests using analytical and numerical methods on thermal water wells in sandstone and fractured carbonate aquifers in the vicinity of Budapest, Hungary. Environ. Earth Sci. 2020, 79, 129. [Google Scholar] [CrossRef] [Green Version]
- Szijártó, M.; Galsa, A. Termohalin konvekció numerikus vizsgálata porózus közegmodellben. Magyar Geofizika 2020, 61, 177–190. [Google Scholar]
- Tóth, Á.; Galsa, A.; Mádl-Szőnyi, J. Significance of basin asymmetry and regional groundwater flow conditions in preliminary geothermal potential assessment—Implications on extensional geothermal plays. Glob. Planet. Change 2020, 195, 103344. [Google Scholar] [CrossRef]
- Modrovits, K.; Csepregi, A.; Kovácsné Székely, I.; Hatvani, I.G.; Kovács, J. Comparison of Various Growth Curve Models in Characterizing and Predicting Water Table Change after Intensive Mine Dewatering Is Discontinued in an East Central European Karstic Area. Water 2021, 13, 1047. [Google Scholar] [CrossRef]
- Pedretti, D.; Vriens, B.; Skierszkan, E.K.; Baják, P.; Mayer, K.U.; Beckie, R.D. Evaluating dual-domain models for upscaling multicomponent reactive transport in mine waste rock. J. Contam. Hydrol. 2022, 244, 103931. [Google Scholar] [CrossRef]
- Szabó, Z.; Tahy, Á.; Mádlné Szőnyi, J. A célzott felszínalatti vízutánpótlás nemzetközi trendjei és hazai alkalmazási lehetőségei. Hidrológiai Közlöny 2019, 100, 40–51. [Google Scholar]
- Dalla Libera, N.; Pedretti, D.; Casiraghi, G.; Markó, Á.; Piccinini, L.; Fabbri, P. Probability of Non-Exceedance of Arsenic Concentration in Groundwater Estimated Using Stochastic Multicomponent Reactive Transport Modeling. Water 2021, 13, 3086. [Google Scholar] [CrossRef]
- Hayat, S.; Szabó, Z.; Tóth, Á.; Mádl-Szőnyi, J. MAR Site Suitability Mapping for Arid-Semiarid Regions by Remote Data and Combined Approach: A Case Study from Balochistan, Pakistan. Acque Sotterranee Ital. J. Groundwater 2021, 10, 17–28. [Google Scholar] [CrossRef]
- Baják, P.; Csondor, K.; Pedretti, D.; Muniruzzaman, M.; Surbeck, H.; Izsák, B.; Vargha, M.; Horváth, Á.; Pándics, T.; Erőss, A. Refining the conceptual model for radionuclide mobility in groundwater in the vicinity of a Hungarian granitic complex using geochemical modeling. Appl. Geochem. 2022, 137, 105201. [Google Scholar] [CrossRef]
- Kiss, G.B.; Bendő, Z.; Garuti, G.; Zaccarini, F.; Király, E.; Molnár, F. Reconstruction of Hydrothermal Processes in the Cyprus Type Fe-Cu-Zn Deposits of the Italian Northern Apennines: Results of Combined Fluid Inclusion Microthermometry, SEM-CL Imaging and Trace Element Analyses by LA-ICP-MS. Minerals 2021, 11, 165. [Google Scholar] [CrossRef]
- Molnár, Z.; Kiss, G.B.; Molnár, F.; Váczi, T.; Czuppon, G.; Dunkl, I.; Zaccarini, F.; Dódony, I. Epigenetic-Hydrothermal Fluorite Veins in a Phosphorite Deposit from Balaton Highland (Pannonian Basin, Hungary): Signatures of a Regional Fluid Flow System in an Alpine Triassic Platform. Minerals 2021, 11, 640. [Google Scholar] [CrossRef]
- Iván, V.; Stevenazzi, S.; Pollicino, L.C.; Masetti, M.; Mádl-Szőnyi, J. An Enhanced Approach to the Spatial and Statistical Analysis of Factors Influencing Spring Distribution on a Transboundary Karst Aquifer. Water 2020, 12, 2133. [Google Scholar] [CrossRef]
- Csondor, K.; Baják, P.; Surbeck, H.; Izsák, B.; Horváth, Á.; Vargha, M.; Erőss, A. Transient nature of riverbank filtered drinking water supply systems—A new challenge of natural radioactivity assessment. J. Environ. Radioact. 2020, 211, 106072. [Google Scholar] [CrossRef]
- Csondor, K.; Baják, P.; Surbeck, H.; Izsák, B.; Horváth, Á.; Vargha, M.; Pándics, T.; Erőss, A. Parti szűrésű vízbázisok természetes radioaktivitása nuklidspecifikus mérések tapasztalatai alapján (Natural radioactivity of riverbank filtered water systems based on the experience of nuclid specific measurements). Hidrológiai Közlöny 2021, 101, 44–53. [Google Scholar]
- Torppa, J.; Nykanen, V.; Molnár, F. Unsupervised clustering and empirical fuzzy memberships for mineral prospectivity modelling. Ore Geol. Rev. 2019, 107, 28–71. [Google Scholar] [CrossRef]
- Mádlné Szőnyi, J. Felszínalatti Vízáramlások Mintázata Fedetlen és Kapcsolódó Fedett Karbonátos Víztartó Rendszerekben a Budai-Termálkarszt Tágabb Környezetének Példáján. Ph.D. Thesis, Hungarian Academy of Sciences, Budapest, Hungary, 2020; 131p. [Google Scholar]
System Elements & Processes | Petroleum System (PS) | Mineral System (MS) | Geothermal System (GS) | Groundwater Flow System (GWFS) |
---|---|---|---|---|
Source | Source rock | Source of fluid and metal | Source of fluid and heat | Source of fluid |
Migration pathway | Carrier bed, fault | Permeable units, fracture system, fault | Heat transport system | Aquifer, fault |
Seal | Cap rock | Impermeable hydrothermal alteration zone, cap rock | Cap rock | Aquitard |
Reservoir | Reservoir rock | Mineral deposit | Reservoir rock | Aquifer |
Trap | Trap (closure) | Geochemical or physical barrier (fluid–rock interaction, phase separation, fluid mixing) | ||
Source process | Generation | Phase separation, devolatilization, dissolution, remobilization | Heating | Recharge |
Migration | Migration | Energy source | Heat transport system | Flow and transport |
Entrapment/accumulation | Entrapment, accumulation | Precipitation | Heat accumulation | Accumulate matter and heat |
Modeling Objective | Suggested Approach | Methods |
---|---|---|
Exclude anthropogenic effects on present flow systems | Retrospective research | Analysis of
|
Conceptual model based on surface and near-surface indicators of flow conditions | Survey of groundwater flow related phenomena and processes
|
|
Geometry and hydraulic properties of the rock framework (i.e., flow media) | Delineation of the basin, in lateral and horizontal sense Hydrostratigraphical evaluation | Analysis of
|
Real flow system model based on measured data from wells | Hydraulic analyses of measured data, with supplementary hydrochemical and temperature data analyses | Analysis of
|
Validation, understanding of the flow system and its physical processes | Numerical flow and transport simulations in the saturated zone |
|
Modeling Objective | Suggested Approach | Use of Env. Tracer and Isotopes |
---|---|---|
Physical behavior of MAR site (I, P) | Deterministic 2D-3D physically-based unsaturated flow model | Stable conventional isotopes 2H, 18O Conservative tracer tests (chloride tracking) |
Fate of dissolved and gaseous contaminants in the soils (I) | Deterministic 1D-2D multiphase multicomponent reactive transport modeling | Reactive conventional and unconventional stable isotopes 87Sr, 9Li, 26Mg Reactive tracer tests (DOC, cations, anions, redox status, others) |
Water budget in the topsoil layer (I, P) | Deterministic 2D-3D physically-based unsaturated flow model incorporating energy fluxes | Not directly needed |
Water budget in the topsoil layer for irrigation scheduling (P, D) | Coupled 3D atmospheric-hydrologic modeling | Not directly needed |
Modeling Objective | Suggested Approach | Use of Env. Tracer and Isotopes |
---|---|---|
Fate of dissolved contaminants in groundwater (I, P) | Deterministic methods, numerical modeling, analytical solutions, conservative and reactive transport | All tracers |
Uncertainty analysis for risk-based decision-making process (P, D) | Stochastic flow and transport methods, numerical modeling, analytical solutions, conservative and reactive transport | Not directly needed |
Assessment of the maximum extension of a solute plume contamination for aquifers with simple geometries, low heterogeneity and/or simple boundary conditions (I, P) | Deterministic and stochastic methods, analytical modeling (e.g., perturbation methods, PDF-based methods) conservative transport | Conservative tracer tests, 2 H, 18 O |
Assessment of the maximum extension of a solute plume contamination for aquifers with complex geometries, mild-high heterogeneity and/or complex boundary conditions (I, P) | Deterministic and stochastic numerical methods (e.g., Monte Carlo simulations) | Conservative tracer tests, 2 H, 18 O |
Assessment of contaminant spreading undergoing geochemical and biochemical reactions for aquifers with geometries, low heterogeneity and/or simple boundary conditions (I) | Deterministic numerical methods | Reactive tracer tests, 13 C, 15 N, 34 S, 87 Sr, 9 Li, 26 Mg, 36 Cl |
Assessment of contaminant spreading undergoing geochemical and biochemical reactions for aquifers with complex geometries, mild-high heterogeneity and/or complex boundary conditions (I, P) | Stochastic methods (only for simplified biogeochemical systems, otherwise deterministic methods) | Reactive tracer tests, 13 C, 15 N, 34 S, 87 Sr, 9 Li, 26 Mg, 36 Cl |
Assessment of (future) spring discharges (I, P) | Analytical (lumped) models or 3D physically based models | Conservative tracer tests, 2 H, 18 O |
Modeling Objective | Suggested Approach | Use of Env. Tracer and Isotopes |
---|---|---|
Groundwater (GW) vulnerability (I, P) | Review of GW vulnerability concept; Review of GW vulnerability assessment methods. | Not directly needed |
GW vulnerability assessment of porous aquifers to non-point sources of contamination (I, P) | Spatial statistical modeling (Bayesian’ approaches, Logistic Regression) | Not directly needed |
GW vulnerability assessment in karst environments (I, P) | Spatial statistical modeling (Bayesian’ approaches) | Not directly needed |
Modeling Objective | Suggested Approach | Methods |
---|---|---|
Thermal effect on groundwater in operating ATES (Aquifer Thermal Energy Storage) systems | Groundwater flow and temperature model in complicated energy utilization scheme | Analysis of:
|
Optimizing shallow bedrock energy utilization | Modeling thermal behavior of bedrock in energy utilization scheme | Field measurement:
|
Modeling Objective | Suggested Approach | Methods |
---|---|---|
Determining open (renewable) and closed (non-renewable) geothermal systems based on the regional pressure regimes | Hydraulic analyses of measured data, hydrostratigraphical evaluation | Analysis of pressure vs. elevation profiles tomographic fluid-potential maps, hydraulic cross sections in combination with the hydrostratigraphic build-up |
Determining the potential for mixed thermal convection as regional fluid flow driving force | Numerical flow and transport simulations in the saturated zone | Two dimensional and three dimensional flow simulations, heat and mass transport modeling |
Modeling Objective | Suggested Approach | Methods |
---|---|---|
Sources of fluids and their components | A. Regional scale: geodynamic and structural modeling; | A. Evaluation of geodynamic and structural evolution |
B. District/deposit scale: Radiogenic, stable and noble gas isotope studies, mineralogical and geochemical tracers (district/deposit scale) | B. Geochronology (lithological units, hydrothermal minerals), mineralogical analyses, light stable isotopes, radiogenic isotopes, noble gas (He Ar, Xe, Ne, Kr) isotope studies, halogene ratios (e.g., Br/Cl) | |
Transportation pathways of fluids | All scales: structural modeling | From regional to local scale evaluation of geological structures |
Primary footprints of mineral deposits (fluid–rock interaction) | District/deposit scale surveying: mineralogy, geochemistry, petrography, stable isotopes | Observation of geologically or geophysically mappable traces of fluid–rock interaction, systematic sampling, evaluation of litho and mineral geochemistry (mass transfer calculations), mineralogical analyses including fluid inclusion studies light stable isotopes (H, O, C, S, B), geochronology of hydrothermal processes (U-Pb, Re-Os, Rb-Sr, Nd-Sm, Ar-Ar, K-Ar) |
Traps for mineral deposition | Deposit scale | Modern mineralogical and geochemical research methods (petrography-spot analyses; mineral trace elements, fluid inclusions, conventional and transition-metal stable isotopes), evaluation of geophysical signatures |
Preservation-remobilization | A. Regional scale: geodynamic and structural evolution | A. Evaluation of geodynamic and structural evolution |
B. District/deposit scale | B. Geochronology (lithological units, hydrothermal minerals), Pb-isotopes, U-Pb, Ar-Ar, K-Ar, etc., dating, fluid inclusion studies |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Czauner, B.; Molnár, F.; Masetti, M.; Arola, T.; Mádl-Szőnyi, J. Groundwater Flow System-Based Dynamic System Approach for Geofluids and Their Resources. Water 2022, 14, 1015. https://doi.org/10.3390/w14071015
Czauner B, Molnár F, Masetti M, Arola T, Mádl-Szőnyi J. Groundwater Flow System-Based Dynamic System Approach for Geofluids and Their Resources. Water. 2022; 14(7):1015. https://doi.org/10.3390/w14071015
Chicago/Turabian StyleCzauner, Brigitta, Ferenc Molnár, Marco Masetti, Teppo Arola, and Judit Mádl-Szőnyi. 2022. "Groundwater Flow System-Based Dynamic System Approach for Geofluids and Their Resources" Water 14, no. 7: 1015. https://doi.org/10.3390/w14071015
APA StyleCzauner, B., Molnár, F., Masetti, M., Arola, T., & Mádl-Szőnyi, J. (2022). Groundwater Flow System-Based Dynamic System Approach for Geofluids and Their Resources. Water, 14(7), 1015. https://doi.org/10.3390/w14071015