Comparison between Regionalized Minimum Reference Flow and On-Site Measurements in Hydrographic Basins of Rural Communities in the State of Goiás, Brazil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Reference Minimum Flow Estimates
2.3. On-Site Flow Measurement in the Selected Areas
2.4. Comparison between Estimated and Measured Flows
3. Results and Discussion
3.1. Minimum Reference Flow Estimate in All Hydrographic Basins
3.2. Selection of Hydrographic Basins for On-Site Sampling
3.3. Comparative Analysis between Estimated and Observed Flows
3.4. Correlation Analysis
3.5. Water Security Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Khan, A.; Koch, M.; Tahir, A. Impacts of climate change on the water availability, seasonality and extremes in the upper Indus basin (UIB). Sustainability 2020, 12, 1283. [Google Scholar] [CrossRef] [Green Version]
- Milly, P.; Dunne, K.; Vecchia, A. Global pattern of trends in streamflow and water availability in a changing climate. Nature 2005, 438, 347–350. [Google Scholar] [CrossRef] [PubMed]
- Kostianaia, E.; Kostianoy, A. Regional Climate Change Impact on Coastal Tourism: A Case Study for the Black Sea Coast of Russia. Hydrology 2021, 8, 133. [Google Scholar] [CrossRef]
- Institui a Política Nacional de Recursos Hídricos; Law N° 9.433; Diário Oficial da República Federativa do Brasil: Brasília, Brazil, 1997. Available online: https://www.planalto.gov.br/ccivil_03/leis/l9433.htm (accessed on 5 January 2022).
- Araújo, A.; Rocha, P. Regime de Fluxo e Alterações Hidrológicas no rio Tibagi-Bacia do rio Paranapanema/Alto Paraná. Rev. Geogr. 2010, 27, 14. Available online: https://periodicos.ufpe.br/revistas/revistageografia/article/view/228901 (accessed on 27 December 2021).
- Granemann, A.; Mine, M.; Kaviski, E. Frequency analysis of minimum flows. Braz. J. Water Resour. 2018, 23, 1–14. [Google Scholar] [CrossRef] [Green Version]
- CERHI. Estabelece o Regulamento do Sistema de Outorga das Águas de Domínio do Estado de Goiás; Resolution N° 22.; Conselho Estadual de Recursos Hídricos–CERHi, Diário Oficial Do Estado de Goiás: Goiânia, Brazil, 2019. Available online: https://www.meioambiente.go.gov.br/files/Resolucoes/Resol_CERHi_22_2019.pdf (accessed on 5 February 2022).
- Honório, M. Avaliação da Disponibilidade Hídrica Superficial no Estado de Goiás. Master’s Thesis, Federal University of Goiás, Goiânia, Brazil, 2020. Available online: https://repositorio.bc.ufg.br/tede/handle/tede/10601 (accessed on 3 January 2022).
- Silva, E.; Silva, K.; Sousa, F.; Tavares, F. A escassez hídrica na zona rural: O consumo de água sob a perspectiva dos agricultores de um assentamento no município de Pombal-PB. Res. Soc. Dev. 2019, 8, 36861038. [Google Scholar] [CrossRef]
- Akhtar, F.; Awan, U.K.; Borgemeister, C.; Tischbein, B. Coupling remote sensing and hydrological model for evaluating the impacts of climate change on streamflow in data-scarce environment. Sustainability 2021, 13, 14025. [Google Scholar] [CrossRef]
- Xu, J.; Zhu, X.; Li, M.; Qiu, X.; Wang, D.; Xu, Z. Shifts in dry-wet climate regions over China and its related climate factors between 1960–1989 and 1990–2019. Sustainability 2022, 14, 719. [Google Scholar] [CrossRef]
- Beskow, S.; Norton, L.; Mello, C. Hydrological prediction in a tropical watershed dominated by Oxisols using a distributed hydrological model. Water Resour. Manag. 2013, 27, 341–363. [Google Scholar] [CrossRef]
- Javeed, Y.; Apoorva, K. Flow regionalization under limited data availability–Application of IHACRES in the Western Ghats. Aquat. Procedia 2015, 4, 933–941. [Google Scholar] [CrossRef]
- Song, J.; Her, Y.; Suh, K.; Kang, M.; Kim, H. Regionalization of a rainfall-runoff model: Limitations and potentials. Water 2019, 11, 2257. [Google Scholar] [CrossRef] [Green Version]
- Samuel, J.; Coulibaly, P.; Metcalfe, R. Estimation of continuous streamflow in Ontario ungauged basins: Comparison of regionalization methods. J. Hydrol. Eng. 2011, 16, 447–459. [Google Scholar] [CrossRef]
- Zheng, X.; Duan, D.; Yang, L.; Wang, H. Decomposed iterative optimal power flow with automatic regionalization. Energies 2020, 13, 4987. [Google Scholar] [CrossRef]
- Wagener, T.; Wheater, H. Parameter estimation and regionalization for continuous rainfall-runoff models including uncertainty. J. Hydrol. 2006, 320, 132–154. [Google Scholar] [CrossRef]
- SECIMA. Plano Estadual de Recursos Hídricos do Estado de Goiás (PERH/GO), Produto 5; Secretaria de Estado de Meio Ambiente, Recursos Hídricos, Infraestrutura, Cidades e Assuntos Metropolitanos: Goiânia, Brazil, 2015; 290p. Available online: https://www.meioambiente.go.gov.br/images/imagens_migradas/upload/arquivos/2016-01/p05_plano_estadual_de_recursos_hidricos_revfinal2016.pdf (accessed on 3 January 2022).
- Costa, I. Disponibilidade Hídrica Superficial e Subterrânea de Assentamentos em Goiás. Master’s Thesis, Federal University of Goiás, Goiânia, Brazil, 2021. [Google Scholar]
- Eletrobrás. Manual de Minicentrais Hidrelétricas; Centrais Elétricas Brasileiras, S.A. Ministério das Minas e Energia: Rio de Janeiro, Brazil, 1985; p. 354.
- Cochran, W. Sampling Techniques; John Wiley and Sons: New York, NY, USA, 1977; p. 442. [Google Scholar]
- Horvitz, D.; Thompson, D. A generalization of Sampling without Replacement from a Finite Universe. J. Am. Stat. Assoc. 1952, 47, 663–685. Available online: https://www.stat.cmu.edu/~brian/905-2008/papers/Horvitz-Thompson-1952-jasa.pdf (accessed on 23 December 2021). [CrossRef]
- Sarndal, C.; Swensson, B.; Wretman, J. Model Assisted Survey Sampling; Springer: New York, NY, USA, 1992; 695p, Available online: https://link.springer.com/book/9780387406206 (accessed on 28 December 2021).
- Rust, K.; Kalton, G. Strategies for Collapsing Strata for Variance Estimation. J. Off. Stat. 1987, 3, 69–81. Available online: https://www.scb.se/contentassets/ca21efb41fee47d293bbee5bf7be7fb3/strategies-for-collapsing-strata-for-variance-estimation.pdf (accessed on 28 December 2021).
- SonTek. FlowTracker Handheld ADV Technical Manual; YSI, Inc.: San Diego, CA, USA, 2007; 126p, Available online: https://www.uvm.edu/bwrl/lab_docs/manuals/Flow_Tracker_Manual.pdf (accessed on 29 December 2021).
- Estabelece O Regulamento Do Sistema de Outorga Das Águas de Domínio Do Estado de Goiás; Resolution n° 09.; Secretaria de Estado de Meio Ambiente e Desenvolvimento Sustentável, Diário Oficial do Estado de Goiás: Goiânia, Brazil, 2005. Available online: http://www.sgc.goias.gov.br/upload/arquivos/2015-10/resolucao-ndeg09_04-de-maio-de-2005.pdf (accessed on 22 December 2021).
- IBGE. Censo Agropecuário 2017; Instituto Brasileiro de Geografia e Estatística: Rio de Janeiro, Brazil, 2017. Available online: https://censos.ibge.gov.br/agro/2017/ (accessed on 22 December 2021).
- Souza, C., Jr.; Shimbo, J.; Rosa, M.; Parente, L.; Alencar, A.; Rudorff, B.; Hasenack, H.; Matsumoto, M.; Ferreira, L.; Souza-Filho, P.; et al. Reconstructing three decadesof land use and land cover changes in Brazilian biomes with landsat archive and earth engine. Remote Sens. 2020, 12, 2735. [Google Scholar] [CrossRef]
- Silva, B.; Silva, D.; Moreira, M. Influência da sazonalidade das vazões nos critérios de outorga de uso da água: Estudo de caso da bacia do rio Paraopeba. Rev. Ambiente E Água 2015, 10, 623–634. [Google Scholar] [CrossRef] [Green Version]
- Araújo, F.; Mello, E.; Gollin, G.; Quadros, L.; Gomes, B. Streamflow regionalization in Piquiri river basin. Eng. Agrícola 2018, 38, 22–31. [Google Scholar] [CrossRef] [Green Version]
- Pruski, F.; Rodriguez, R.; Pruski, P.; Nunes, A.; Rego, F. Extrapolation of regionalization equations for long-term average flow. Eng. Agrícola Jaboticabal 2016, 36, 830–838. [Google Scholar] [CrossRef] [Green Version]
- Santos, A.; Reis, A.; Mendiondo, E. Segurança hídrica no Brasil: Situação atual, principais desafios e perspectivas futuras. Rev. DAE 2020, 68, 167–179. [Google Scholar] [CrossRef]
- Neves, G.; Barbosa, M.; Anjinho, P.; Thomassim, T.; Filho, J.; Mauad, F. Evaluation of the impacts of climate change on streamflow through hydrological simulation and under downscaling scenarios: Case study in a watershed in southeastern Brazil. Environ. Monit. Assess. 2020, 192, 707. [Google Scholar] [CrossRef] [PubMed]
ID | UPGRH | Hydrographic Basin | Target Population | Subpopulation 2 | nh | ||||
---|---|---|---|---|---|---|---|---|---|
Nh | Nh/N | Sh | Nh | Nh/N | Sh | ||||
1 | “Upper Araguaia” | Upper Araguaia | 3 | 0.033 | 202,420.25 | 0 | 0 | NA | 3 |
Caiapó | 2 | 0.022 | 157.17 | 2 | 0.02 | 157.17 | 1 | ||
2 | “Upper-middle Araguaia” | Upper-middle Araguaia | 4 | 0.043 | 393,656.00 | 3 | 0.03 | 0.0013 | 2 |
3,4 | “Middle Tocantins”, “Almas river and goianos tributaries of the Maranhão river” | Upper Tocantins | 30 | 0.326 | 2171.25 | 30 | 0.33 | 2171.25 | 5 |
5 | “Paranã and Correntes” | Paranã | 19 | 0.206 | 709.89 | 19 | 0.21 | 709.89 | 3 |
Correntes | 12 | 0.131 | 341.50 | 12 | 0.13 | 341.50 | 2 | ||
6 | “Corumbá, Veríssimo and São Marcos” | Corumbá | 10 | 0.109 | 368.59 | 10 | 0.11 | 368.59 | 2 |
São Marcos | 3 | 0.033 | 494.12 | 3 | 0.03 | 494.12 | 1 | ||
7 | “Meia Ponte” | Meia Ponte | 4 | 0.043 | 16.41 | 4 | 0.04 | 16.41 | 1 |
8 | “Vermelho” | Vermelho | 5 | 0.054 | 14.13 | 5 | 0.05 | 14.13 | 1 |
ID | UPGRH | Community | Hydrographic Basin | Area (km2) | Qref, (L/s) | Measure | ||
---|---|---|---|---|---|---|---|---|
Costa (2021) [19] | Honório (2020) [8] | PERH (2015) [18] | Qobs (L/s) | |||||
1 | “Upper Araguaia” | Pouso Alegre | Ribeirão Grande | 128.4 | 119.0 | 378.5 | 473.8 | 540.1 |
2 | “Upper Araguaia” | Itacaiú | Araguaia river 1 | 71,067.5 | 484,555.5 | 397,990.7 | 262,238.9 | 338,990.0 |
3 | “Upper Araguaia” | Registro do Araguaia | Araguaia river 2 | 53,544.7 | 333,847.4 | 291,357.8 | 197,579.9 | 171,017.6 |
4 | “Upper-middle Araguaia” | Landi | Landi stream | 51.3 | 0.00356 | 0.00619 | 85.1 | 0.0 |
5 | “Upper-middle Araguaia” | Fio Velasco | Araguaia river 3 | 123,349.6 | 909,109.6 | 535,276.9 | 204,760.2 | 185,455.9 |
6 | “Middle Tocantins” | Queixo Dantas | Tributary of the Maranhão river | 5.1 | 3.0 | 18.3 | 16.0 | 4.4 |
7 | “Middle Tocantins” | Itajá II | Gameleira stream | 5.5 | 3.3 | 19.8 | 17.3 | 21.3 |
8 | “Middle Tocantins” | São Domingos | Cachoeirinha stream | 5.6 | 3.34 | 20.0 | 13.1 | 23.1 |
9 | “Middle Tocantins” | Engenho da Pontinha | Ponte Grande stream | 13.8 | 8.45 | 48.4 | 43.5 | 0.0 |
10 | “Middle Tocantins” | Povoado Vermelho | Macaco stream | 33.3 | 32.9 | 114.0 | 79.3 | 25.5 |
11 | “Upper Araguaia” (Caiapó) | Fortaleza | Retiro stream | 16.5 | 8.0 | 4.4 | 473.8 | 3.0 |
12 | “Paranã and Correntes” | Castelo, Retiro and Três Rios | Tributary of the Corrente 3 river | 4.6 | (*) | 236.2 | 12.7 | 0.0 |
13 | “Paranã and Correntes” | Castelo, Retiro and Três Rios | Arroio Vereda Grande stream | 52.4 | (*) | 1165.5 | 146.2 | 0.0 |
14 | “Corumbá, Veríssimo and São Marcos” | Piracanjuba | Sucuapara stream | 36.5 | 299.9 | 733.1 | 169.8 | 51.2 |
15 | “Corumbá, Veríssimo and São Marcos” | Almeidas | São Sebastião | 150.8 | 1039.6 | 616.7 | 700.9 | 704.6 |
16 | “Meia Ponte” | Rochedo | Tributary Posse das Flores stream 1 | 1.0 | 6.1 | 6.1 | 4.6 | 0.0 |
17 | “Paranã and Correntes” | Pelotas | Tributary of the Paranã 2/Cor Morcego | 4.9 | (*) | 248.6 | 13.8 | 0.0 |
18 | “Paranã and Correntes” | Quilombo dos Magalhães | Tributary of the Paranã river 1 | 9.7 | (*) | 386.5 | 27.1 | 0.0 |
19 | “Paranã and Correntes” | Quilombo dos Magalhães | Tributary of the Paranã river 4 | 0.2 | (*) | 25.2 | 0.4 | 0.0 |
20 | “Corumbá, Veríssimo and São Marcos” | Madre Cristina | Tributary of the Veríssimo river 1 | 19.4 | 111.0 | 46.9 | 90.0 | 0.0 |
21 | “Vermelho” | Água Limpa | Água Limpa stream | 8.8 | 14.7 | 14.1 | 20.5 | 12.1 |
Community | Hydrographic Basin | Area (km²) | RE (Costa [19]) (%) | RE (Honório [8]) (%) | RE (PERH [18]) (%) |
---|---|---|---|---|---|
Pouso Alegre | Ribeirão Grande | 128.4 | 77.96 | 29.92 | 12.28 |
Itacaiu | Araguaia River 1 | 71,067.50 | −42.94 | −17.40 | 22.64 |
Registro do Araguaia | Araguaia River 2 | 53,544.70 | −95.21 | −70.37 | −15.53 |
Fio Velasco | Araguaia River 3 | 123,349.6 | −390.20 | −188.63 | −10.41 |
Queixo Dantas | Tributary of Maranhão river | 5.1 | 31.81 | −316.97 | −264.05 |
Itajá II | Gameleira stream | 5.5 | 84.36 | 6.7 | 18.34 |
São Domingos | Cachoeirinha stream | 5.6 | 85.44 | 13.34 | 42.86 |
Povoado Vermelho | Macaco stream | 33.3 | −29.36 | −347.10 | −211.08 |
Fortaleza | Retiro stream | 16.5 | −167.32 | −46.30 | −15,693.32 |
Piracanjuba | Sucuapara stream | 36.5 | −485.87 | −1331.88 | −231.67 |
Almeidas | São Sebastião | 150.8 | −47.55 | 12.47 | 0.52 |
Água Limpa Q | Água Limpa stream | 8.8 | −21.20 | −16.89 | −69.49 |
Variable | Mean () | Median () | SD | CV | ||||
---|---|---|---|---|---|---|---|---|
LL | UL | LL | LS | |||||
Qobs (L/s) | 7765.6 | 7729.3 | 7801.9 | 0.0 | 0.0 | 10.2 | 44,464.0 | 5.7 |
Qref (L/s) [18] | 7465.5 | 7440.1 | 7490.9 | 20.9 | 13.4 | 85.8 | 40,653.8 | 5.4 |
Qref (L/s) [8] | 13,815.9 | 13,684.1 | 13,947.8 | 48.1 | 19.6 | 379.2 | 76,513.5 | 5.5 |
Qref (L/s) [19] | 19,273.9 | 19,245.1 | 19,302.8 | 8.3 | 3.2 | 125.8 | 139.057.2 | 7.2 |
Qobs − Qref (L/s) [18] | 294.1 | 260.7 | 327.5 | −13.8 | −80.6 | −2.3 | 8913.7 | 30.3 |
Qobs − Qref (L/s) [8] | −5930.6 | −6333.4 | −5,527.9 | −47.7 | −339.2 | −1.9 | 39,558.7 | −6.7 |
Qobs − Qref (L/s) [19] | −16,963.8 | −19,509.7 | −14,417.8 | −6.6 | −210.3 | 1.2 | 97,637.3 | −5.8 |
RE (%) [18] | −61.82 | −82.13 | −41.51 | −100.00 | −100.00 | −70.50 | 55.30 | −89.45 |
RE (%) [8] | −66.25 | −83.88 | −48.61 | −100.00 | −100.00 | −77.42 | 47.10 | −71.10 |
RE (%) [19] | 77.15 | −56.72 | 211.02 | −31.13 | −95.85 | 1.58 | 256.00 | 331.81 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Basso, R.; Honório, M.; Costa, I.; Bezerra, N.; Baumann, L.; Silva, F.; Albuquerque, A.; Scalize, P. Comparison between Regionalized Minimum Reference Flow and On-Site Measurements in Hydrographic Basins of Rural Communities in the State of Goiás, Brazil. Water 2022, 14, 1016. https://doi.org/10.3390/w14071016
Basso R, Honório M, Costa I, Bezerra N, Baumann L, Silva F, Albuquerque A, Scalize P. Comparison between Regionalized Minimum Reference Flow and On-Site Measurements in Hydrographic Basins of Rural Communities in the State of Goiás, Brazil. Water. 2022; 14(7):1016. https://doi.org/10.3390/w14071016
Chicago/Turabian StyleBasso, Raviel, Michelle Honório, Isabella Costa, Nolan Bezerra, Luis Baumann, Flora Silva, Antonio Albuquerque, and Paulo Scalize. 2022. "Comparison between Regionalized Minimum Reference Flow and On-Site Measurements in Hydrographic Basins of Rural Communities in the State of Goiás, Brazil" Water 14, no. 7: 1016. https://doi.org/10.3390/w14071016
APA StyleBasso, R., Honório, M., Costa, I., Bezerra, N., Baumann, L., Silva, F., Albuquerque, A., & Scalize, P. (2022). Comparison between Regionalized Minimum Reference Flow and On-Site Measurements in Hydrographic Basins of Rural Communities in the State of Goiás, Brazil. Water, 14(7), 1016. https://doi.org/10.3390/w14071016