Mega Flood Inundation Analysis and the Selection of Optimal Shelters
Abstract
:1. Introduction
2. Study Area
3. Methodology
3.1. Mega Flood Scenario
3.1.1. Definition of Mega Rainfall and Mega Flood
3.1.2. Mega Rainfall Scenario and Mega Flood
- Estimating the Frequency-Based Rainfall in the Target Basin
- 2.
- Calculating the Minimum Non-Rainfall Duration
- 3.
- Estimating Probable Maximum Precipitation
3.2. Mega Flood Estimation Method
3.2.1. Mega Flood Simulation Model
3.2.2. Parameter Estimation Method
3.2.3. Objective Function
3.2.4. Evaluation Criteria for Selection of Objective Function
- Non-dimensional Root Mean Square Error (NRMSE)
- Relative Error of Peak Flow (RE)
- Coefficient of Determination ()
3.3. Method of Flood Inundation Analysis for Mega Flood
3.4. Selection of Optimal Shelters According to Flood
3.4.1. Flood Inundation Map
3.4.2. Adoption of an Evaluation Indicator for Selecting Optimal Shelters
- Shelter Selection Criteria in Korea
- Shelter Selection Criteria in the United States
- Shelter Selection Criteria in Japan
- Shelter Selection Criteria in the United Kingdom
3.4.3. Assignment of Weights to the Evaluation Indicators Using AHP
4. Result and Discussion
4.1. Generation of the Mega Rainfall Scenario
4.2. Calibration and Validation of the Model Using the Objective Function
4.3. Mega Flood Runoff Simulation Using the Mega Rainfall Scenario
4.4. Making a Flood Inundation Map for the Mega Flood Runoff Discharges
4.5. Identification of Shelters through the Mega Flood Inundation Map
4.6. Evaluation Indicator Data Collection and Standardization
4.7. Assignment of Weights to the Evaluation Indicators
4.8. Selecting Optimal Shelters and Making a Shelter Map
4.9. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- United Nations Office for Disaster Risk Redcution (UNISDR). Climate Change and Disaster Risk Redcution. In The United Nations International Strategy for Disaster Redcution; UNISDR: Geneva, Switzerland, 2008. [Google Scholar]
- Jo, E.; Park, C.; Son, S.-W.; Roh, J.-W.; Lee, G.; Lee, Y.-H. Classification of Localized Heavy Rainfall Events in South Korea. Asia-Pac. J. Atmos. Sci. 2019, 56, 77–88. [Google Scholar] [CrossRef]
- Kim, D. Development of Consecutive Storm Event Based (ConSEB) Rainfall-Runoff Model for Short Term Runoff Simulation and Its Applicability under Climate Change. Ph.D. Thesis, INHA University, Incheon, Korea, February 2018. [Google Scholar]
- Mohan, S. Parameter Estimation of Nonlinear Muskingum Models Using Genetic Algorithm. J. Hydraul. Eng. 1997, 123, 137–142. [Google Scholar] [CrossRef]
- Kim, B.J.; Kwak, J.W.; Lee, J.H.; Kim, H.S. Calibration and Estimation of Parameter for Storage Function Model. J. Korean Soc. Civ. Eng. 2008, 28, 21–32. [Google Scholar]
- Yu, P.-S.; Yang, T.-C. Fuzzy multi-objective function for rainfall-runoff model calibration. J. Hydrol. 2000, 238, 1–14. [Google Scholar] [CrossRef]
- Cheng, C.T.; Ou, C.P.; Chau, K.W. Combining a fuzzy optimal model with a genetic algorithm to solve multiobjective rainfall-runoff model calibration. J. Hydrol. 2002, 268, 72–86. [Google Scholar]
- Madsen, H.; Wilson, G.; Ammentrop, H.C. Comparison of different automated strategies for calibration of rainfall-runoff models. J. Hydrol. 2002, 261, 48–59. [Google Scholar]
- Chen, R.-S.; Pi, L.-C.; Hsieh, C.-C. Application of parameter optimization method for calibrating tank model. JAWRA J. Am. Water Resour. Assoc. 2005, 41, 389–402. [Google Scholar] [CrossRef]
- Chen, H.-W.; Chang, N.-B. Decision support for allocation of watershed pollution load using grey fuzzy multiobjective programming. JAWRA J. Am. Water Resour. Assoc. 2006, 42, 725–745. [Google Scholar] [CrossRef]
- Song, J.H.; Kim, H.S.; Hong, L.P.; Kim, S.U. Parameter Calibration of Storage Function Model and Flood Forecasting (1) Calibration Methods and Evaluation of Simulated Flood Hydrograph. J. Korean Soc. Civ. Eng. 2006, 26, 27–38. [Google Scholar]
- Confesor, R.B., Jr.; Whittaker, G.W. Automatic Calibration of Hydrologic Models with Multi-Objective Evolutionary Algorithm and Pareto Optimization. J. Am. Water Resour. Assoc. 2007, 43, 981–989. [Google Scholar]
- Noh, S.J.; Lee, J.-H.; Lee, S.; Kawaike, K.; Seo, D.-J. Hyper-resolution 1D–2D urban flood modelling using LiDAR data and hybrid parallelization. Environ. Model. Softw. 2018, 103, 131–145. [Google Scholar] [CrossRef]
- Kim, S.E.; Lee, S.; Kim, D.; Song, C.G. Stormwater Inundation Analysis in Small and Medium Cities for the Climate Change Using EPA-SWMM and HDM-2D. J. Coast. Res. 2018, 85, 991–995. [Google Scholar]
- Cook, A.; Merwade, V. Effect of topographic data, geometric configuration and modeling approach on flood inundation mapping. J. Hydrol. 2009, 377, 131–142. [Google Scholar]
- Patro, S.; Chatterjee, C.; Mohanty, S.; Singh, R.; Raghuwanshi, N.S. Flood inundation modeling using MIKE FLOOD and remote sensing data. J. Indian Soc. Remote Sens. 2009, 37, 107–118. [Google Scholar] [CrossRef]
- Kadam, P.; Sen, D. Flood inundation simulation in Ajoy River using MIKE-FLOOD. ISH J. Hydraul. Eng. 2012, 18, 129–141. [Google Scholar] [CrossRef]
- Kumar, M. River flow simulation using MIKE11 and SRTM DEM data: Case of Mahanadi Delta region in India. Ann. Plant Soil Res. 2018, 20, 130–138. [Google Scholar]
- Masuya, A.; Dewan, A.M.; Corner, R. Population evacuation: Evaluating spatial distribution of flood shelters and vulnerable residential units in Dhaka with geographic information systems. Nat. Hazards 2015, 78, 1859–1882. [Google Scholar] [CrossRef]
- Yoo, S.; Kim, M.K.; Bae, J.; Sohm, H.G. Selection of Appropriate Location for Civil Defense Shelters Using Genetic Algorithm and Network Analysis. J. Korean Soc. Surv. Geod. Photogrameetry Cartogr. 2018, 36, 573–580. [Google Scholar]
- Bae, J.; Kim, M.K.; Yoo, S.; Heo, J.; Sohn, H.G. Shelter location-allocation for Tsunami Using Floating Population and Genetic Algorithm. J. Korean Soc. Surv. Geod. Photogrameetry Cartogr. 2019, 37, 157–165. [Google Scholar]
- Windhouwer, C.J.; Klunder, G.A.; Sanders, F.M. Decision Support System Emergency Planning, Creating Evacuation Strategies in the Event of Flooding. In Proceedings of the 2nd International ISCRAM Conference 2005, Brussels, Belgium, 18–20 April 2005; pp. 171–180. [Google Scholar]
- Pathak, J.; Eastaff, R. Flood Forecasting and Early Warning: An Example from the UK Environment Agency. Early Warn. Syst. Clim. Chang. 2014, 185–207. Available online: https://link.springer.com/chapter/10.1007/978-94-017-8598-3_10#citeas (accessed on 8 February 2022).
- O’Brien, K.; Gonzalez-Ramirez, N.; Nardi, F. QGIS FLO-2D Integration. EPiC Ser. Eng. 2018, 3, 1575–1583. [Google Scholar]
- Kim, J.; Kim, D.; Joo, H.; Noh, H.; Lee, J.; Kim, H.S. Case Study: On Objective Functions for the Peak Flow Calibration and for the Representative Parameter Estimation of the Basin. Water 2018, 10, 614. [Google Scholar] [CrossRef] [Green Version]
- Wei, X.; Norio, O.; Michinori, H.; Chunyang, H.E. Conceptual Model of Shelter Planning Based on the Vitae System, Annuals of Disas. Prev. Res. Inst. 2006, 49B, 181–188. [Google Scholar]
- Kang, B.; Lee, S.-J.; Kang, D.-H.; Kim, Y.-O. A flood risk projection for Yongdam dam against future climate change. HydroResearch 2007, 1, 118–125. [Google Scholar] [CrossRef]
- Ahn, J.M.; Lee, S.; Kang, T. Evaluation of dams and weirs operating for water resource management of the Geum River. Sci. Total Environ. 2014, 478, 103–115. [Google Scholar] [CrossRef]
- Kwak, J.W.; Kim, D.G.; Hong, I.P.; Kim, H.S. A study of Porgressive Parameter Calibrations for Rainfall-Runoff Models. J. Wetl. Res. 2009, 11, 107–121. [Google Scholar]
- Lee, M.; Kim, B.; Kim, J.; Kim, D.; Lee, D.R.; Kim, H.S. Parameter Calibration and Estimation for SSARR Model for Predicting Flood Hydrograph in Miho Stream. J. Wetl. Res. 2017, 19, 423–432. [Google Scholar]
- Kang, M.; Park, S. Modeling water flows in a serial irrigation reservoir system considering irrigation return flows and reservoir operations. Agric. Water Manag. 2014, 143, 131–141. [Google Scholar] [CrossRef]
- Duan, Q.; Sorooshian, S.; Gupta, V. Effective and efficient global optimization for conceptual rainfall-runoff models. Water Resour. Res. 1992, 28, 1015–1031. [Google Scholar] [CrossRef]
- Bandana, K.; Hodgson, M.E. A GIS-Based Model to Determine Site Suitability of Emergency Evacuation Shelters. Trans. GIS 2008, 12, 227–248. [Google Scholar]
- National Emergency Management Agency. Guidelines for Establishing the Disaster Relief Plan; National Emergency Management Agency: Seoul, Korea, 2013.
- Sakaki, A.; Lukner, K. Japan’s Cris Management amid growing Complexity: In Search of New Approaches. Jpn. J. Political Sci. 2013, 10, 155–176. [Google Scholar]
- Her Majesty’s Government. Non-statutory guidance to complement Emergency preparedness and Emergency response and recovery. In Evacuation and Shelter Guidance; Her Majesty’s Government: London, UK, 2014. [Google Scholar]
- Choi, J.-H.; Kang, I.-J.; King, S.-S. Study on the Selection of the Tsunami Shelter Using AHP and GIS analysis. Korean J. Geomat. 2012, 30, 503–509. [Google Scholar] [CrossRef]
- Ministry of Land. Infrastructure and Transport, Improvement Plan of the Gyeongan Stream; Ministry of Land: Seoul, Korea, 2011.
- Nardo, M.; Saisana, M.; Saltelli, A.; Tarantola, S.; Hoffman, A.; Giovannini, E. Handbook on Constructing Composite Indicators; OECD: Paris, France, 2005. [Google Scholar]
- Joo, J.; Lee, J.; Kim, J.H.; Jun, H.; Jo, D. Inter-Event Time Definition Setting Procedure for Urban Drainage Systems. Water 2014, 6, 45–58. [Google Scholar]
- Alam, M.J.; Habib, M.A.; Pothier, E. Shelter locations in evacuation: A Multiple Criteria Evaluation combined with flood risk and traffic microsimulation modeling. Int. J. Disaster Risk Reduct. 2021, 53, 1–10. [Google Scholar]
- Cetinkaya, C.; Ozceylan, E.; Kursat, I.S. Emergency Shelter Site Selection in Maar Shurin Community Idlib (Syria). Transp. J. 2021, 60, 70–92. [Google Scholar]
- Lee, Y.H.; Keum, H.J.; Han, K.Y.; Hong, W.H. A hierarchical flood shelter location model for walking evacuation planning. Environ. Hazards 2021, 20, 432–455. [Google Scholar]
General | Specific Evaluation Indicators |
---|---|
Scale accommodation | Adequate accommodation of evacuees |
Height of shelter building | |
Geographical conditions | Ease of access from evacuation route |
Distance of shelter from stream/river | |
Time taken to evacuate to shelter | |
Type | Public buildings |
Private institutions |
Calibrating Events | Evaluative Indicator | SCE-UA | SSR | WSSR | |
---|---|---|---|---|---|
9 July 2009–12 July 2009 | SSR | R2 | 0.8670 | ||
NRMSE | 0.1063 | ||||
RE | 0.2583 | ||||
WSSR | R2 | 0.8694 | |||
NRMSE | 0.1024 | ||||
RE | 0.2241 |
Validating Events | Evaluation Indicator | SCE-UA SSR | WSSR | ||
---|---|---|---|---|---|
1 August 2002–31 August 2002 | SSR | R2 | 0.8751 | ||
NRMSE | 0.0724 | ||||
RE | 0.1613 | ||||
WSSR | R2 | 0.8787 | |||
NRMSE | 0.0715 | ||||
RE | 0.1349 | ||||
1 July 2006–31 July 2006 | SSR | R2 | 0.8670 | ||
NRMSE | 0.1063 | ||||
RE | 0.2583 | ||||
WSSR | R2 | 0.8694 | |||
NRMSE | 0.1024 | ||||
RE | 0.2241 | ||||
1 July 2008–31 July 2008 | SSR | R2 | 0.8516 | ||
NRMSE | 0.0627 | ||||
RE | 0.0394 | ||||
WSSR | R2 | 0.8534 | |||
NRMSE | 0.0627 | ||||
RE | 0.0122 |
Administrative District | Alternatives | |
---|---|---|
Gyeongan-dong (Neighborhood) | Ga1 | Gyeongan-dong Administrative Welfare Center |
Ga2 | Gwangju Library | |
Ga3 | Gwangju Church | |
Ga4 | Gwangju Elementary School gymnasium | |
Ga5 | Gwangju Catholic Church | |
Songjeong-dong (Neighborhood) | Sj1 | Gwangju High school |
Sj2 | Gwangju Youth Counseling & Welfare Center | |
Sj3 | Songjeong-dong Village Hall | |
Sj4 | New Life Church | |
Sj5 | First Methodist Church | |
Yeok-dong (Neighborhood) | Y1 | Whole Heart Church |
Y2 | Yeok-dong Village Hall | |
Y3 | Yeok-dong village New Village Hall | |
Y4 | Podowon Church | |
Chowol-eup (Town) | Cw1 | Jiwol-5 village Senior Center |
Cw2 | Jiwol-5 village Welfare Center |
Evaluation Indicators | Scale of Accommodation | Geographical Conditions | Type | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Adequate Accommodation of Evacuees (No. of Persons) | Height of Shelter Building (Floor) | Ease of Access from Evacuation Route (m) | Distance of Shelter from Stream/River (m) | Time Taken to Evacuate to Shelter (min.) | Public Buildings | Private Institutions | |||||||||
Indic. Value | Std. Value | Indic. Value | Std. Value | Indic. Value | Std. Value | Indic. Value | Std. Value | Indic. Value | Std. Value | Indic. Value | Std. Value | Indic. Value | Std. Value | ||
Gyeongan-dong | Ga1 | 1225 | 0.38 | 4 | 1.00 | 30.15 | 0.99 | 497.51 | 0.20 | 11 | 0.25 | 1 | 1.00 | 0 | 0.00 |
Ga2 | 1149 | 0.18 | 3 | 0.00 | 8.42 | 0.00 | 428.52 | 0.00 | 10 | 0.00 | 1 | 1.00 | 0 | 0.00 | |
Ga3 | 1410 | 0.40 | 3 | 0.00 | 30.31 | 1.00 | 780.53 | 1.00 | 11 | 0.25 | 1 | 1.00 | 0 | 0.00 | |
Ga4 | 408 | 0.00 | 4 | 1.00 | 10.92 | 0.11 | 661.13 | 0.66 | 14 | 1.00 | 1 | 1.00 | 0 | 0.00 | |
Ga5 | 1662 | 1.00 | 3 | 0.00 | 18.75 | 0.47 | 597.44 | 0.48 | 14 | 1.00 | 1 | 1.00 | 0 | 0.00 | |
Songjeong-dong | Sj1 | 85 | 0.00 | 2 | 0.00 | 9.48 | 0.05 | 923.68 | 0.76 | 16 | 1.00 | 1 | 1.00 | 0 | 0.00 |
Sj2 | 685 | 1.00 | 3 | 0.33 | 27.36 | 0.29 | 348.36 | 0.83 | 16 | 1.00 | 1 | 1.00 | 0 | 0.00 | |
Sj3 | 414 | 0.05 | 2 | 0.00 | 5.61 | 0.00 | 189.06 | 0.35 | 10 | 0.25 | 1 | 1.00 | 0 | 0.00 | |
Sj4 | 397 | 0.05 | 2 | 0.00 | 28.22 | 0.31 | 74.96 | 0.00 | 8 | 0.00 | 1 | 1.00 | 0 | 0.00 | |
Sj5 | 125 | 0.25 | 2 | 0.00 | 79.37 | 1.00 | 403.69 | 1.00 | 10 | 0.25 | 1 | 1.00 | 0 | 0.00 | |
Yeok-dong | Y1 | 748 | 1.00 | 4 | 1.00 | 7.93 | 0.00 | 281.27 | 1.00 | 14 | 0.00 | 1 | 1.00 | 0 | 0.00 |
Y2 | 346 | 0.31 | 2 | 0.00 | 11.47 | 1.00 | 616.88 | 0.99 | 11 | 0.00 | 1 | 1.00 | 0 | 0.00 | |
Y3 | 165 | 0.00 | 2 | 0.00 | 3.88 | 0.16 | 473.54 | 0.57 | 11 | 0.00 | 1 | 1.00 | 0 | 0.00 | |
Y4 | 208 | 0.07 | 3 | 0.50 | 2.4 | 0.00 | 619.85 | 1.00 | 13 | 0.67 | 1 | 1.00 | 0 | 0.00 | |
Chowol-eup | Cw1 | 659 | 1.00 | 2 | 0.00 | 19 | 1.00 | 113.24 | 1.00 | 16 | 1.00 | 1 | 1.00 | 0 | 0.00 |
Cw2 | 530 | 0.00 | 3 | 1.00 | 16.09 | 0.00 | 72.01 | 0.00 | 15 | 0.00 | 1 | 1.00 | 0 | 0.00 |
General Evaluation Indicators | Weight | Specific Evaluation Indicators | Weight |
---|---|---|---|
Scale of Accommodation | 0.19 | Adequate accommodation of evacuees | 0.17 |
Height of shelter building | 0.83 | ||
Geographical Conditions | 0.73 | Ease of access from evacuation route | 0.18 |
Distance of shelter from stream/river | 0.63 | ||
Time taken to evacuate to shelter | 0.19 | ||
Type | 0.08 | Public buildings | 0.72 |
Civilian institutions | 0.25 |
Administrative District | Alternative | Score | Priority |
---|---|---|---|
Gyeongan-dong | Ga1 | 0.49 | 4 |
Ga2 | 0.07 | 5 | |
Ga3 | 0.70 | 1 | |
Ga4 | 0.67 | 2 | |
Ga5 | 0.51 | 3 | |
Songjeong-dong | Sj1 | 0.55 | 3 |
Sj2 | 0.70 | 1 | |
Sj3 | 0.26 | 4 | |
Sj4 | 0.10 | 5 | |
Sj5 | 0.69 | 2 | |
Yeok-dong | Y1 | 0.71 | 1 |
Y2 | 0.66 | 3 | |
Y3 | 0.34 | 4 | |
Y4 | 0.69 | 2 | |
Chowol-eup | Cw1 | 0.82 | 1 |
Cw2 | 0.22 | 2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, D.; Kim, D.; Kim, K.; Wang, W.-J.; Jung, J.; Kim, H.S. Mega Flood Inundation Analysis and the Selection of Optimal Shelters. Water 2022, 14, 1031. https://doi.org/10.3390/w14071031
Han D, Kim D, Kim K, Wang W-J, Jung J, Kim HS. Mega Flood Inundation Analysis and the Selection of Optimal Shelters. Water. 2022; 14(7):1031. https://doi.org/10.3390/w14071031
Chicago/Turabian StyleHan, Daegun, Deokhwan Kim, Kyunghun Kim, Won-Joon Wang, Jaewon Jung, and Hung Soo Kim. 2022. "Mega Flood Inundation Analysis and the Selection of Optimal Shelters" Water 14, no. 7: 1031. https://doi.org/10.3390/w14071031
APA StyleHan, D., Kim, D., Kim, K., Wang, W. -J., Jung, J., & Kim, H. S. (2022). Mega Flood Inundation Analysis and the Selection of Optimal Shelters. Water, 14(7), 1031. https://doi.org/10.3390/w14071031