Density Effect of Eisenia sp. Epigeic Earthworms on the Hydraulic Conductivity of Sand Filters for Wastewater Treatment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Substrate Column Composition
2.2. Experimental Procedure
2.3. Hydraulic Conductivity Assessment
2.4. Assessment of Moisture and OM Content
2.5. Statistical Analysis
3. Results
3.1. OM and Moisture Content in the Sand Layer
3.2. Hydraulic Conductivity
3.3. Earthworm Survival and Biomass Evolution
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Density (g m−²) | Surface (m−2) | Type * | Plant | Substrate | Difference In Chemical Reduction between Planted Filters with E. Fetida and Controls without Earthworms (%) | ||||
---|---|---|---|---|---|---|---|---|---|
COD | NH4+ | TN | TP | TSS | |||||
45 [31] | 0.18 | VPF | Phragmites australis | 33 cm of sand (2–4 mm); 12 cm of gravel (6–50 mm | 0.0 | / | +1.0 | −1.0 | +1.0 |
60 [66] | 0.16 | HPF | Lolium perenne | 20 cm of mixed soil; 30 cm of gravel (10–20 mm) | +5.8 | +6.2 | +6.0 | +9.2 | / |
400 [30] | 0.25 | VPF | P. australis | 40 cm of peat; 40 cm of sand (0–2 mm); 20 cm of gravel 5–30 mm) | (−1.3) | (+5.1) | / | (+11.7) | (+1.1) |
526 [36] | 0.71 | VPF | Heliconia rostrate | 75 cm of sand (0.27 mm) | +5.5 | 0.0 | 0.0 | −7.0 | −17.7 |
608 [56] | 1.125 | VPF | Phragmites communis | 40 cm of coal ash | +15.7 | +21.3 | +20.6 | / | +11.2 |
1000 [25] | 0.75 | VPF | P. australis | 1 m of sand (0.5–2.5 mm); 20 cm of gravel (10–30 mm) | (−2.0) | (+5.0) | (+2.0) | (+12.0) | / |
1562 [67] | 0.12 | VPF | Scirpus tabernaemontani | 35 cm of artificial soil (+ wood chips); 5 cm of gravel (1–5 mm); 10 cm of ceramsite (20–40 mm); 3 cm of coarse gravel (35–45 mm) | +9.7 | / | +8.5 | +7.7 | / |
16,000 [8] | 0.56 | VPF | P. australis | 50 cm of sand (0–5 mm) | +8.6 | / | +6.7 | +4.5 | / |
References
- Liu, Y.; Dedieu, K.; Sánchez-Pérez, J.M.; Montuelle, B.; Buffan-Dubau, E.; Julien, F.; Azémar, F.; Sauvage, S.; Marmonier, P.; Yao, J.; et al. Role of biodiversity in the biogeochemical processes at the water-sediment interface of macroporous river bed: An experimental approach. Ecol. Eng. 2017, 103, 385–393. [Google Scholar] [CrossRef]
- Mermillod-Blondin, F.; Gerino, M.; Creuzé des Châtelliers, M.; Degrange, V. Functional diversity among 3 detritivorous hyporheic invertebrates: An experimental study in microcosms. J. North Am. Benthol. Soc. 2002, 21, 132–149. [Google Scholar] [CrossRef]
- Jarvis, N.J. A review of non-equilibrium water flow and solute transport in soil macropores: Principles, controlling factors and consequences for water quality. Eur. J. Soil Sci. 2007, 58, 523–546. [Google Scholar] [CrossRef]
- Yao, J.; Colas, F.; Solimini, A.G.; Battin, T.J.; Gafny, S.; Morais, M.; Puig, M.Á.; Martí, E.; Pusch, M.T.; Voreadou, C.; et al. Macroinvertebrate community traits and nitrate removal in stream sediments. Freshw. Biol. 2017, 62, 929–944. [Google Scholar] [CrossRef] [Green Version]
- Hoang, T.K.; Probst, A.; Orange, D.; Gilbert, F.; Elger, A.; Kallerhoff, J.; Laurent, F.; Bassil, S.; Duong, T.T.; Gerino, M. Bioturbation effects on bioaccumulation of cadmium in the wetland plant Typha latifolia: A nature-based experiment. Sci. Total Environ. 2018, 618, 1284–1297. [Google Scholar] [CrossRef] [Green Version]
- Blair, J.M.; Bohlen, P.J.; Freckman, D.W. Soil invertebrates as indicators of soil quality. In Methods for Assessing Soil Quality; Doran, J.W., Jones, A.J., Eds.; Soil Science Society of America: Madison, WI, USA, 1996; Volume 49, Chapter 16; pp. 273–291. [Google Scholar] [CrossRef] [Green Version]
- Camacho, N.; Lavelle, P.; Jiménez, J.J. Soil Macrofauna Field Manual-Technical Level; Food and Agriculture Organization of the United Nations: Rome, Italy, 2008; 100p, Available online: https://www.researchgate.net/publication/48418269_Soil_macrofauna_field_Manual (accessed on 20 December 2021).
- Xu, D.; Li, Y.; Howard, A.; Guan, Y. Effect of earthworm Eisenia fetida and wetland plants on nitrification and denitrification potentials in vertical flow constructed wetland. Chemosphere 2013, 92, 201–206. [Google Scholar] [CrossRef]
- Mehring, A.S.; Levin, L.A. Potential roles of soil fauna in improving the efficiency of rain gardens used as natural stormwater treatment systems. J. Appl. Ecol. 2015, 52, 1445–1454. [Google Scholar] [CrossRef] [Green Version]
- Cheik, S.; Bottinelli, N.; Minh, T.T.; Doan, T.T.; Jouquet, P. Quantification of Three Dimensional Characteristics of Macrofauna Macropores and Their Effects on Soil Hydraulic Conductivity in Northern Vietnam. Front. Environ. Sci. 2019, 7, 1–10. [Google Scholar] [CrossRef]
- Haynes, R.J. Nature of the belowground ecosystem and its development during pedogenesis. Adv. Agron. 2014, 127, 43–109. [Google Scholar] [CrossRef]
- Capowiez, Y.; Sammartino, S.; Michel, E. Burrow systems of endogeic earthworms: Effects of earthworm abundance and consequences for soil water infiltration. Pedobiol. 2014, 57, 303–309. [Google Scholar] [CrossRef]
- Capowiez, Y.; Bottinelli, N.; Sammartino, S.; Michel, E.; Jouquet, P. Morphological and functional characterisation of the burrow systems of six earthworm species (Lumbricidae). Biol. Fertil. Soils 2015, 51, 869–877. [Google Scholar] [CrossRef]
- Bouché, M.B. Stratégies lombriciennes. Ecol. Bull. 1977, 25, 122–132. Available online: https://www.jstor.org/stable/20112572 (accessed on 22 December 2021).
- Wen, S.; Shao, M.; Wang, J. Earthworm burrowing activity and its effects on soil hydraulic properties under different soil moisture conditions from the Loess Plateau, China. Sustain. 2020, 12, 9303. [Google Scholar] [CrossRef]
- Monroy, F.; Aira, M.; Domínguez, J.; Velando, A. Seasonal population dynamics of Eisenia fetida (Savigny, 1826) (Oligochaeta, Lumbricidae) in the field. Comptes Rendus. Biol. 2006, 329, 912–915. [Google Scholar] [CrossRef]
- Bottinelli, N.; Hedde, M.; Jouquet, P.; Capowiez, Y. An explicit definition of earthworm ecological categories – Marcel Bouché’s triangle revisited. Geoderma 2020, 372, 114361. [Google Scholar] [CrossRef]
- Bhat, S.; Singh, J.; Vig, A.P. Earthworms as Organic Waste Managers and Biofertilizer Producers. Waste Biomass Valor 2018, 9, 1073–1086. [Google Scholar] [CrossRef]
- Aira, M.; Sampedro, L.; Monroy, F.; Domínguez, J. Detritivorous earthworms directly modify the structure, thus altering the functioning of a microdecomposer food web. Soil Biol. Biochem. 2008, 40, 2511–2516. [Google Scholar] [CrossRef]
- Gómez-Brandón, M.; Lores, M.; Domínguez, J. Species-specific effects of epigeic earthworms on microbial community structure during first stages of decomposition of organic matter. PLoS ONE 2012, 7, e31895. [Google Scholar] [CrossRef] [Green Version]
- Lemtiri, A.; Colinet, G.; Alabi, T.; Cluzeau, D.; Zirbes, L.; Haubruge, E.; Francis, F. Impacts of earthworms on soil components and dynamics. A review. Biotechnol. Agron. Soc. Environ. 2014, 18, 121–133. Available online: https://www.researchgate.net/publication/278622912_Impacts_of_earthworms_on_soil_components_and_dynamics_A_review (accessed on 3 January 2022).
- Yadav, K.D.; Tare, V.; Ahammed, M.M. Vermicomposting of source-separated human faeces by Eisenia fetida: Effect of stocking density on feed consumption rate, growth characteristics and vermicompost production. Waste Manag. 2011, 31, 1162–1168. [Google Scholar] [CrossRef]
- Li, X.; Xing, M.; Yang, J.; Lu, Y. Properties of biofilm in a vermifiltration system for domestic wastewater sludge stabilization. Chem. Eng. J. 2013, 223, 932–943. [Google Scholar] [CrossRef]
- Tejedor, J.; Cóndor, V.; Almeida-Naranjo, C.E.; Guerrero, V.H.; Villamar, C.A. Performance of wood chips/peanut shells biofilters used to remove organic matter from domestic wastewater. Sci. Total Environ. 2020, 738, 139589. [Google Scholar] [CrossRef] [PubMed]
- Li, H.Z.; Wang, S.; Ye, J.F.; Xu, Z.X.; Jin, W. A practical method for the restoration of clogged rural vertical subsurface flow constructed wetlands for domestic wastewater treatment using earthworm. Water Sci. Technol. 2011, 63, 283–290. [Google Scholar] [CrossRef] [PubMed]
- Shipitalo, M.J.; Le Bayon, R.-C. Quantifying the effects of earthworms on soil aggregation and porosity. In Earthworm Ecology, 2nd ed.; Edwards, C.A., Ed.; CRC Press LLC: Boca Raton, FL, USA, 2004; Chapter 10; pp. 183–200. [Google Scholar] [CrossRef] [Green Version]
- Capowiez, Y.; Bastardie, F.; Costagliola, G. Sublethal effects of imidacloprid on the burrowing behaviour of two earthworm species: Modifications of the 3D burrow systems in artificial cores and consequences on gas diffusion in soil. Soil Biol. Biochem. 2006, 38, 285–293. [Google Scholar] [CrossRef]
- Meysman, F.J.R.; Galaktionov, O.S.; Cook, P.L.M.; Janssen, F.; Huettel, M.; Middelburg, J.J. Quantifying biologically and physically induced flow and tracer dynamics in permeable sediments. Biogeosciences 2007, 4, 627–646. [Google Scholar] [CrossRef] [Green Version]
- Ababsa, N.; Kribaa, M.; Tamrabet, L.; Addad, D.; Hallaire, V.; Ouldjaoui, A. Long-term effects of wastewater reuse on hydro physicals characteristics of grassland grown soil in semi-arid Algeria. J. King Saud Univ. Sci. 2020, 32, 1004–1013. [Google Scholar] [CrossRef]
- Wang, D.-B.; Zhang, Z.-Y.; Li, X.-M.; Zheng, W.; Ding, Y.; Yang, B.; Yang, Q.; Zeng, T.-J.; Cao, J.-B.; Yue, X.; et al. Effects of earthworms on surface clogging characteristics of intermittent sand filters. Water Sci. Technol. 2010, 61, 2881–2888. [Google Scholar] [CrossRef]
- Lavrnić, S.; Cristino, S.; Zapater-Pereyra, M.; Vymazal, J.; Cupido, D.; Lucchese, G.; Mancini, B.; Mancini, M.L. Effect of earthworms and plants on the efficiency of vertical flow systems treating university wastewater. Environ. Sci. Pollut. Res. 2019, 26, 10354–10362. [Google Scholar] [CrossRef]
- Lombard Latune, R.; Molle, P. Les Filtres Plantés de Végétaux Pour le Traitement des Eaux Usées Domestiques en Milieu Tropical. Guide de Dimensionnement de la Filière Tropicalisée; AFB: Villeurbanne, France, 2017. [Google Scholar]
- Orange, D. Changer les eaux usées en engrais et embellir les villes; Agnèse, J.F., Dangles, O., Rodary, E., Verdier, V., Sabrié, M.-L., Mourier, T., Lavagne, C., Thivent, V., Eds.; Biodiversité au Sud: Recherches pour un monde durable; IRD: Montpellier, France, 2020; pp. 30–31. ISBN 978-2-7099-2850-2. [Google Scholar]
- Keesstra, S.D.; Geissen, V.; Mosse, K.; Piiranen, S.; Scudiero, E.; Leistra, M.; van Schaik, L. Soil as a filter for groundwater quality. Curr. Opin. Environ. Sustain. 2012, 4, 507–516. [Google Scholar] [CrossRef]
- Seema; Dahiya, R.; Phogat, V.K.; Sheoran, H.S. Hydraulic Properties and Their Dependence on Physico-chemical Properties of Soils: A Review. Curr. J. Appl. Sci. Technol. 2019, 38, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Atalla, A.; Pelissari, C.; de Oliveira, M.; de Souza Pereira, M.A.; Cavalheri, P.S.; Sezerino, P.H.; Magalhães Filho, F.J.C. Influence of earthworm presence and hydraulic loading rate on the performance of vertical flow constructed wetlands. Environ. Technol. 2021, 42, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Capowiez, Y.; Sammartino, S.; Keller, T.; Bottinelli, N. Decreased burrowing activity of endogeic earthworms and effects on water infiltration in response to an increase in soil bulk density. Pedobiol. 2021, 85-86, 150728. [Google Scholar] [CrossRef]
- Lalander, C.H.; Komakech, A.J.; Vinneras, B. Vermicomposting as manure management strategy for urban small-holder animal farms - Kampala case study. Waste Manag. 2015, 39, 96–103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fründ, H.-C.; Butt, K.; Capowiez, Y.; Eisenhauer, N.; Emmerling, C.; Ernst, G.; Potthoff, M.; Schädler, M.; Schrader, S. Using earthworms as model organisms in the laboratory: Recommendations for experimental implementations. Pedobiol. 2010, 53, 119–125. [Google Scholar] [CrossRef]
- Liénard, A.; Guellaf, H.; Boutin, C. Choix de sable pour les lits d’infiltration-percolation. Ingénieries Eau-Agric. Territ. 2000, 59–66. Available online: https://hal.inrae.fr/hal-02579502/document (accessed on 5 January 2022).
- R Core Team. R: A language and environment for statistical computing, Version 3.4.1 (2017-06-30); R Foundation for Statistical Computing: Vienna, Austria, 2018; 3871p, Available online: http://web.mit.edu/r_v3.4.1/fullrefman.pdf (accessed on 5 January 2022).
- Freeze, R.A.; Cherry, J.A. Groundwater; Prentice-Hall: Englewood Cliffs, NJ, USA, 1979; 604p, Available online: http://hydrogeologistswithoutborders.org/wordpress/1979-english/ (accessed on 5 January 2022).
- Forquet, N.; Dubois, V.; Bertrand, C.; Boutin, C. Caractérisation hydrodynamique des sables à utiliser en filtre à sable. Rapport final; ONEMA: Vincennes, France, 2015; 52p, Available online: http://oai.afbiodiversite.fr/cindocoai/download/PUBLI/1049/1/2015_156.pdf_9985Ko (accessed on 5 January 2022).
- Wang, H.; Sheng, L.; Xu, J. Clogging mechanisms of constructed wetlands: A critical review. J. Clean. Prod. 2021, 295, 126455. [Google Scholar] [CrossRef]
- Pucher, B.; Langergraber, G. The State of the Art of Clogging in Vertical Flow Wetlands. Water 2019, 11, 2400. [Google Scholar] [CrossRef] [Green Version]
- Singh, R.; Bhunia, P.; Dash, R.R. Understanding intricacies of clogging and its alleviation by introducing earthworms in soil biofilters. Sci. Total Environ. 2018, 633, 145–156. [Google Scholar] [CrossRef]
- Singh, R.; Bhunia, P.; Dash, R.R. Optimization of bioclogging in vermifilters: A statistical approach. J. Environ. Manag. 2019, 233, 576–585. [Google Scholar] [CrossRef]
- Xing, M.; Zhao, C.; Yang, J.; Lv, B. Feeding behavior and trophic relationship of earthworms and other predators in vermifiltration system for liquid-state sludge stabilization using fatty acid profiles. Bioresour. Technol. 2014, 169, 149–154. [Google Scholar] [CrossRef]
- Wang, Y.; Xing, M.-Y.; Yang, J.; Lu, B. Addressing the role of earthworms in treating domestic wastewater by analyzing biofilm modification through chemical and spectroscopic methods. Environ. Sci. Pollut. Res. 2015, 23, 4768–4777. [Google Scholar] [CrossRef] [PubMed]
- Luo, L.; Lin, H.; Schmidt, J. Quantitative relationships between soil macropore characteristics and preferential flow and transport. Soil Sci. Soc. Am. J. 2010, 74, 1929–1937. [Google Scholar] [CrossRef]
- Le Mer, G.; Jouquet, P.; Capowiez, Y.; Maeght, J.; Tran, T.M.; Doan, T.T.; Bottinelli, N. Age matters: Dynamics of earthworm casts and burrows produced by the anecic Amynthas khami and their effects on soil water infiltration. Geoderma 2020, 382, 114709. [Google Scholar] [CrossRef]
- Bottinelli, N.; Zhou, H.; Capowiez, Y.; Zhang, Z.B.; Qiu, J.; Jouquet, P.; Peng, X.H. Earthworm burrowing activity of two non-Lumbricidae earthworm species incubated in soils with contrasting organic carbon content (Vertisol vs. Ultisol). Biol. Fertil. Soils 2017, 53, 951–955. [Google Scholar] [CrossRef]
- Shuster, W.D.; Subler, S.; McCoy, E.L. The influence of earthworm community structure on the distribution and movement of solutes in a chisel-tilled soil. Appl. Soil Ecol. 2002, 21, 159–167. [Google Scholar] [CrossRef]
- McDaniel, J.P.; Butters, G.; Barbarick, K.A.; Stromberger, M.E. Effects of Aporrectodea Caliginosa on soil hydraulic properties and solute dispersivity. Soil Sci. Soc. Am. J. 2015, 79, 838–847. [Google Scholar] [CrossRef]
- Bastardie, F.; Capowiez, Y.; de Dreuzy, J.-R.; Cluzeau, D. X-ray tomographic and hydraulic characterization of burrowing by three earthworm species in repacked soil cores. Appl. Soil Ecol. 2003, 24, 3–16. [Google Scholar] [CrossRef]
- Wu, L.; Li, X.-N.; Song, H.-L.; Wang, G.-F.; Jin, Q.; Xu, X.-L.; Gao, Y.-C. Enhanced removal of organic matter and nitrogen in a vertical-flow constructed wetland with Eisenia foetida. Desalin. Water Treat. 2013, 51, 7460–7468. [Google Scholar] [CrossRef]
- Hugar, G.M.; Sorganvi, V.; Hiremath, G.M. Effect of organic carbon on soil moisture. Indian J. Nat. Sci. 2012, 3, 1191–1199. Available online: https://www.academia.edu/4754043/Effect_of_Organic_Carbon_on_Soil_Moisture_Address_for_correspondence (accessed on 6 January 2022).
- Nguyen, L.M. Organic matter composition, microbial biomass and microbial activity in gravel-bed constructed wetlands treating farm dairy wastewaters. Ecol. Eng. 2000, 16, 199–221. [Google Scholar] [CrossRef]
- Langergraber, G.; Haberl, R.; Laber, J.; Pressl, A. Evaluation of substrate clogging processes in vertical flow constructed wetlands. Water Sci. Technol. 2003, 48, 25–34. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Lu, M.; Sheng, L.; Wu, H. Study of the spatial and temporal distribution of accumulated solids in an experimental vertical-flow constructed wetland system. Sci. Total Environ. 2018, 628-629, 509–516. [Google Scholar] [CrossRef] [PubMed]
- Edwards, C.A. Earthworm ecology, 2nd ed.; CRC Press LLC: Boca Raton, FL, USA, 2004; p. 448. [Google Scholar] [CrossRef]
- Suthar, S. Vermicomposting of vegetable-market solid waste using Eisenia fetida: Impact of bulking material on earthworm growth and decomposition rate. Ecol. Eng. 2009, 35, 914–920. [Google Scholar] [CrossRef]
- Edwards, C.A.; Arancon, N.Q. The science of vermiculture: The use of earthworms in organic waste management. In Vermi technologies for developing countries, Proceedings of the International Symposium-Workshop on Vermi Technologies for Developing Countries, Los Baños, Laguna, Philippines, 16–18 November 2005; Guerrero, R.D., III, Guerrero-del Castillo, M.R.A., Eds.; Philippine Fisheries Association Inc.: Laguna, Philippines; pp. 16–18. Available online: https://urbanwormcompany.com/wp-content/uploads/2014/09/THE-SCIENCE-OF-VERMICULTURE-Edwards-Arancon.pdf (accessed on 6 January 2022).
- Suthar, S. Vermistabilization of wastewater sludge from milk processing industry. Ecol. Eng. 2012, 47, 115–119. [Google Scholar] [CrossRef]
- Suthar, S.; Sajwan, P.; Kumar, K. Vermiremediation of heavy metals in wastewater sludge from paper and pulp industry using earthworm Eisenia fetida. Ecotoxicol. Environ. Saf. 2014, 109, 177–184. [Google Scholar] [CrossRef]
- Singh, R.P.; Fu, D.; Jia, J.; Wu, J. Performance of earthworm-enhanced horizontal sub-surface flow filter and constructed wetland. Water 2018, 10, 1309. [Google Scholar] [CrossRef] [Green Version]
- Cheng, P.; Ge, Z.G.; Zhao, Y.J.; Yan, C.; Hu, C.W. Performance of purifying synthetic high-strength chemical fertilizer wastewater by earthworm eco-filter system. Asian J. Chem. 2013, 25, 10050–10056. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gilibert, O.; Gerino, M.; Costa, D.-T.; Sauvage, S.; Julien, F.; Capowiez, Y.; Orange, D. Density Effect of Eisenia sp. Epigeic Earthworms on the Hydraulic Conductivity of Sand Filters for Wastewater Treatment. Water 2022, 14, 1048. https://doi.org/10.3390/w14071048
Gilibert O, Gerino M, Costa D-T, Sauvage S, Julien F, Capowiez Y, Orange D. Density Effect of Eisenia sp. Epigeic Earthworms on the Hydraulic Conductivity of Sand Filters for Wastewater Treatment. Water. 2022; 14(7):1048. https://doi.org/10.3390/w14071048
Chicago/Turabian StyleGilibert, Océane, Magali Gerino, Dan-Tâm Costa, Sabine Sauvage, Frédéric Julien, Yvan Capowiez, and Didier Orange. 2022. "Density Effect of Eisenia sp. Epigeic Earthworms on the Hydraulic Conductivity of Sand Filters for Wastewater Treatment" Water 14, no. 7: 1048. https://doi.org/10.3390/w14071048
APA StyleGilibert, O., Gerino, M., Costa, D. -T., Sauvage, S., Julien, F., Capowiez, Y., & Orange, D. (2022). Density Effect of Eisenia sp. Epigeic Earthworms on the Hydraulic Conductivity of Sand Filters for Wastewater Treatment. Water, 14(7), 1048. https://doi.org/10.3390/w14071048