Regional Rainfall Regimes Affect the Sensitivity of the Huff Quartile Classification to the Method of Event Delineation
Abstract
:1. Introduction
- -
- Does the choice of the MIT (1 h, 6 h, 12 h, etc.) significantly affect the proportions of events classified as 1Q, 2Q, etc., using the Huff quartile classification?
- -
- If the outcome of the Huff classification is affected by the choice of a MIT, does any change in proportions emerge equally in all quartiles, or in only one or more, and how large is any effect on the quartile classification?
- -
- How are the mean properties of a sample of quartiles from a given location (such as the mean rainfall rate of Q1, Q2, and so on) affected by the MIT criterion?
- -
- What might account for any dependencies of the Huff classification on the choice of the MIT criterion? In particular, does the dependence in some way arise as a consequence of the local rainfall regime (monsoonal, frontal, orographic, convective, etc.), or is it wholly a function of the MIT approach?
2. Materials and Methods
Selection and Processing of Rainfall Events
3. Results
3.1. The Mean Properties of All Rainfall Events at MM and FG
3.2. Effect of the MIT Criterion on the Huff Quartile Classification of Rainfall Events
3.3. The Process of Subdividing of Rainfall Events into Quartiles
3.4. Rainfall Intensities in the Quartiles
3.5. Are the Quartile Intensities Statistically Different When No-Rain Quartiles Are Excluded?
4. Discussion
What Accounts for the Influence of the MIT on the Huff Quartile Classification?
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wartalska, K.; Kaźmierczak, B.; Nowakowska, M.; Kotowski, A. Analysis of Hyetographs for Drainage System Modeling. Water 2020, 12, 149. [Google Scholar] [CrossRef] [Green Version]
- Horner, W.W.; Jens, S.W. Surface Runoff Determination from Rainfall without Using Coefficients. Trans. Am. Soc. Civ. Eng. 1942, 107, 1039–1075. [Google Scholar] [CrossRef]
- Huff, F.A. Time distribution of rainfall in heavy storms. Water Resour. Res. 1967, 3, 1007–1019. [Google Scholar] [CrossRef]
- Yin, S.; Xie, Y.; Nearing, M.A.; Guo, W.; Zhu, Z. Intra-storm temporal patterns of rainfall in China using Huff curves. Trans. Am. Soc. Agric. Biol. Eng. 2016, 59, 1619–1632. [Google Scholar]
- Pan, C.; Wang, X.; Liu, L.; Huang, H.; Wang, D. Improvement to the Huff Curve for Design Storms and Urban Flooding Simulations in Guangzhou, China. Water 2017, 9, 411. [Google Scholar] [CrossRef] [Green Version]
- Back, Á.J.; Rodrigues, M.L.G. Characterization of temporal rainfall distribution in Florianópolis, Santa Catarina, Brazil. Rev. Bras. Climatol. 2021, 28, 17. [Google Scholar] [CrossRef]
- Xiong, J.; Tang, C.; Gong, L.; Chen, M. Variability of rainfall time distributions and their impact on peak discharge in the Wenchuan County, China. Bull. Eng. Geol. Environ. 2021, 80, 7113–7129. [Google Scholar] [CrossRef]
- El-Sayed, E.A.H. Development of synthetic rainfall distribution curves for Sinai area. Ain Shams Eng. J. 2018, 9, 1949–1957. [Google Scholar] [CrossRef]
- An, J.; Zhang, Y.; Wang, Y. Rainstorm pattern effects on the size distribution of soil aggregate in eroded sediment within contour ridge systems. J. Soils Sediments 2020, 20, 2192–2206. [Google Scholar] [CrossRef]
- Zeimetz, F.; Schaefli, B.; Artigue, G.; Hernández, J.G.; Schleiss, A.J. Swiss Rainfall Mass Curves and their Influence on Extreme Flood Simulation. Water Resour. Manag. 2018, 32, 2625–2638. [Google Scholar] [CrossRef]
- Adams, B.J.; Fraser, H.G.; Howard, C.D.D.; Hanafy, M.S. Meteorological Data Analysis for Drainage System Design. J. Environ. Eng. 1986, 112, 827–848. [Google Scholar] [CrossRef]
- Bonta, J.V.; Shahalam, A. Cumulative storm rainfall distributions: Comparison of Huff curves. J. Hydrol. 2003, 42, 65–74. [Google Scholar]
- Bonta, J.V. Development and utility of Huff curves for disaggregating precipitation amounts. Appl. Eng. Agric. 2004, 20, 641–656. [Google Scholar] [CrossRef]
- Dunkerley, D. Identifying individual rain events from pluviograph records: A review with analysis of data from an Australian dryland site. Hydrol. Process. 2008, 22, 5024–5036. [Google Scholar] [CrossRef]
- Coutinho, J.V.; Almeida, C.D.N.; Leal, A.M.F.; Barbosa, L.R. Characterization of sub-daily rainfall properties in three raingauges located in northeast Brazil. Proc. Int. Assoc. Hydrol. Sci. 2014, 364, 345–350. [Google Scholar] [CrossRef]
- Wang, W.; Yin, S.; Xie, Y.; Nearing, M.A. Minimum Inter-Event Times for Rainfall in the Eastern Monsoon Region of China. Trans. ASABE 2019, 62, 9–18. [Google Scholar] [CrossRef] [Green Version]
- Joo, J.; Lee, J.; Kim, J.H.; Jun, H.; Jo, D. Inter-Event Time Definition Setting Procedure for Urban Drainage Systems. Water 2013, 6, 45–58. [Google Scholar] [CrossRef] [Green Version]
- Paoletti, A.; Becciu, G.; Sanfilippo, U. Filling and emptying cycles for stormwater storage tanks in separated systems. In Proceedings of the 6th International Conference on Sustainable Techniques and Strategies for Urban Water Management, Lyon, France, 25–28 June 2007. [Google Scholar]
- Pérez-Arellano, R.; Moreno-Pérez, M.; Roldán-Cañas, J. Estimation of canopy drying time after rainfall using leaf wetness sensor in Pinus pinea in a Mediterranean forest in Córdoba, Spain. Geophys. Res. Abstr. 2016, 18, EGU2016-4883. [Google Scholar]
- Driscoll, E.D.; Palhegyi, G.E.; Strecker, E.W.; Shelley, P.E. Analysis of Storm Event Characteristics for Selected Rainfall Gages throughout the United States; U.S. Environmental Protection Agency: Oakland, CA, USA, 1989; p. 43.
- Pui, A.; Sharma, A.; Santoso, A.; Westra, S. Impact of the El Niño–Southern Oscillation, Indian Ocean Dipole, and Southern Annular Mode on Daily to Subdaily Rainfall Characteristics in East Australia. Mon. Weather Rev. 2012, 140, 1665–1682. [Google Scholar] [CrossRef] [Green Version]
- Carbone, M.; Turco, M.; Brunetti, G.; Piro, P. A Cumulative Rainfall Function for Subhourly Design Storm in Mediterranean Urban Areas. Adv. Meteorol. 2015, 2015, 528564. [Google Scholar] [CrossRef] [Green Version]
- Chin, R.J.; Lai, S.H.; Chang, K.B.; Jaafar, W.Z.W.; Othman, F. Relationship between minimum inter-event time and the number of rainfall events in Peninsular Malaysia. Weather 2016, 71, 213–218. [Google Scholar] [CrossRef]
- Medina-Cobo, M.T.; García-Marín, A.; Estévez, J.; Ayuso-Muñoz, J. The identification of an appropriate Minimum Inter-event Time (MIT) based on multifractal characterization of rainfall data series. Hydrol. Process. 2016, 30, 3507–3517. [Google Scholar] [CrossRef]
- Othman, M.A.; A Ghani, A. Distribution of rainfall events in northern region of Peninsular Malaysia. IOP Conf. Ser. Earth Environ. Sci. 2020, 476. [Google Scholar] [CrossRef]
- Dunkerley, D.L. Rainfall intensity bursts and the erosion of soils: An analysis highlighting the need for high temporal resolution rainfall data for research under current and future climates. Earth Surf. Dyn. 2019, 7, 345–360. [Google Scholar] [CrossRef] [Green Version]
- Dunkerley, D. An approach to analysing plot scale infiltration and runoff responses to rainfall of fluctuating intensity. Hydrol. Process. 2016, 31, 191–206. [Google Scholar] [CrossRef]
- Zhai, X.; Guo, L.; Liu, R.; Zhang, Y. Rainfall threshold determination for flash flood warning in mountainous catchments with consideration of antecedent soil moisture and rainfall pattern. Nat. Hazards 2018, 94, 605–625. [Google Scholar] [CrossRef]
- Ran, Q.; Wang, F.; Gao, J. Modelling Effects of Rainfall Patterns on Runoff Generation and Soil Erosion Processes on Slopes. Water 2019, 11, 2221. [Google Scholar] [CrossRef] [Green Version]
- Woodcock, A.H. The Origin of Trade-Wind Orographic Shower Rains. Tellus 1960, 12, 315–326. [Google Scholar] [CrossRef]
- Connor, G.J.; Bonell, M. Air mass and dynamic parameters affecting trade wind precipitation on the northeast Queensland tropical coast. Int. J. Clim. 1998, 18, 1357–1372. [Google Scholar] [CrossRef]
- Dunkerley, D. How does sub-hourly rainfall intermittency bias the climatology of hourly and daily rainfalls? Examples from arid and wet tropical Australia. Int. J. Clim. 2018, 39, 2412–2421. [Google Scholar] [CrossRef]
MIT (Min) | N Events (>1 Tip Event) | Mean Quartile Duration (h) | Mean Event Duration (h) | Mean Event Depth (mm) | Mean Event Intensity (mm h−1) |
---|---|---|---|---|---|
30 | 2664 | 0.25 | 0.99 | 3.43 | 4.92 |
60 | 1636 | 0.6 | 2.40 | 5.59 | 3.79 |
120 | 936 | 1.47 | 5.87 | 9.77 | 3.08 |
240 | 544 | 3.28 | 13.11 | 16.82 | 2.29 |
360 | 427 | 4.77 | 19.07 | 21.42 | 2.22 |
720 | 263 | 9.67 | 38.66 | 34.78 | 1.61 |
1440 | 163 | 20.32 | 81.29 | 56.12 | 0.87 |
MIT (Min) | N Events (>1 Tip Event) | Mean Quartile Duration (h) | Mean Event Duration (h) | Mean Event Depth (mm) | Mean Event Intensity (mm h−1) |
---|---|---|---|---|---|
30 | 465 | 0.24 | 0.96 | 5.76 | 8.85 |
60 | 383 | 0.41 | 1.63 | 6.99 | 7.54 |
120 | 328 | 0.63 | 2.51 | 8.16 | 6.11 |
240 | 292 | 0.92 | 3.69 | 9.17 | 4.89 |
360 | 262 | 1.28 | 5.13 | 10.22 | 4.32 |
720 | 238 | 1.96 | 7.82 | 11.25 | 3.96 |
1440 | 208 | 3.14 | 12.56 | 12.87 | 3.24 |
MIT (Min) | N Events | Mean Quartile Duration (h) | Mean Event Duration (h) | Mean Event Depth (mm) | Mean Event Intensity (mm h−1) |
---|---|---|---|---|---|
30 | 1308 | 0.43 | 1.71 | 5.80 | 4.69 |
60 | 939 | 0.95 | 3.82 | 8.79 | 3.54 |
120 | 607 | 2.14 | 8.55 | 14.27 | 2.84 |
240 | 391 | 4.40 | 17.60 | 22.69 | 2.08 |
360 | 322 | 6.09 | 24.36 | 27.76 | 2.03 |
720 | 216 | 11.38 | 45.50 | 41.36 | 1.71 |
1440 | 129 | 24.31 | 97.24 | 68.97 | 0.82 |
MIT (Min) | N Events | Mean Quartile Duration (h) | Mean Event Duration (h) | Mean Event Depth (mm) | Mean Event Intensity (mm h−1) |
---|---|---|---|---|---|
30 | 222 | 0.39 | 1.58 | 9.43 | 10.29 |
60 | 212 | 0.63 | 2.50 | 10.81 | 8.23 |
120 | 196 | 0.91 | 3.62 | 12.19 | 6.83 |
240 | 184 | 1.25 | 4.98 | 13.31 | 5.77 |
360 | 170 | 1.70 | 6.81 | 14.59 | 5.14 |
720 | 158 | 2.57 | 10.27 | 15.94 | 4.68 |
1440 | 144 | 4.07 | 16.26 | 17.69 | 3.74 |
MIT (Min) | N Events | % 1Q | % Q2 | % 3Q | % 4Q |
---|---|---|---|---|---|
30 | 1308 | 33.7 | 19.5 | 18.3 | 28.4 |
60 | 939 | 33.9 | 20.3 | 17.8 | 27.0 |
120 | 607 | 31.9 | 25.5 | 19.1 | 23.4 |
240 | 391 | 32.5 | 27.1 | 20.2 | 20.2 |
360 | 322 | 36.2 | 25.4 | 19.2 | 19.2 |
720 | 216 | 40.3 | 22.7 | 20.8 | 16.2 |
1440 | 129 | 38.3 | 28.1 | 25.0 | 9.4 |
MIT (Min) | N Events | % 1Q | % Q2 | % 3Q | % 4Q |
---|---|---|---|---|---|
30 | 222 | 39.6 | 19.4 | 22.5 | 18.5 |
60 | 212 | 39.2 | 20.8 | 17.4 | 22.6 |
120 | 196 | 43.9 | 18.4 | 18.4 | 19.4 |
240 | 184 | 39.7 | 17.9 | 18.5 | 23.9 |
360 | 170 | 38.2 | 18.8 | 19.4 | 23.5 |
720 | 158 | 40.5 | 17.1 | 17.1 | 24.7 |
1440 | 144 | 38.2 | 14.6 | 18.1 | 29.2 |
Field Site: | MM | FG | ||||||
---|---|---|---|---|---|---|---|---|
MIT (Min) | Q1 | Q2 | Q3 | Q4 | Q1 | Q2 | Q3 | Q4 |
30 | 5.8 | 4.6 (5.2) | 4.0 (4.6) | 4.3 | 13.7 | 11.2 (11.6) | 8.6 (9.3) | 7.6 |
60 | 4.4 | 3.2 (4.3) | 2.9 (3.5) | 3.1 | 11.9 | 8.9 (9.7) | 6.1 (7.0) | 5.9 |
120 | 3.5 | 3.0 (3.5) | 2.5 (2.9) | 2.3 | 10.3 | 7.1 (7.9) | 5.1 (6.0) | 4.8 |
240 | 2.8 | 2.3 (2.8) | 1.7 (2.0) | 1.5 | 8.6 | 5.9 (7.0) | 4.2 (5.0) | 4.4 |
360 | 2.9 | 2.2 (2.5) | 1.7 (1.9) | 1.3 | 7.4 | 5.3 (6.9) | 3.8 (4.9) | 4.0 |
720 | 2.5 | 1.9 (2.4) | 1.5 (1.7) | 0.9 | 6.7 | 4.9 (6.3) | 3.6 (5.0) | 3.5 |
1440 | 1.1 | 0.9 (1.1) | 0.8 (0.9) | 0.5 | 5.0 | 3.7 (5.7) | 3.1 (4.8) | 3.0 |
MIT (Min) | N Events | % 1Q | % Q2 | % 3Q | % 4Q |
---|---|---|---|---|---|
30 | 222 | 39.6 | 19.4 | 22.5 | 18.5 |
60 | 212 | 39.2 | 20.8 | 17.4 | 22.6 |
120 | 196 | 43.9 | 18.4 | 18.4 | 19.4 |
240 | 184 | 39.7 | 17.9 | 18.5 | 23.9 |
360 | 170 | 38.2 | 18.8 | 19.4 | 23.5 |
720 | 158 | 40.5 | 17.1 | 17.1 | 24.7 |
1440 | 144 | 38.2 | 14.6 | 18.1 | 29.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dunkerley, D. Regional Rainfall Regimes Affect the Sensitivity of the Huff Quartile Classification to the Method of Event Delineation. Water 2022, 14, 1047. https://doi.org/10.3390/w14071047
Dunkerley D. Regional Rainfall Regimes Affect the Sensitivity of the Huff Quartile Classification to the Method of Event Delineation. Water. 2022; 14(7):1047. https://doi.org/10.3390/w14071047
Chicago/Turabian StyleDunkerley, David. 2022. "Regional Rainfall Regimes Affect the Sensitivity of the Huff Quartile Classification to the Method of Event Delineation" Water 14, no. 7: 1047. https://doi.org/10.3390/w14071047
APA StyleDunkerley, D. (2022). Regional Rainfall Regimes Affect the Sensitivity of the Huff Quartile Classification to the Method of Event Delineation. Water, 14(7), 1047. https://doi.org/10.3390/w14071047