Coupling Coordination and Influencing Factors of Land Development Intensity and Urban Resilience of the Yangtze River Delta Urban Agglomeration
Abstract
:1. Introduction
2. Research Area, Data Sources and Research Methods
2.1. Overview of the Research Area
2.2. Data Sources
2.3. Research Methods
2.3.1. Construction of the Evaluation Index System
2.3.2. Comprehensive Evaluation Model
2.3.3. Coupling Coordination Degree Model
2.3.4. Panel Tobit Regression Model
3. Results Analysis
3.1. Overview of Land Development Intensity and Urban Resilience
3.1.1. Overview of Land Development Intensity Level
3.1.2. Overview of Urban Resilience Level
3.2. Spatio-Temporal Characteristics of Coupling Coordination Degree between Land Development Intensity and Urban Resilience
3.2.1. Temporal Evolution of Coupling Coordination Degree
3.2.2. Spatial Differentiation Characteristics of Coupling Coordination Degree
3.2.3. Characteristics and Changes of Coupling Coordinated Development Types
3.3. Influencing Factors on Coupling Coordination Degree between Land Development Intensity and Urban Resilience
3.3.1. Variable Selection
3.3.2. Results Analysis
4. Conclusions and Suggestions
4.1. Conclusions
4.2. Policy Suggestions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Qu, G.F.; Xia, C.H. Strategic priorities of resilient territorial space construction in China. Urban Plan. 2021, 2, 44–48. [Google Scholar]
- Jin, G.; Shi, X.; He, D.W.; Guo, B.S.; Li, Z.H.; Shi, X.B. Designing a spatial pattern to rebalance the orientation of development and protection in Wuhan. J. Geogr. Sci. 2020, 30, 569–582. [Google Scholar] [CrossRef]
- Holling, C.S. Resilience and stability of ecological systems. Annu. Rev. Ecol. Syst. 1973, 4, 1–23. [Google Scholar] [CrossRef] [Green Version]
- Shao, Y.W.; Xu, J. Urban resilience: Conceptual analysis based on an international literature review. Urban Plan. Int. 2015, 2, 48–54. [Google Scholar]
- Meerow, S.; Newell, J.P.; Stults, M. Defining urban resilience: A review. Landsc. Urban Plan. 2016, 147, 38–49. [Google Scholar] [CrossRef]
- Gunderson, L.H.; Holling, C.S. Understanding Transformations in Human and Natural Systems; Island Press: Washington, DC, USA, 2002. [Google Scholar]
- Lu, P.; Stead, D. Understanding the Notion of Resilience in Spatial Planning: A Case Study of Rotterdam, the Netherlands. Cities 2013, 35, 200–212. [Google Scholar] [CrossRef]
- The Rockefeller Foundation, ARUP. Index C R. City Resilience Framework. The Rockefeller Foundation. 2014. Available online: http://publications.arup.com/publications/%20c/%20city_resilience_framework (accessed on 12 October 2021).
- Allan, P.; Bryant, M. Resilience as a Framework for Urbanism and Recovery. J. Landsc. Archit. 2011, 6, 34–45. [Google Scholar] [CrossRef]
- Oto, H.; Aura, R.; Monika, S. Resilience Capacity and Vulnerability: A Joint Analysis with Reference to Slovak Urban Districts. Cities 2018, 73, 24–35. [Google Scholar]
- Sharifi, A.; Yamagata, Y. Resilient Urban Planning: Major Principles and Criteria. ICAE 2014, 61, 1491–1495. [Google Scholar] [CrossRef] [Green Version]
- Anna, B.; Domenico, A.; Gaetano, M. A methodological framework assessing disaster resilience of city ecosystems to enhance resource use efficiency. Int. J. Urban Sustain. Dev. 2017, 9, 136–150. [Google Scholar]
- Oto, H. Cities of Resilience: Integrated Adaptive Planning. Qual. Innov. Prosper.-Kval. Inovacia Prosper. 2017, 21, 106–118. [Google Scholar]
- Resilience Alliance. Urban Resilience Research Prospectus. Australia. CSIRO. 2007. Available online: http://www.resalliance.org/index.php/urban_resilience (accessed on 19 June 2020).
- Jha, A.K.; Miner, T.W.; Stanton Geddes, Z. Building Urban Resilience: Principles, Tools, and Practice; World Bank Publications: Washington, DC, USA, 2013. [Google Scholar]
- Zhang, M.M.; Chen, W.G.; Cai, K.; Gao, X.; Zhang, X.S.; Liu, J.X.; Wang, Z.Y.; Li, D.S. Analysis of the Spatial Distribution Characteristics of Urban Resilience and Its Influencing Factors: A Case Study of 56 Cities in China. Int. J. Environ. Res. Public Health 2019, 16, 4442. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, X.H.; Lou, J.N.; Wang, Y. Spatial-temporal pattern evolution and dynamic simulation of urban resilience in Harbin-Changchun Urban agglomeration. Geogr. Sci. 2020, 40, 2000–2009. [Google Scholar]
- Da Silva, S.G.; Pacheco, L.D.; Rafael, V.D.; Pantaleão, L.H. Identifying Constraints to Increase the Resilience of Cities: A Case Study of the City of Porto Alegre. J. Homel. Secur. Emerg. Manag. 2017, 14, 20160057. [Google Scholar] [CrossRef]
- Pei, J.J.; Liu, W.; Han, L. Research on Evaluation Index System of Chinese City Safety Resilience Based on Delphi Method and Cloud Model. Int. J. Environ. Res. Public Health 2019, 16, 3802. [Google Scholar] [CrossRef] [Green Version]
- Bottero, M.; Datola, G.; De Angelis, E. A System Dynamics Model and Analytic Network Process: An Integrated Approach to Investigate Urban Resilience. Land 2020, 9, 242. [Google Scholar] [CrossRef]
- Yu, H.C.; Liu, Y.; Liu, C.L.; Fan, F. Spatiotemporal Variation and Inequality in China’s Economic Resilience across Cities and Urban Agglomerations. Sustainability 2018, 10, 4754. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.M.; Yang, J.Y.; Li, L.S.; Shen, D.Y.; Wei, G.; Khan, H.U.R.; Dong, S.J. Measuring the resilience to floods: A comparative analysis of key flood control cities in China. Int. J. Disaster Risk Reduct. 2021, 59, 102248. [Google Scholar] [CrossRef]
- Tyler, S.; Nugraha, E.; Nguyen, H.K.; Van Nguyen, N.; Sari, A.D.; Thinpanga, P.; Tran, T.T.; Verma, S.S. Indicators of urban climate resilience: A contextual approach. Environ. Sci. Policy 2016, 66, 420–426. [Google Scholar] [CrossRef]
- Chen, X.S.; Quan, R.S. A spatiotemporal analysis of urban resilience to the COVID-19 pandemic in the Yangtze River Delta. Nat. Hazards 2021, 106, 829–854. [Google Scholar] [CrossRef]
- Wang, S.J.; Cui, Z.T.; Lin, J.J.; Xie, J.Y.; Su, K. The coupling relationship between urbanization and ecological resilience in the Pearl River Delta. J. Geogr. Sci. 2022, 32, 44–64. [Google Scholar] [CrossRef]
- Zhou, Q.; Zhu, M.K.; Qiao, Y.R.; Zhang, X.L.; Chen, J. Achieving resilience through smart cities? Evidence from China. Habitat Int. 2021, 111, 102348. [Google Scholar] [CrossRef]
- Cao, Q.; Huang, Y.D.; Ran, B.S.; Zeng, G.; Van Rompaey, A.; Shi, M.J. Coordination Conflicts between Urban Resilience and Urban Land Evolution in Chinese Hilly City of Mianyang. Remote Sens. 2021, 13, 4887. [Google Scholar] [CrossRef]
- Zhang, M.D.; Zhang, R. Coupling coordination of urban resilience and urban land use efficiency in Northeast China. Ind. Technol. Econ. 2021, 40, 105–114. [Google Scholar]
- Wang, K.; Zhang, L.J.; Zhang, L.L.; Cheng, S.J. Coupling Coordination Assessment on Sponge City Construction and Its Spatial Pattern in Henan Province, China. Water 2020, 12, 3482. [Google Scholar] [CrossRef]
- Peng, R.X.; Liu, T.; Cao, G.Z. Spatial difference of urban economic resilience and its industrial structure explanation in eastern Coastal China. Geogr. Res. 2021, 40, 1732–1748. [Google Scholar]
- Jin, G.; Chen, K.; Wang, P.; Guo, B.S.; Dong, Y.; Yang, J. Trade-offs in land-use competition and sustainable land development in the North China Plain. Technol. Forecast. Soc. Chang. 2019, 141, 36–46. [Google Scholar] [CrossRef]
- Zhang, P.Y.; Yang, D.; Qin, M.Z.; Jing, W.L. Spatial heterogeneity analysis and driving forces exploring of built-up land development intensity in Chinese prefecture-level cities and implications for future Urban Land intensive use. Land Use Policy 2020, 99, 104958. [Google Scholar] [CrossRef]
- Tan, S.K.; Liu, Q.; Han, S.Y. Spatial-temporal evolution of coupling relationship between land development intensity and resources environment carrying capacity in China. J. Environ. Manag. 2022, 99, 113778. [Google Scholar] [CrossRef]
- Lu, H.; Lu, X.; Jiao, L.D.; Zhang, Y. Evaluating urban agglomeration resilience to disaster in the Yangtze Delta city group in China. Sustain. Cities Soc. 2022, 76, 103464. [Google Scholar] [CrossRef]
- Dong, X.J.; Shi, T.; Zhang, W.; Zhou, Q. Temporal and Spatial Differences in the Resilience of Smart Cities and Their Influencing Factors: Evidence from Non-Provincial Cities in China. Sustainability 2020, 12, 1321. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.S.; Tong, L.J. Spatio-temporal coupling relationship between development intensity and ecological environment in restricted development areas of Northeast China. Geogr. Sci. 2021, 41, 684–694. [Google Scholar]
- Feng, J.Y.; Liu, Y.L.; Wang, J.; Zhang, H. Impact of economic development level and environmental pressure on urban resilience: Based on panel data of 11 prefecture-level cities in Shanxi Province. Ecol. Econ. 2020, 36, 101–106, 163. [Google Scholar]
- Zhu, J.H.; Sun, H.X. Spatial-temporal evolution and influencing factors of urban resilience in three Urban agglomerations in China. Soft Sci. 2020, 34, 72–79. [Google Scholar]
Target Layer | System Layer | Evaluation Indicator | Index Meaning | Weight | Attribute |
---|---|---|---|---|---|
Evaluation index system of land developmentintensity level | Population density | Population density in municipal district (person/km2) | Population carrying capacity | 0.2811 | + |
Construction intensity | Proportion of construction land area in municipal district (%) | Land construction intensity | 0.3647 | + | |
Economic density | GDP per square kilometer land in municipal district (10,000 yuan/km2) | Land economic benefits | 0.3542 | + | |
Evaluation index system of urbanresilience level | Ecological Resilience (0.0925) | Green space rate of built-up area (%) | Urban greening | 0.0180 | + |
Green space area of parks per capita (m2) | Disaster avoidance space | 0.0350 | + | ||
Industrial wastewater emission per 10,000 yuan GDP (t) | Industrial green development level | 0.0145 | - | ||
Industrial SO2 emission per 10,000 yuan GDP (kg) | 0.0064 | - | |||
Urban sewage treatment rate (%) | Environmental governance response | 0.0038 | + | ||
Comprehensive utilization rate of industrial solid waste (%) | Comprehensive utilization of waste | 0.0109 | + | ||
Harmless treatment rate of domestic waste (%) | Environmental remediation | 0.0039 | + | ||
Economic Resilience (0.2879) | Per capita GDP (yuan) | Economic development | 0.0608 | + | |
Proportion of secondary and tertiary industry GDP (%) | Industrial structure l | 0.0126 | + | ||
Proportion of government public financial revenue in GDP (%) | Economic growth | 0.0396 | + | ||
Deposit balance of per capita financial institutions (yuan) | Economic recovery capability | 0.0934 | + | ||
Proportion of science and technology expenditure in financial expenditure (%) | Scientific and technological innovation | 0.0815 | + | ||
Social Resilience (0.2838) | Average wage of employees (yuan) | Residents’ ability to resist risk | 0.0563 | + | |
Registered unemployment rate in cities and towns (%) | Social employment pressure | 0.0402 | - | ||
Number of doctors per 10,000 people (person) | Medical and health | 0.0421 | + | ||
Number of beds in hospitals and health centers per 10,000 people (number) | 0.0516 | + | |||
Number of buses per 10,000 people (vehicles) | Transportation facilities | 0.0602 | + | ||
Number of public management and social organization personnel per 10,000 people (person) | Social management | 0.0334 | + | ||
Engineering resilience (0.3486) | Per capita daily domestic water consumption (liters) | Efficiency of resource utilization | 0.0293 | - | |
Urban road area per capita (m2) | Road traffic | 0.0345 | + | ||
Road network density in built-up area (km/km2) | 0.0892 | + | |||
Density of water supply pipeline in built-up area (km/km2) | Infrastructure | 0.1018 | + | ||
Density of drainage pipeline in built-up area (km/km2) | 0.0343 | + | |||
Number of mobile phone users per 10,000 people (households) | Popularity of communication technology | 0.0595 | + |
City | 2009 | 2019 | ||||||||
Urban Resilience Level | Land Development Intensity | Coupling Coordination D Value | Coupling Coordination Level | Coupling Coordination Type | Urban Resilience Level | Land Development Intensity | Coupling Coordination D Value | Coupling Coordination Level | Coupling Coordination Type | |
Shanghai | 0.3661 | 0.6418 | 0.7834 | Moderate coordination | Urban resilience lags behind | 0.5504 | 0.9128 | 0.9814 | Excellent coordination | Urban resilience lags behind |
Nanjing | 0.3062 | 0.1920 | 0.5407 | Bare coordinate | Land development intensity lags behind | 0.5130 | 0.2625 | 0.7020 | Moderate coordination | Land development intensity lags behind |
Wuxi | 0.4635 | 0.2703 | 0.6842 | Moderate coordination | Land development intensity lags behind | 0.5261 | 0.4372 | 0.8045 | Excellent coordination | Land development intensity lags behind |
Changzhou | 0.3851 | 0.2682 | 0.6408 | Moderate coordination | Land development intensity lags behind | 0.4269 | 0.3362 | 0.7030 | Moderate coordination | Land development intensity lags behind |
Suzhou | 0.3756 | 0.3162 | 0.6620 | Moderate coordination | Land development intensity lags behind | 0.5751 | 0.2957 | 0.7500 | Moderate coordination | Land development intensity lags behind |
Nantong | 0.2524 | 0.3333 | 0.5723 | Bare coordinate | Urban resilience lags behind | 0.4441 | 0.4373 | 0.7611 | Moderate coordination | Land development intensity lags behind |
Yancheng | 0.2122 | 0.1427 | 0.4244 | Bare coordinate | Land development intensity lags behind | 0.3718 | 0.1359 | 0.5332 | Bare coordinate | Land development intensity lags behind |
Yangzhou | 0.3500 | 0.2316 | 0.5967 | Bare coordinate | Land development intensity lags behind | 0.4120 | 0.2752 | 0.6604 | Moderate coordination | Land development intensity lags behind |
Zhenjiang | 0.3141 | 0.1544 | 0.5169 | Bare coordinate | Land development intensity lags behind | 0.4556 | 0.2471 | 0.6651 | Moderate coordination | Land development intensity lags behind |
Taizhou | 0.2995 | 0.1923 | 0.5361 | Bare coordinate | Land development intensity lags behind | 0.4044 | 0.2334 | 0.6296 | Moderate coordination | Land development intensity lags behind |
Hangzhou | 0.3564 | 0.2994 | 0.6407 | Moderate coordination | Land development intensity lags behind | 0.5545 | 0.3578 | 0.7778 | Moderate coordination | Land development intensity lags behind |
Ningbo | 0.2997 | 0.2270 | 0.5592 | Bare coordinate | Land development intensity lags behind | 0.5088 | 0.2960 | 0.7217 | Moderate coordination | Land development intensity lags behind |
Jiaxing | 0.2693 | 0.2479 | 0.5467 | Bare coordinate | Land development intensity lags behind | 0.4511 | 0.3360 | 0.7161 | Moderate coordination | Land development intensity lags behind |
Huzhou | 0.2760 | 0.0743 | 0.4073 | Bare coordinate | Land development intensity lags behind | 0.4346 | 0.1486 | 0.5759 | Bare coordinate | Land development intensity lags behind |
Shaoxing | 0.3099 | 0.4044 | 0.6552 | Moderate coordination | Urban resilience lags behind | 0.3879 | 0.2673 | 0.6420 | Moderate coordination | Land development intensity lags behind |
Jinhua | 0.2903 | 0.0700 | 0.4097 | Bare coordinate | Land development intensity lags behind | 0.4307 | 0.0950 | 0.5126 | Bare coordinate | Land development intensity lags behind |
Zhoushan | 0.3019 | 0.0636 | 0.4062 | Bare coordinate | Land development intensity lags behind | 0.5047 | 0.1067 | 0.5563 | Bare coordinate | Land development intensity lags behind |
Taizhou | 0.2897 | 0.1215 | 0.4710 | Bare coordinate | Land development intensity lags behind | 0.4785 | 0.1719 | 0.6169 | Moderate coordination | Land development intensity lags behind |
Hefei | 0.2942 | 0.6064 | 0.7103 | Moderate coordination | Urban resilience lags behind | 0.5274 | 0.7631 | 0.9257 | Excellent coordination | Urban resilience lags behind |
Wuhu | 0.2918 | 0.2412 | 0.5616 | Bare coordinate | Land development intensity lags behind | 0.4130 | 0.2798 | 0.6638 | Moderate coordination | Land development intensity lags behind |
Ma’anshan | 0.2334 | 0.4549 | 0.5964 | Bare coordinate | Urban resilience lags behind | 0.3672 | 0.4247 | 0.7071 | Moderate coordination | Urban resilience lags behind |
Tongling | 0.2327 | 0.2428 | 0.5086 | Bare coordinate | Urban resilience lags behind | 0.3529 | 0.1714 | 0.5547 | Bare coordinate | Land development intensity lags behind |
Anqing | 0.1732 | 0.1440 | 0.3749 | Moderate disorder | Land development intensity lags behind | 0.3404 | 0.2487 | 0.6012 | Moderate coordination | Land development intensity lags behind |
Chuzhou | 0.1769 | 0.0437 | 0.2808 | Moderate disorder | Land development intensity lags behind | 0.4143 | 0.1512 | 0.5691 | Bare coordinate | Land development intensity lags behind |
Chizhou | 0.1916 | 0.0108 | 0.2022 | Moderate disorder | Land development intensity lags behind | 0.3369 | 0.0385 | 0.3724 | Moderate disorder | Land development intensity lags behind |
Xuancheng | 0.1184 | 0.0828 | 0.1724 | Serious disorder | Land development intensity lags behind | 0.3503 | 0.1395 | 0.5251 | Bare coordinate | Land development intensity lags behind |
Variable | Regression Coefficient | Standard Deviation | Score | Value |
GDP per km2 land in municipal district () | 0.1225 | 0.0048 | 25.75 | 0.000 |
Industrial SO2 emission per 10,000 yuan GDP () | −0.0079 | 0.0013 | −6.06 | 0.000 |
Proportion of science and technology expenditure in financial expenditure () | 0.0305 | 0.0045 | 6.76 | 0.000 |
Number of public management and social organization personnel per 10,000 people () | 0.0232 | 0.0081 | 2.85 | 0.004 |
Density of water supply pipeline in built-up area () | 0.0430 | 0.0051 | 8.38 | 0.000 |
Constant term () | −0.7896 | 0.0494 | −15.99 | 0.000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, X.; Cheng, C.; Pan, Y.; Yang, T. Coupling Coordination and Influencing Factors of Land Development Intensity and Urban Resilience of the Yangtze River Delta Urban Agglomeration. Water 2022, 14, 1083. https://doi.org/10.3390/w14071083
Luo X, Cheng C, Pan Y, Yang T. Coupling Coordination and Influencing Factors of Land Development Intensity and Urban Resilience of the Yangtze River Delta Urban Agglomeration. Water. 2022; 14(7):1083. https://doi.org/10.3390/w14071083
Chicago/Turabian StyleLuo, Xiang, Chao Cheng, Yue Pan, and Tiantian Yang. 2022. "Coupling Coordination and Influencing Factors of Land Development Intensity and Urban Resilience of the Yangtze River Delta Urban Agglomeration" Water 14, no. 7: 1083. https://doi.org/10.3390/w14071083
APA StyleLuo, X., Cheng, C., Pan, Y., & Yang, T. (2022). Coupling Coordination and Influencing Factors of Land Development Intensity and Urban Resilience of the Yangtze River Delta Urban Agglomeration. Water, 14(7), 1083. https://doi.org/10.3390/w14071083