Analysis of Blue Infrastructure Network Pattern in the Hanjiang Ecological Economic Zone in China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Preparation and Preconditioning
2.3. Methods
2.3.1. Analysis of Blue Infrastructure Landscape Patterns
2.3.2. Analysis of Landscape Connectivity
2.3.3. Potential Corridors Simulation
2.3.4. Gravity Model and BI Network Structure Evaluation
3. Results
3.1. The Analysis of BI Landscape Patterns Based on MSPA
3.2. Analysis of the Landscape Connectivity of BI
3.3. BI Network Construction
3.3.1. Analysis of Ecological Resistance
3.3.2. BI Corridor Simulation
3.3.3. Analysis of Gravity Model Results and Network Construction
3.3.4. BI Network Structure Evaluation
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Haase, D. Effects of urbanisation on the water balance–A long-term trajectory. Environ. Impact Assess. Rev. 2009, 29, 211–219. [Google Scholar] [CrossRef]
- Cristian, I.I.; Denisa, L.B.; Dagmar, H.; Alina, C.H.; Mihai, R.N. How about water? Urban blue infrastructure management in Romania. Cities 2021, 110, 103084. [Google Scholar]
- Haase, D. Reflections about blue ecosystem services in cities. Sustain. Water Qual. Ecol. 2015, 5, 77–83. [Google Scholar] [CrossRef]
- Charmaine, K.W.; Fung, C.Y.J. Influence of blue infrastructure on lawn thermal microclimate in a subtropical green space. Sustain. Cities Soc. 2020, 52, 101858. [Google Scholar]
- Gunawardena, K.R.; Well, M.J.; Kershaw, T. Utilising green and bluespace to mitigate urban heat island intensity. Sci. Total Environ. 2017, 584, 1040–1055. [Google Scholar] [CrossRef]
- Vierikko, K.; Niemelä, J. Bottom-up thinking—Identifying socio-cultural values of ecosystem services in local blue–green infrastructure planning in Helsinki, Finland. Land Use Policy 2016, 50, 537–547. [Google Scholar]
- Finlay, J.; Franke, T.; McKay, H.; Sims-Gould, J. Therapeutic landscapes and wellbeing in later life: Impacts of blue and green spaces for older adults. Health Place 2015, 34, 97–106. [Google Scholar] [CrossRef]
- Haase, D.; Larondelle, N.; Andersson, E.; Artmann, M.; Borgström, S.; Breuste, J.; Gomez-Baggethun, E.; Gren, Å.; Hamstead, Z.; Hansen, R.; et al. A quantitative review of urban ecosystem service assessments: Concepts, models, and implementation. Ambio 2014, 43, 413–433. [Google Scholar] [CrossRef] [Green Version]
- Somayeh, H.; Petri, N.; Anne, O. Urban wetlands: A review on ecological and cultural values. Water 2021, 13, 3301–3347. [Google Scholar]
- Jia, H.; Wang, Z.; Zhen, X.; Clar, M.; Yu, S.L. China’s sponge city construction: A discussion on technical approaches. Front. Environ. Sci. Eng. 2017, 11, 37–47. [Google Scholar] [CrossRef]
- Li, F.; Liu, X.; Zhang, X.; Zhao, D.; Liu, H.; Zhou, C.; Wang, R. Urban ecological infrastructure: An integrated network for ecosystem services and sustainable urban systems. J. Clean. Prod. 2017, 163, S12–S18. [Google Scholar] [CrossRef]
- Pilotti, M.; Klein, E.; Golem, D.; Piepenbrink, E.; Kaplan, K. Is viewing a nature video after work restorative? Effects on blood pressure, task performance, and long-term memory. Environ. Behav. 2015, 47, 947–969. [Google Scholar] [CrossRef]
- Van den Bosch, M.; Sang, Å.O. Urban natural environments as nature-based solutions for improved public health—A systematic review of reviews. Environ. Res. 2017, 158, 373–384. [Google Scholar] [CrossRef]
- Kazemi, F.; Beecham, S.; Gibbs, J.; Clay, R. Factors affecting terrestrial invertebrate diversity in bioretention basins in an Australian urban environment. Landsc. Urban Plan. 2009, 92, 304–313. [Google Scholar] [CrossRef]
- Kazemi, F.; Beecham, S.; Gibbs, J. Streetscape biodiversity and the role of bioretention swales in an Australian urban environment. Landsc. Urban Plan. 2011, 101, 139–148. [Google Scholar] [CrossRef]
- Andersson, E.; Langemeyer, J.; Borgström, S.; McPhearson, T.; Haase, D.; Kronenberg, J.; Barton, D.N.; Davis, M.; Naumann, S.; Röschel, L.; et al. Enabling green and blue infrastructure to improve contributions to human well-being and equity in urban systems. BioScience 2019, 69, 566–574. [Google Scholar] [CrossRef]
- Benedict, M.A.; McMahon, E.T. Green Infrastructure: Smart Conservation for the 21st Century; Monograph Series; Sprawl Watch Clearinghouse: Washington, DC, USA, 2000. [Google Scholar]
- Tzoulas, K.; Korpela, K.; Venn, S.; Yli-Pelkonen, V.; Kaźmierczak, A.; Niemela, J.; James, P. Promoting ecosystem and human health in urban areas using Green Infrastructure: A literature review. Landsc. Urban Plan. 2007, 81, 167–178. [Google Scholar] [CrossRef] [Green Version]
- European Environment Agency. What Is Green Infrastructure? European Environment Agency: Copenhagen, Denmark, 2017. Available online: https://www.eea.europa.eu (accessed on 15 February 2020).
- Barthel, S.; Isendahl, C. Urban gardens, agriculture, and water management: Sources of resilience for long-term food security in cities. Ecol. Econ. 2013, 86, 224–234. [Google Scholar] [CrossRef]
- Ghofrani, Z.; Sposito, V.; Faggian, R. A comprehensive review of blue-green infrastructure concepts. Int. J. Environ. Sustain. 2017, 6, 15–36. [Google Scholar] [CrossRef]
- Kyle, J.H.; David, I.W.J.; Joseph, W.K.; Daniel, A.C.; Janet, L.C.; Kevin, M.E.; Frank, A.J.; Nathaniel, V.O.; Dustin, M.S. A case study of a prymnesium parvum harmful algae bloom in the Ohio River drainage: Impact, recovery and potential for future invasions/range expansion. Water 2021, 13, 3233–3253. [Google Scholar]
- Hettiarachchi, M.; Morrison, T.H.; McAlpine, C. Forty-three years of Ramsar and urban wetlands. Glob. Environ. Chang. 2015, 32, 57–66. [Google Scholar] [CrossRef] [Green Version]
- Ciocanea, C.M.; Corpade, C.; Onose, D.A.; Vanau, G.O.; Malos, C.V.; Petrovici, M.; Gheorghe, C.A.; Dedu, S.; Manta, N.; Robert, S. The assessment of lotic ecosystems degradation using multicriteria analysis and GIS. Carpathian J. Earth Environ. Sci. 2019, 14, 255–268. [Google Scholar] [CrossRef]
- Dugord, P.A.; Lauf, S.; Schuster, C.; Kleinschmit, B. Land use patterns, temperature distribution, and potential heat stress risk—The case study Berlin, Germany. Comput. Environ. Urban Syst. 2014, 48, 86–98. [Google Scholar] [CrossRef]
- Völker, S.; Kistemann, T. Developing the urban blue: Comparative health responses to blue and green urban open spaces in Germany. Health Place 2015, 35, 196–205. [Google Scholar] [CrossRef] [PubMed]
- Veerkamp, C.J.; Schipper, A.M.; Hedlund, K.; Lazarova, T.; Nordin, A.; Hanson, H.I. A review of studies assessing ecosystem services provided by urban green and blue infrastructure. Ecosyst. Serv. 2021, 52, 101367. [Google Scholar] [CrossRef]
- Strain, E.M.A.; Morris, R.L.; Bishop, M.J.; Tanner, E.; Steinberg, P.; Swearer, S.E.; MacLeod, C.; Alexander, K.A. Building blue infrastructure: Assessing the key environmental issues and priority areas for ecological engineering initiatives in Australia’s metropolitan embayments. J. Environ. Manag. 2018, 230, 488–496. [Google Scholar] [CrossRef] [PubMed]
- Ana, B.; Beatriz, M.; Virgilio, H.; Juan, A.T.; Julian, B.; Javier, M.L.; Sami, D.; Simone, D.L.; Stefano, B.; Ferdinando, V.; et al. Cost-effective restoration and conservation planning in Green and Blue Infrastructure designs. A case study on the Intercontinental Biosphere Reserve of the Mediterranean: Andalusia (Spain)–Morocco. Sci. Total Environ. 2019, 652, 1463–1473. [Google Scholar]
- Güneralp, B.; McDonald, R.I.; Fragkias, M.; Goodness, J.; Marcotullio, P.J.; Seto, K.C. Urbanization forecasts, effects on land use, biodiversity, and ecosystem services. In Urbanization, Biodiversity And Ecosystem Services: Challenges and Opportunities; Thomas, E., Michail, F., Julie, G., Eds.; Springer: Dordrecht, The Netherlands, 2013; pp. 437–452. [Google Scholar]
- van Hullebusch, E.D.; Bani, A.; Carvalho, M.; Cetecioglu, Z.; De Gusseme, B.; Di Lonardo, S.; Djolic, M.; van Eekert, M.; Griessler Bulc, T.; Haznedaroglu, B.Z.; et al. Nature-based units as building blocks for resource recovery systems in cities. Water 2021, 13, 3153. [Google Scholar] [CrossRef]
- Charles, J.V.; Ben, S.K.; Pamela, A.G.; Edward, L.B.; Martina, F.; Günther, F.; David, A.W.; Stuart, E.B.; Anik, B.; Peter, B.M.; et al. A green-gray path to global water security and sustainable infrastructure. Glob. Environ. Chang. 2021, 70, 102344. [Google Scholar]
- Johannes, L.; Francesc, B. Nature-based solutions as nodes of green-blue infrastructure networks: A cross-scale, co-creation approach. Nat.-Based Solut. 2021, 1, 100006. [Google Scholar]
- Wickham, J.D.; Riitters, K.H.; Wade, T.G.; Vogt, P. A national assessment of green infrastructure and change for the conterminous United States using morphological image processing. Landsc. Urban Plan. 2010, 94, 186–195. [Google Scholar] [CrossRef]
- Jing, S.; Jane, S. Indicating structural connectivity in Amazonian rainforests from 1986 to 2010 using morphological image processing analysis. Int. J. Remote Sens. 2013, 34, 5187–5200. [Google Scholar]
- Xu, F.; Yin, H.W.; Kong, F.H.; Xu, J.G. Developing ecological networks based on mspa and the least-cost path method: A case study in bazhong western new district. Acta Ecol. Sin. 2015, 35, 6425–6434. [Google Scholar]
- WANG, H. Planning an ecological network of Xiamen Island (China) using landscape metrics and network analysis. Landsc. Urban Plan. 2006, 78, 449–456. [Google Scholar]
- Chen, Z.A.; Kuang, D.; Wei, X.J.; Zhang, L.T.; Geomatics, F.O. Developing ecological networks based on MSPA and MCR: A case study in Yujiang county. Resour. Environ. Yangtze Basin 2017, 26, 1199–1207. [Google Scholar]
- Zhang, C.; Feng, Z.; Ren, Q.; Hsu, W.-L. Using systems thinking and modelling: Ecological land utilisation efficiency in the Yangtze Delta in China. Systems 2022, 10, 16. [Google Scholar] [CrossRef]
- Hsu, W.-L.; Shen, X.; Xu, H.; Zhang, C.; Liu, H.-L.; Shiau, Y.-C. Integrated evaluations of resource and environment carrying capacity of the Huaihe River ecological and economic belt in China. Land 2021, 10, 1168. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, C.; Mao, G.; Wang, M.; Hsu, W.-L. An empirical study on the ecological economy of the Huai River in China. Water 2020, 12, 2162. [Google Scholar] [CrossRef]
- Gao, Y.N.; Gao, J.F. Comprehensive assessment of eco-environment impact of the South-to-North Water Transfer Middle Route Project on the middle-lower Hanjiang River basin. Prog. Geogr. 2010, 29, 59–64. [Google Scholar]
- Su, Y.F.; Li, W.M.; Ai, Z.Q.; Liu, D.F.; Zhu, C.H.; Li, J.J.; Sun, X.Y. Establishment and application of the index system for health assessment of the middle and lower reaches of the Hanjiang River. Acta Ecol. Sin. 2019, 39, 3895–3907. [Google Scholar]
- Chao, W.; Qingming, Z.; De, Z.; Huang, Z.; Chen, Y. Spatiotemporal evolution of lakes under rapid urbanization: A case study in Wuhan, China. Water 2021, 13, 1171–1190. [Google Scholar]
- Vogt, P.; Ferrari, J.R.; Lookingbill, T.R.; Gardner, R.H.; Riitters, K.H.; Ostapowicz, K. Mapping functional connectivity. Ecol. Indic. 2009, 9, 64–71. [Google Scholar] [CrossRef]
- Soille, P. Morphological Image Analysis: Principles and Applications, 2nd ed.; Springer: New York, NY, USA, 2003. [Google Scholar]
- Clergeau, P.; Burel, F. The role of spatio-temporal patch connectivity at the landscape level: An example in a bird distribution. Landsc. Urban Plan. 1997, 38, 37–43. [Google Scholar] [CrossRef]
- Taylor, P.D.; Fahrig, L.; Henein, K.; Merriam, G. Connectivity is a vital element of landscape structure. Oikos 1993, 68, 571–573. [Google Scholar] [CrossRef] [Green Version]
- Hu, Q.Y.; Chen, S.L. Optimizing the ecological networks based on the supply and demand of ecosystem services in Xiamen-Zhangzhou-Quanzhou region. J. Nat. Resour. 2021, 36, 342–355. [Google Scholar] [CrossRef]
- Wang, J.M.; Lei, J.C.; Wang, S.; Wu, J.; Liang, Y.; Chen, Y.L.; Xiong, X.; Wang, J.W. Construction and evaluation of terrestrial ecological networks in headwaters region of the Dongjiang River. Chin. J. Ecol. 2020, 39, 3092–3098. [Google Scholar]
- Huang, L.M.; Chen, J.F. Suitability evaluation of urban construction land based on features extraction of a MCR Surface. Resour. Sci. 2014, 36, 1347–1355. [Google Scholar]
- Ostapowicz, K.; Vogt, P.; Riitters, K.H.; Kozak, J.; Estreguil, C. Impact of scale on morphological spatial pattern of forest. Landsc. Ecol. 2008, 23, 1107–1117. [Google Scholar] [CrossRef]
- Yu, Y.P.; Yin, H.W.; Kong, F.H.; Wang, J.J.; XU, W.B. Scale effect of Nanjing urban green infrastructure network pattern and connectivity analysis. Chin. J. Appl. Ecol. 2016, 27, 2119–2127. [Google Scholar]
- Liang, Y.Y.; Zhao, Y.D. Construction and optimization of ecological network in Xi’an based on landscape analysis. Chin. J. Appl. Ecol. 2020, 31, 3767–3776. [Google Scholar]
- Pierre, S.; Peter, V. Morphological segmentation of binary patterns. Pattern Recognit. Lett. 2009, 30, 456–459. [Google Scholar]
- Zhou, T.; Peng, S.L. Spatial scale an measurement of edge effect in ecology. Acta Ecol. Sin. 2008, 28, 3322–3333. [Google Scholar]
- Chen, L.D.; Xu, J.Y.; Fu, B.J.; Lv, Y.H. Quantitative assessment of patch edge effects and its ecological implications. Acta Ecol. Sin. 2004, 24, 1827–1832. [Google Scholar]
- Xiong, C.N.; Wei, H.; Lan, M.J. Analysis of connectivity on greenland landscape in metropolitan region of Chongqing City. Acta Ecol. Sin. 2008, 28, 2237–2244. [Google Scholar]
- Shi, H.; Xian, M.R.; Xu, Y.N.; Xue, J.H.; Liu, H.J. Developing integrated methods to construct urban potential green corridors: A case study of Changzhou city. Sci. Silvae Sin. 2013, 49, 92–100. [Google Scholar]
- Liu, C.F.; Zhou, B.; He, X.Y.; Chen, W. Selection of distance thresholds of urban forest landscape connectivity in Shenyang city. Chin. J. Appl. Ecol. 2010, 21, 2508–2516. [Google Scholar]
- Kong, F.H.; Yin, H.W. Developing green space ecological networks in Jinan City. Acta Ecol. Sin. 2008, 28, 1711–1719. [Google Scholar]
- Bai, M.C.; Ban, X.; Diplas, P.; Xiao, F. Quantifying the spatio-temporal variation of flow and its ecological impacts in the middle-section of Hanjiang River following the Danjiangkou Reservoir impoundment. Resour. Environ. Yangtze Basin 2017, 26, 1476–1487. [Google Scholar]
- Chen, Y.F.; Zhang, X. Long-term trends and sustainability trends of water quality in the middle and lower reaches of Hanjiang main stream. Resour. Environ. Yangtze Basin 2015, 24, 1163–1167. [Google Scholar]
Categories | Ecological Implications |
---|---|
Core | Foreground pixels surrounded on all sides by foreground pixels and greater than the specified edge width distance from background. |
Bridge | Foreground pixels that connect two or more disjunct areas of core. |
Loop | Foreground pixels that connect an area of core to itself. |
Branch | Foreground pixels that extend from an area of core, but do not connect to another area of core. |
Edge | Pixels that form the transition zone between foreground and background. |
Perforation | Pixels that form the transition zone between foreground and background for interior regions of foreground. Consider a group of foreground pixels in the shape of a doughnut. The pixels forming the inner edge would be classified as perforations, whereas those forming the outer edge would be classified as edge. |
Islet | Foreground pixels that do not contain core. Islet is the only unconnected class. Edges and perforations surround core, and loops, bridges and branches are connected to core. |
Resistance Factor | Weight | Grading Index | Resistance Value |
---|---|---|---|
Elevation/m | 0.14 | <50 | 1 |
50–150 | 3 | ||
150–250 | 5 | ||
250–350 | 7 | ||
>350 | 9 | ||
Slope/(°) | 0.17 | <3 | 1 |
3–8 | 3 | ||
8–15 | 5 | ||
15–25 | 7 | ||
>25 | 9 | ||
Landscape use types | 0.22 | Forest land | 1 |
cultivated land/grassland | 3 | ||
unutilized land | 5 | ||
water area | 7 | ||
construction land | 9 | ||
Distance from road/m | 0.29 | <500 | 9 |
500–1500 | 7 | ||
1500–2500 | 5 | ||
2500–3500 | 3 | ||
>3500 | 1 | ||
Distance from construction land/m | 0.18 | <500 | 9 |
500–1500 | 7 | ||
1500–2500 | 5 | ||
2500–3500 | 3 | ||
>3500 | 1 |
Categories | Year | Area (km2) | Proportion (%) |
---|---|---|---|
Core | 2010 | 1885.70 | 55.22 |
2015 | 1916.31 | 56.60 | |
2020 | 2204.18 | 58.69 | |
Islet | 2010 | 305.12 | 8.93 |
2015 | 291.57 | 8.61 | |
2020 | 289.72 | 7.71 | |
Perforation | 2010 | 11.62 | 0.34 |
2015 | 12.19 | 0.36 | |
2020 | 16.82 | 0.45 | |
Edge | 2010 | 619.38 | 18.14 |
2015 | 607.48 | 17.94 | |
2020 | 674.76 | 17.97 | |
Loop | 2010 | 11.35 | 0.33 |
2015 | 15.33 | 0.45 | |
2020 | 15.30 | 0.41 | |
Bridge | 2010 | 228.63 | 6.69 |
2015 | 222.82 | 6.58 | |
2020 | 219.53 | 5.85 | |
Branch | 2010 | 353.30 | 10.35 |
2015 | 319.87 | 9.45 | |
2020 | 335.43 | 8.93 |
Year | Number of Links | Number of Components | IIC | PC |
---|---|---|---|---|
2010 | 1346 | 74 | 0.183 | 0.284 |
2015 | 1471 | 89 | 0.167 | 0.369 |
2020 | 1466 | 85 | 0.239 | 0.561 |
Year | BI Corridor | BI Node | Corridor Intersection |
---|---|---|---|
2010 | 105 | 15 | 1733 |
2015 | 78 | 13 | 1458 |
2020 | 120 | 16 | 1934 |
Year | Nodes | Number of Links | α | β | γ |
---|---|---|---|---|---|
2010 | 15 | 20 | 0.24 | 1.33 | 0.51 |
2015 | 13 | 12 | 0 | 0.92 | 0.36 |
2020 | 16 | 27 | 0.44 | 1.69 | 0.64 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, P.; Chen, K. Analysis of Blue Infrastructure Network Pattern in the Hanjiang Ecological Economic Zone in China. Water 2022, 14, 1234. https://doi.org/10.3390/w14081234
He P, Chen K. Analysis of Blue Infrastructure Network Pattern in the Hanjiang Ecological Economic Zone in China. Water. 2022; 14(8):1234. https://doi.org/10.3390/w14081234
Chicago/Turabian StyleHe, Pengfei, and Kunlun Chen. 2022. "Analysis of Blue Infrastructure Network Pattern in the Hanjiang Ecological Economic Zone in China" Water 14, no. 8: 1234. https://doi.org/10.3390/w14081234
APA StyleHe, P., & Chen, K. (2022). Analysis of Blue Infrastructure Network Pattern in the Hanjiang Ecological Economic Zone in China. Water, 14(8), 1234. https://doi.org/10.3390/w14081234