Evaluation of Phenolic Compounds and Pigments in Freshwater Cladophora glomerata Biomass from Various Lithuanian Rivers as a Potential Future Raw Material for Biotechnology
Abstract
:1. Introduction
2. Materials and Methods
2.1. Macroalgal Biomass Collection
2.2. Macroalgal Biomass Phenolic Compounds Profile Analysis
2.2.1. Phenolic Acids
2.2.2. Flavonoids
2.2.3. Catechins
2.2.4. The Total Phenolic Compound Content
2.3. Macroalgal Biomass Antioxidant Activity Analysis
2.3.1. Biomass Extracts Preparation
2.3.2. Reducing Power (RP) Bioassay
2.3.3. 2,2-Diphenyl-1-picrylhydrazyl (DPPH) Radical Scavenging Activity
2.3.4. 2,2-Azino-bis(3-ethylbenzothiazoline-6-sulfonic Acid) (ABTS) Radical Scavenging Assay
2.3.5. Ferric Ion Reducing Antioxidant Power (FRAP) Assay
2.4. Macroalgal Biomass Pigments Contents Analysis
2.4.1. Chlorophyll a, b and Carotenoids Contents
- OD—optical density according to the wavelengths of the pigments.
- Coefficients—the absorption coefficients of the pigments according to the wavelengths.
- C—chlorophyll a, b, carotenoids concentration, mg/L.
- V—initial volume of the algal extract, mL.
- V1—initial volume of the algal extract for dilution, mL.
- V2—diluted volume of the algal extract, mL.
- n—weight of the algal material, g.
2.4.2. Lutein Content
2.5. Statistical Analysis
3. Results
3.1. Phenolic Compounds
3.2. Antioxidant Activity
3.3. Pigments Content
4. Discussion
4.1. Phenolic Compounds
4.2. Antioxidant Activity
4.3. Pigments
5. Conclusions
- Identified phenolic acids (gallic, p-coumaric, p-hydroxybenzoic) have health benefits (antihyperlipidemic, antihyperglycemic, cardioprotective and anticancer features) which can be manipulated in the development of pharmaceuticals or functional foods and animal feed supplements.
- Almost all the macroalgal biomass results indicate that C. glomerata is likely to have a significant role in the observed antioxidant effect, and the highest reducing power reached 0.737 AU; the total antioxidant content reached 1.47 mg Trolox/g DM; DPPH and ABTS radical scavenging reached 11.09% and 97.86%, respectively; and FRAP activity reached 20.86 µmol/L.
- The observed content of main pigments (chlorophyll a and b, carotenoids, lutein) shows a wide range of applications for C. glomerata, including natural colorants used as food pigments, feed supplements and components of cosmetics and pharmaceuticals due to their potential health benefits.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Messyasz, B.; Pikosz, M.; Treska, E. Biology of Freshwater Macroalgae and Their Distribution. In Algae Biomass: Characteristics and Applications; Springer International Publishing: Cham, Switzerland, 2018; pp. 17–31. [Google Scholar]
- Fogg, G.E. Algal Adaptation to Stress—Some General Remarks. In Algal Adaptation to Environmental Stresses; Springer: Berlin/Heidelberg, Germany, 2001; pp. 1–19. [Google Scholar]
- Yarnpakdee, S.; Benjakul, S.; Senphan, T. Antioxidant activity of the extracts from freshwater macroalgae (Cladophora glomerata) grown in northern Thailand and its preventive effect against lipid oxidation of refrigerated eastern little tuna slice. Turkish J. Fish. Aquat. Sci. 2018, 19, 209–219. [Google Scholar]
- Messyasz, B.; Michalak, I.; Leska, B.; Schroeder, G.; Górka, B.; Korzeniowska, K.; Lipok, J.; Wieczorek, P.P.; Rój, E.; Wilk, R.; et al. Valuable natural products from marine and freshwater macroalgae obtained from supercritical fluid extracts. J. Appl. Phycol. 2017, 30, 591–603. [Google Scholar] [CrossRef]
- Lawton, R.J.; de Nys, R.; Paul, N.A. Selecting Reliable and Robust Freshwater Macroalgae for Biomass Applications. PLoS ONE 2013, 8, e64168. [Google Scholar] [CrossRef] [PubMed]
- Korzeniowska, K.; Leska, B.; Wieczorek, P.P. Isolation and determination of phenolic compounds from freshwater Cladophora glomerata. Algal Res. 2020, 48, 101912. [Google Scholar] [CrossRef]
- Silva, A.; Silva, S.A.; Carpena, M.; Garcia-Oliveira, P.; Gullón, P.; Barroso, M.; Prieto, M.; Simal-Gandara, J. Macroalgae as a Source of Valuable Antimicrobial Compounds: Extraction and Applications. Antibiotics 2020, 9, 642. [Google Scholar] [CrossRef] [PubMed]
- Sudhakar, M.P.; Kumar, B.R.; Mathimani, T.; Arunkumar, K. A review on bioenergy and bioactive compounds from microalgae and macroalgae-sustainable energy perspective. J. Clean. Prod. 2019, 228, 1320–1333. [Google Scholar] [CrossRef]
- Trivedi, J.; Aila, M.; Bangwal, D.; Kaul, S.; Garg, M. Algae based biorefinery—How to make sense? Renew. Sustain. Energy Rev. 2015, 47, 295–307. [Google Scholar] [CrossRef]
- Machu, L.; Misurcova, L.; Ambrozova, J.V.; Orsavova, J.; Mlcek, J.; Sochor, J.; Jurikova, T. Phenolic Content and Antioxidant Capacity in Algal Food Products. Molecules 2015, 20, 1118–1133. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez-Bernaldo de Quirós, A.; Lage-Yusty, M.A.; López-Hernández, J. Determination of phenolic compounds in macroalgae for human consumption. Food Chem. 2010, 121, 634–638. [Google Scholar] [CrossRef]
- Onofrejová, L.; Vašíčková, J.; Klejdus, B.; Stratil, P.; Misurcova, L.; Kráčmar, S.; Kopecký, J.; Vacek, J. Bioactive phenols in algae: The application of pressurized-liquid and solid-phase extraction techniques. J. Pharm. Biomed. Anal. 2010, 51, 464–470. [Google Scholar] [CrossRef]
- Rodríguez-Meizoso, I.; Jaime, L.; Santoyo, S.; Señoráns, F.J.; Cifuentes, A.; Ibáñez, E. Subcritical water extraction and characterization of bioactive compounds from Haematococcus pluvialis microalga. J. Pharm. Biomed. Anal. 2010, 51, 456–463. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raposo, M.F.; de Morais, R.M.; Bernardo de Morais, A.M. Bioactivity and Applications of Sulphated Polysaccharides from Marine Microalgae. Mar. Drugs 2013, 11, 233–252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borges, B.A.A. Seaweeds for Food and Industrial Applications; Delve Publishing: Burlington, ON, Canada; Ashland: Vilmington, DE, USA, 2020; pp. 17–19. [Google Scholar]
- Ramesh Kumar, B.; Deviram, G.; Mathimani, T.; Duc, P.A.; Pugazhendhi, A. Microalgae as rich source of polyunsaturated fatty acids. Biocatal. Agric. Biotechnol. 2019, 17, 583–588. [Google Scholar] [CrossRef]
- Stengel, D.B.; Connan, S.; Popper, Z.A. Algal chemodiversity and bioactivity: Sources of natural variability and implications for commercial application. Biotechnol. Adv. 2011, 29, 483–501. [Google Scholar] [CrossRef] [PubMed]
- Falkenberg, M.; Nakano, E.; Zambotti-Villela, L.; Zatelli, G.A.; Philippus, A.C.; Imamura, K.B.; Velasquez, A.M.A.; Freitas, R.P.; de Freitas Tallarico, L.; Colepicolo, P.; et al. Bioactive compounds against neglected diseases isolated from macroalgae: A review. J. Appl. Phycol. 2018, 31, 797–823. [Google Scholar] [CrossRef] [Green Version]
- Michalak, I.; Messyasz, B. Concise review of Cladophora spp.: Macroalgae of commercial interest. J. Appl. Phycol. 2020, 33, 133–166. [Google Scholar] [CrossRef]
- Messyasz, B.; Leska, B.; Fabrowska, J.; Pikosz, M.; Rój, E.; Cieślak, A.; Schroeder, G. Biomass of freshwater Cladophora as a raw material for agriculture and the cosmetic industry. Open Chem. 2015, 13, 1108–1118. [Google Scholar] [CrossRef]
- Akköz, C.; Arslan, D.; Ünver, A.; Ozcan, M.; Yilmaz, B. Chemical composition, total phenolic and mineral contents of Enteromorpha intestinalis (L.) Kütz. and Cladophora Glomerata (L.) Kütz. seaweeds. J. Food Biochem. 2011, 35, 513–523. [Google Scholar] [CrossRef]
- Senobari, Z.; Jafari, N.; Ebrahimzadeh, M.A. Biosorption of Ni (II) from Aqueous Solutions by Marine Algae Cladophora glomerata (L.) Kutz. (Chlorophyta). Int. J. Algae 2014, 16, 181–192. [Google Scholar] [CrossRef]
- Uebe, J.; Kryževičius, Ž.; Kuhan, A.; Torkelis, A.; Kosychova, L.; Žukauskaitė, A. Improving of Pyrolysis Oil from Macroalgae Cladophora glomerata with HDPE Pyrolysis Oil. J. Mar. Sci. Eng. 2022, 10, 131. [Google Scholar] [CrossRef]
- Baltrėnas, P.; Misevičius, A. Biogas production experimental research using algae. J. Environ. Heal. Sci. Eng. 2015, 13, 18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nutautaitė, M.; Vilienė, V.; Racevičiūtė-Stupelienė, A.; Bliznikas, S.; Karosienė, J.; Koreivienė, J. Freshwater Cladophora glomerata Biomass as Promising Protein and Other Essential Nutrients Source for High Quality and More Sustainable Feed Production. Agriculture 2021, 11, 582. [Google Scholar] [CrossRef]
- Kvasnička, F.; Čopíková, J.; Ševčík, R.; Krátká, J.; Syntytsia, A.; Voldřich, M. Determination of phenolic acids by capillary zone electrophoresis and HPLC. Open Chem. 2008, 6, 410–418. [Google Scholar] [CrossRef]
- Amarowicz, S.W. Content of phenolic acids in rye caryopses determined using DAD-HPLC method. Czech J. Food Sci. 2001, 19, 201–205. [Google Scholar] [CrossRef] [Green Version]
- Khuluk, R.H.; Yunita, A.; Rohaeti, E.; Syafitri, U.D.; Linda, R.; Lim, L.W.; Takeuchi, T.; Rafi, M. An HPLC-DAD Method to Quantify Flavonoids in Sonchus arvensis and Able to Classify the Plant Parts and Their Geographical Area through Principal Component Analysis. Separations 2021, 8, 12. [Google Scholar] [CrossRef]
- Wang, H.; Provan, G.J.; Helliwell, K. HPLC determination of catechins in tea leaves and tea extracts using relative response factors. Food Chem. 2003, 81, 307–312. [Google Scholar] [CrossRef]
- Fabrowska, J.; Messyasz, B.; Pankiewicz, R.; Wilińska, P.; Łęska, B. Seasonal differences in the content of phenols and pigments in thalli of freshwater Cladophora glomerata and its habitat. Water Res. 2018, 135, 66–74. [Google Scholar] [CrossRef]
- Malinauskaitė, R. The influence of alkaline ionized water to on lentil ‘Smėlinukai’ plant morphophysiological indicators in II ontogenesis phase. Žmogaus Gamtos Sauga 2015, (Part 2), 98–100. [Google Scholar]
- Jalali Jivan, M.; Abbasi, S. Nano based lutein extraction from marigold petals: Optimization using different surfactants and co-surfactants. Heliyon 2019, 5, e01572. [Google Scholar] [CrossRef] [Green Version]
- Fish, W.W.; Perkins-Veazie, P.; Collins, J.K. A Quantitative Assay for Lycopene That Utilizes Reduced Volumes of Organic Solvents. J. Food Compos. Anal. 2002, 15, 309–317. [Google Scholar] [CrossRef] [Green Version]
- Catarino, M.D.; Silva, A.M.S.; Cardoso, S.M. Fucaceae: A Source of Bioactive Phlorotannins. Int. J. Mol. Sci. 2017, 18, 1327. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klejdus, B.; Plaza, M.; Šnóblová, M.; Lojková, L. Development of new efficient method for isolation of phenolics from sea algae prior to their rapid resolution liquid chromatographic–tandem mass spectrometric determination. J. Pharm. Biomed. Anal. 2017, 135, 87–96. [Google Scholar] [CrossRef] [PubMed]
- Orhan, I.; Abu-Asaker, M.; Senol, F.; Atici, T.; Sener, B.; Kartal, M. Antioxidant and Anticholinesterase Assets and Liquid Chromatography-Mass Spectrometry Preface of Various Fresh-Water and Marine Macroalgae. Pharmacogn. Mag. 2009, 5, 291. [Google Scholar] [CrossRef]
- Badshah, S.L.; Faisal, S.; Muhammad, A.; Poulson, B.G.; Emwas, A.H.; Jaremko, M. Antiviral activities of flavonoids. Biomed. Pharmacother. 2021, 140, 111596. [Google Scholar] [CrossRef] [PubMed]
- Tibbetts, S.M.; Milley, J.E.; Lall, S.P. Chemical composition and nutritional properties of freshwater and marine microalgal biomass cultured in photobioreactors. J. Appl. Phycol. 2014, 27, 1109–1119. [Google Scholar] [CrossRef] [Green Version]
- Custódio, L.; Soares, F.; Pereira, H.; Barreira, L.; Vizetto-Duarte, C.; Rodrigues, M.J.; Rauter, A.P.; Alberício, F.; Varela, J. Fatty acid composition and biological activities of Isochrysis galbana T-ISO, Tetraselmis sp. and Scenedesmus sp.: Possible application in the pharmaceutical and functional food industries. J. Appl. Phycol. 2013, 26, 151–161. [Google Scholar] [CrossRef]
- Hemalatha, A.; Parthiban, C.; Saranya, C.; Girija, K.; Anantharaman, P. Evaluation of antioxidant activities and total phenolic contents of different solvent extracts of selected marine diatoms. Indian J. Geo-Mar. Sci. 2015, 44, 1630–1636. [Google Scholar]
- Zhao, J.P.; Zhao, G.P.; Jiang, R.R.; Zheng, M.Q.; Chen, J.L.; Liu, R.R.; Wen, J. Effects of diet-induced differences in growth rate on metabolic, histological, and meat-quality properties of 2 muscles in male chickens of 2 distinct broiler breeds. Poult. Sci. 2012, 91, 237–247. [Google Scholar] [CrossRef]
- Zanwar, A.A.; Badole, S.L.; Shende, P.S.; Hegde, M.V.; Bodhankar, S.L. Chapter 80—Role of Gallic Acid in Cardiovascular Disorders. In Polyphenols in Human Health and Disease; Elsevier Inc.: Amsterdam, The Netherlands, 2014; pp. 1045–1047. [Google Scholar]
- Sourani, Z.; Pourgheysari, B.; Beshkar, P.; Shirzad, M.; Shirzad, H. Moein Gallic Acid Inhibits Proliferation and Induces Apoptosis in Lymphoblastic Leukemia Cell Line (C121). Iran. J. Med. Sci. 2016, 41, 525–530. [Google Scholar]
- Hudson, E.A.; Dinh, P.A.; Kokubun, T.; Simmonds, M.S.; Gescher, A. Characterization of potentially chemopreventive phenols in extracts of brown rice that inhibit the growth of human breast and colon cancer cells. Cancer Epidemiol. Biomarkers Prev. 2000, 9, 1163–1170. [Google Scholar]
- Johnston-Carey, H.K.; Pomatto, L.C.D.; Davies, K.J.A. The Immunoproteasome in oxidative stress, aging, and disease. Crit. Rev. Biochem. Mol. Biol. 2016, 51, 268–281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, C. Sinapic Acid and Its Derivatives as Medicine in Oxidative Stress-Induced Diseases and Aging. J. Oxid. Med. Cell. Longev. 2015, 2016, 3571614. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liguori, I.; Russo, G.; Curcio, F.; Bulli, G.; Aran, L.; Della-Morte, D.; Gargiulo, G.; Testa, G.; Cacciatore, F.; Bonaduce, D.; et al. Oxidative stress, aging, and diseases. Clin. Interv. Aging 2018, 13, 757–772. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhawya, D.; Anilakumar, K.R. Antioxidant, dna damage protection and antibacterial effect of psoralea corylifolia. Asian J. Pharm. Clin. Res. 2011, 4, 149–155. [Google Scholar]
- Duh, P.-D. Antioxidant activity of burdock (Arctium lappaLinné): Its scavenging effect on free-radical and active oxygen. J. Am. Oil Chem. Soc. 1998, 75, 455–461. [Google Scholar] [CrossRef]
- Duh, P.-D.; Tu, Y.-Y.; Yen, G.-C. Antioxidant Activity of Water Extract of Harng Jyur (Chrysanthemum morifolium Ramat). Food Sci. Technol. 1999, 32, 269–277. [Google Scholar] [CrossRef]
- Alam, M.N.; Bristi, N.J.; Rafiquzzaman, M. Review on in vivo and in vitro methods evaluation of antioxidant activity. Saudi Pharm. J. 2013, 21, 143–152. [Google Scholar] [CrossRef] [Green Version]
- Laungsuwon, R.; Chulalaksananukul, W. Chemical composition and antibacterial activity of extracts of freshwater green algae, Cladophora glomerata Kützing andMicrospora floccosa (Vaucher) Thuret. J. BioSci. Biotechnol. 2014, 3, 211–218. [Google Scholar]
- Ankita, M.; Santanu, P. Cladophora glomerata, a newly emerging green alga, acting as a repository of potent antioxidant. Res. J. Biotechnol. 2021, 16, 155–161. [Google Scholar]
- Laungsuwon, R.; Chulalaksananukul, W. Antioxidant and anticancer activities of freshwater green algae, Cladophora glomerata and Microspora floccosa, from Nan River in northern Thailand. Maejo Int. J. Sci. Technol. 2013, 7, 181–188. [Google Scholar]
- Wang, F.; Cao, Y.; Guo, Y.; Zhu, Z.; Zhang, C. Evaluation of antioxidant and antibacterial activities of lipid extracts from Eustigmatos cf. polyphem (Eustigmatophyceae) and preliminary identification of bioactive compound. Algal Res. 2021, 59, 102446. [Google Scholar] [CrossRef]
- Lee, K.J.; Oh, Y.C.; Cho, W.K.; Ma, J.Y. Antioxidant and Anti-Inflammatory Activity Determination of One Hundred Kinds of Pure Chemical Compounds Using Offline and Online Screening HPLC Assay. Evidence-Based Complement. Altern. Med. 2015, 2015, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kirke, D.; Rai, D.; Smyth, T.; Stengel, D. An assessment of temporal variation in the low molecular weight phlorotannin profiles in four intertidal brown macroalgae. Algal Res. 2019, 41, 101550. [Google Scholar] [CrossRef]
- Safafar, H.; Van Wagenen, J.M.; Møller, P.; Jacobsen, C. Carotenoids, Phenolic Compounds and Tocopherols Contribute to the Antioxidative Properties of Some Microalgae Species Grown on Industrial Wastewater. Mar. Drugs 2015, 13, 7339–7356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sáez, M.I.; Suárez, M.D.; Alarcón, F.J.; Martínez, T.F. Assessing the Potential of Algae Extracts for Extending the Shelf Life of Rainbow Trout (Oncorhynchus mykiss) Fillets. Foods 2021, 10, 910. [Google Scholar] [CrossRef]
- Pikosz, M.; Czerwik-Marcinkowska, J.; Messyasz, B. The effect of Cladophora glomerata exudates on the amino acid composition of Cladophora fracta and Rhizoclonium sp. Open Chem. 2019, 17, 313–324. [Google Scholar] [CrossRef]
- Li, Y.-X.; Kim, S.-K. Utilization of seaweed derived ingredients as potential antioxidants and functional ingredients in the food industry: An overview. Food Sci. Biotechnol. 2011, 20, 1461–1466. [Google Scholar] [CrossRef]
- Khuantrairong, T.; Traichaiyaporn, S. The nutritional value of edible freshwater alga Cladophora sp. (Chlorophyta) grown under different phosphorus concentrations. Int. J. Agric. Biol. 2011, 13, 297–300. [Google Scholar]
- Fabrowska, J.; Ibañez, E.; Leska, B.; Herrero, M. Supercritical fluid extraction as a tool to valorize underexploited freshwater green algae. Algal Res. 2016, 19, 237–245. [Google Scholar] [CrossRef]
- Zheng, H.; Wang, Y.; Li, S.; Nagarajan, D.; Varjani, S.; Lee, D.-J.; Chang, J.-S. Recent advances in lutein production from microalgae. Renew. Sustain. Energy Rev. 2021, 153, 111795. [Google Scholar] [CrossRef]
- Prazukin, V.; Firsov, Y.K.; Gureeva, E.V.; Kapranov, S.V.; Zheleznova, S.N.; Maoka, T.; Nekhoroshev, M.V. Biomass of green filamentous alga Cladophora (Chlorophyta) from a hypersaline lake in Crimea as a prospective source of lutein and other pigments. Algal Res. 2021, 54, 102195. [Google Scholar] [CrossRef]
- Johnson, E.J.; Vishwanathan, R.; Johnson, M.A.; Hausman, D.B.; Davey, A.; Scott, T.M.; Green, R.C.; Miller, L.S.; Gearing, M.; Woodard, J.; et al. Relationship between serum and brain carotenoids, α-tocopherol, and retinol concentrations and cognitive performance in the oldest old from the Georgia Centenarian Study. J. Aging Res. 2013, 2013, 951786-13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chung, R.W.; Leanderson, P.; Lundberg, A.K.; Jonasson, L. Lutein exerts anti-inflammatory effects in patients with coronary artery disease. Atherosclerosis 2017, 262, 87–93. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bernstein, P.S.; Li, B.; Vachali, P.P.; Gorusupudi, A.; Shyam, R.; Henriksen, B.S.; Nolan, J.M. Lutein, zeaxanthin, and meso-zeaxanthin: The basic and clinical science underlying carotenoid-based nutritional interventions against ocular disease. Prog. Retin. Eye Res. 2015, 50, 34–66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mares, J. Lutein and Zeaxanthin Isomers in Eye Health and Disease. Annu. Rev. Nutr. 2016, 36, 571–602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barker, F.M. Dietary supplementation: Effects on visual performance and occurrence of AMD and cataracts. Curr. Med Res. Opin. 2010, 26, 2011–2023. [Google Scholar] [CrossRef]
- Ochoa Becerra, M.; Mojica Contreras, L.; Hsieh Lo, M.; Mateos Díaz, J.; Castillo Herrera, G. Lutein as a functional food ingredient: Stability and bioavailability. J. Funct. Foods 2020, 66, 103771. [Google Scholar] [CrossRef]
- Pangestuti, R.; Kim, S.-K. Biological activities and health benefit effects of natural pigments derived from marine algae. J. Funct. Foods 2011, 3, 255–266. [Google Scholar] [CrossRef]
- Bruneel, C.; Lemahieu, C.; Fraeye, I.; Ryckebosch, E.; Muylaert, K.; Buyse, J.; Foubert, I. Impact of microalgal feed supplementation on omega-3 fatty acid enrichment of hen eggs. J. Funct. Foods 2013, 5, 897–904. [Google Scholar] [CrossRef]
- Michalak, I.; Chojnacka, K.; Saeid, A. Plant Growth Biostimulants, Dietary Feed Supplements and Cosmetics Formulated with Supercritical CO2 Algal Extracts. Molecules 2017, 22, 66. [Google Scholar] [CrossRef]
- Shah, Z.; Badshah, S.L.; Iqbal, A.; Shah, Z.; Emwas, A.M.; Jaremko, M. Investigation of important biochemical compounds from selected freshwater macroalgae and their role in agriculture. Chem. Biol. Technol. Agric. 2022, 9, 1–11. [Google Scholar] [CrossRef]
- Amornlerdpiso, D.; Mengumphan, K.; Thumvijit, S.; Peerapornpisal, Y. Antioxidant and anti-inflammatory activities of freshwater macroalga, Cladophora glomerata Kützing. Thai J. Agric. Sci. 2011, 44, 283–291. [Google Scholar]
Conditions | Phenolic Acids | Flavonoids | Catechins |
---|---|---|---|
Mobile phase (v/v/v) | A—methanol B—water/acetonitrile/acetic acid 88/10/2 | A—methanol B—0.2% formic acid in water | A—0.1% orthophosphoric acid in water B—0.1% orthophosphoric acid in methanol |
Elution | Gradient: 100% B (4 min), 0–100% A (15 min), holding 100% A 10 min, decrease to 0% A in 0.5 min holding 100% B 6.5 min | Gradient: 35–50% A at 0–25 min, 50–80% A at 25–30 min, 80–95% A at 30–35 min, 95-100% at 35–40 min, holding 100% A 5 min, decrease to 35% A in 5 min. After each run, the chromatographic system is set to 35% A for 5 min | Gradient: 0–5 min, 20% B; 5–7 min, linear gradient from 20 to 24% B; 7–10 min, holding 24% B; 10–20 min, linear gradient from 24 to 40% B; 20–25 min, linear gradient from 40 to 50% B; 25–30 min decrease to 20% B; holding 20% B 5 min |
Flow rate (mL/min) | 1.0 | 1.0 | 1.0 |
Column | LiChrospher 100 RP-18 250 × 4.6 mm, 5 µm (Alltech Associates Inc., Deerfield, IL, USA) | LiChrospher 100 RP-18 250 × 4.6 mm, 5 µm (Alltech Associates Inc., Deerfield, IL, USA) | LiChrospher 100 RP-18 150 × 4.6 mm, 5 µm (Alltech Associates Inc., Deerfield, IL, USA) |
Guard column | LiChrospher 100 RP-18 7.5 × 4.6 mm, 5 µm (Alltech Associates Inc., Deerfield, IL, USA) | LiChrospher 100 RP-18 7.5 × 4.6 mm, 5 µm (Alltech Associates Inc., Deerfield, IL, USA) | LiChrospher 100 RP-18 7.5 × 4.6 mm, 5 µm (Alltech Associates Inc., Deerfield, IL, USA) |
Column oven temperature (°C) | 30 | 30 | 30 |
Injection volume (µL) | 10 | 10 | 10 |
Detection (nm) | 260 and 320 | 340 and 367 | 210 and 280 |
C. glomerata Biomass 3,4,5 | ||||||
---|---|---|---|---|---|---|
Item 1,2 | B1 | B2 | B3 | B4 | SEM 6 | p Value |
DM (% of dried samples) | 94.95 a | 92.63 a | 95.19 a | 91.12 b | 0.35 | 0.000 |
Phenolic acids (µg/g DM) | ||||||
o-Coumaric | n.d. | n.d. | n.d. | n.d. | - | - |
Cinnamic | n.d. | n.d. | n.d. | n.d. | - | - |
m-Coumaric | n.d. | n.d. | n.d. | n.d. | - | - |
Vanillic | n.d. | n.d. | n.d. | n.d. | - | - |
Caffeic | n.d. | n.d. | n.d. | n.d. | - | - |
Salicylic | n.d. | n.d. | n.d. | n.d. | - | - |
Ferulic | n.d. | n.d. | n.d. | n.d. | - | - |
Sinapic | n.d. | n.d. | n.d. | n.d. | - | - |
Chlorogenic | n.d. | n.d. | n.d. | n.d. | - | - |
3,4-Dihydroxybenzoic | n.d. | n.d. | n.d. | n.d. | - | - |
Gallic | 12.94 a | 21.31 b | 35.13 c | 13.92 d | 0.16 | 0.000 |
p-Hydroxybenzoic | 23.97 a | 25.43 b | 29.05 c | 28.31 c | 0.31 | 0.000 |
p-Coumaric | 3.16 a | 1.79 b | n.d. | 6.46 c | 1.71 | 0.000 |
Flavonoids (µg/g DM) | ||||||
Quercetin | n.d | n.d | n.d | n.d | - | - |
Myricetin | n.d. | n.d. | n.d. | n.d. | - | - |
Kaempferol | n.d. | n.d. | n.d. | n.d. | - | - |
Rutin | n.d. | n.d. | n.d. | n.d. | - | - |
Xantohumol | n.d. | n.d. | n.d. | n.d. | - | - |
Catechins (µg/g DM) | ||||||
Catechin | n.d. | n.d. | n.d. | n.d. | - | - |
Epicatechin | n.d. | n.d. | n.d. | n.d. | - | - |
Epigallocatechin gallate | n.d. | n.d. | n.d. | n.d. | - | - |
The total phenolic content (mg GAE/g DM) | 0.95 a | 1.10 b | 1.32 c | 1.22 c | 0.09 | 0.003 |
C. glomerata Biomass 3,4 | ||||||
---|---|---|---|---|---|---|
Item 1,2 | B1 | B2 | B3 | B4 | SEM 5 | p-Value 6 |
RP (AU) | 0.396 a | 0.301 a | 0.737 b | 0.585 c | 0.05 | 0.000 |
DPPH (%) | 10.10 | 8.22 | 11.09 | 8.85 | 1.38 | n.s. |
Antioxidant content (mg Trolox/g DM) | 0.55 a | 0.39 a | 1.47 b | 1.31 b | 0.11 | 0.000 |
ABTS (%) | 97.68 a | 96.80 a | 97.09 a | 93.76 b | 1.18 | 0.011 |
FRAP (µmol/L) | 15.04 a | 16.61 a | 20.86 b | 19.93 b | 1.54 | 0.005 |
C. glomerata Biomass 2,3,4 | ||||||
---|---|---|---|---|---|---|
Pigment (mg/g DM) 1 | B1 | B2 | B3 | B4 | SEM 5 | p-Value |
Chlorophyll a | 0.65 a | 0.56 b | 0.74 c | 0.57 b | 0.03 | 0.003 |
Chlorophyll b | 0.57 a | 0.42 ab | 0.51 ab | 0.39 b | 0.06 | 0.042 |
Carotenoids | 0.23 a | 0.18 ab | 0.20 ab | 0.17 b | 0.02 | 0.037 |
Lutein | 0.12 ab | 0.17 a | 0.13 ab | 0.11 b | 0.03 | 0.044 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nutautaitė, M.; Racevičiūtė-Stupelienė, A.; Bliznikas, S.; Jonuškienė, I.; Karosienė, J.; Koreivienė, J.; Vilienė, V. Evaluation of Phenolic Compounds and Pigments in Freshwater Cladophora glomerata Biomass from Various Lithuanian Rivers as a Potential Future Raw Material for Biotechnology. Water 2022, 14, 1138. https://doi.org/10.3390/w14071138
Nutautaitė M, Racevičiūtė-Stupelienė A, Bliznikas S, Jonuškienė I, Karosienė J, Koreivienė J, Vilienė V. Evaluation of Phenolic Compounds and Pigments in Freshwater Cladophora glomerata Biomass from Various Lithuanian Rivers as a Potential Future Raw Material for Biotechnology. Water. 2022; 14(7):1138. https://doi.org/10.3390/w14071138
Chicago/Turabian StyleNutautaitė, Monika, Asta Racevičiūtė-Stupelienė, Saulius Bliznikas, Ilona Jonuškienė, Jūratė Karosienė, Judita Koreivienė, and Vilma Vilienė. 2022. "Evaluation of Phenolic Compounds and Pigments in Freshwater Cladophora glomerata Biomass from Various Lithuanian Rivers as a Potential Future Raw Material for Biotechnology" Water 14, no. 7: 1138. https://doi.org/10.3390/w14071138
APA StyleNutautaitė, M., Racevičiūtė-Stupelienė, A., Bliznikas, S., Jonuškienė, I., Karosienė, J., Koreivienė, J., & Vilienė, V. (2022). Evaluation of Phenolic Compounds and Pigments in Freshwater Cladophora glomerata Biomass from Various Lithuanian Rivers as a Potential Future Raw Material for Biotechnology. Water, 14(7), 1138. https://doi.org/10.3390/w14071138