Integrated Growth Model of Typical Crops in China with Regional Parameters
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites
2.2. Data Sources
2.3. Logistic Growth Model
2.4. Calculation of LAImax and DMAmax
3. Results
3.1. Characteristics of the Semirelative Logistic Growth Model for the Four Crops
3.2. Characteristics of the Fully Relative Logistic Growth Model of the Crops
3.3. Integrated Logistic Growth Model of the Crops
3.4. Spatial Distribution of LAImax and DMAmax
3.5. Relationships between LAImax, DMAmax, and Meteorological Factors
4. Discussion
4.1. Comparison of the Semirelative and Fully Relative Logistic Growth Models of the Crops
4.2. Comprehensive and Fully Relative Logistic Growth Model
4.3. Spatial Variability of LAImax and DMAmax for the Crops
4.4. Hydrothermal Coupling of LAImax and DMAmax for the Crops
5. Conclusions
- (1)
- The demand for GDD for the four crops in the semirelative logistic growth model when RLAI was highest was in the order rice < cotton < winter wheat < summer maize. H for the crops at the same GDD was in the order cotton > summer maize > winter wheat. The increase in DMA for the crops related to different GDD demands at different stages of growth. RGDD for the four crops in the fully relative logistic growth model when RLAI was highest was in the order rice < summer maize < cotton < winter wheat. RH at the same RGDD for the crops except rice was in the order cotton > winter wheat > summer maize, and the maximum rate of increase in RH was in the order winter wheat > cotton > summer maize. The order of RDMA differed between early and late crop growth.
- (2)
- Both the semirelative logistic model and the fully relative logistic model could well simulate the changes in each indicator of crop growth. The fully relative logistic model could intuitively represent the growth characteristics of the crops better than the semirelative logistic model. We established a comprehensive logistic model that could describe the growth of the four crops, and the verification results were good.
- (3)
- The spatial distributions of LAImax and DMAmax for the four crops were highly variable, and the variations and levels of LAImax and DMAmax differed amongst the crops. Water consumption and GDDmax simulated crop LAImax and DMAmax well.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Butler, E.E.; Huybers, P. Adaptation of US maize to temperature variations. Nat. Clim. Chang. 2012, 3, 68–72. [Google Scholar] [CrossRef]
- Zhang, T.; Huang, Y.; Yang, X. Climate warming over the past three decades has shortened rice growth duration in China and cultivar shifts have further accelerated the process for late rice. Glob. Chang. Biol. 2013, 19, 563–570. [Google Scholar] [CrossRef] [PubMed]
- Hochman, Z.; Gobbett, D.; Horan, H. Climate trends account for stalled wheat yields in Australia since 1990. Glob. Chang. Biol. 2017, 23, 2071–2081. [Google Scholar] [CrossRef] [PubMed]
- Cammarano, D.; Tian, D. The effects of projected climate and climate extremes on a winter and summer crop in the southeast USA. Agric. For. Meteorol. 2018, 248, 109–118. [Google Scholar] [CrossRef]
- Zhao, L.; Li, Q.; Zhang, Y.; Wang, H.; Du, X. Normalized NDVI valley area index (NNVAI)-based framework for quantitative and timely monitoring of winter wheat frost damage on the Huang-Huai-Hai Plain, China. Agr. Ecosyst. Environ. 2020, 292, 106793. [Google Scholar] [CrossRef]
- Ding, Y.; Ren, G.; Shi, G.; Gong, P.; Zheng, X.; Zhai, P.; Zhang, D.; Zhao, Z.; Wang, S.; Wang, H.; et al. National assessment report of climate change (Ι): Climate change in China and its future trend. Adv. Clim. Chang. Res. 2007, 2, 3–8, (In Chinese with English abstract). [Google Scholar]
- IPCC. Climate Change 2013: The Physical Science Basis; Cambridge University: Cambridge, UK, 2013; Volume 43, pp. 866–871. [Google Scholar]
- Asseng, S.; Foster, I.; Turner, N.C. The impact of temperature variability on wheat yields. Glob. Chang. Biol. 2011, 17, 997–1012. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations, FAO FAOSTAT Database. Available online: http://www.fao.org/faostat/en/#home (accessed on 1 January 2018).
- Liu, Z.; Gao, J.; Gao, F.; Liu, P.; Zhao, B.; Zhang, J. Late harvest improves yield and nitrogen utilization efficiency of summer maize. Field Crop. Res. 2019, 232, 88–94. [Google Scholar] [CrossRef]
- Tao, F.; Yokozawa, M.; Xu, Y. Climate changes and trends in phonology and yields of field crops in China, 1981–2000. Agric. For. Meteorol. 2006, 138, 82–92. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, E.L.; Yang, X.G.; Wang, J. Contributions of climatic and crop varietal changes to crop production in the North China Plain, since 1980s. Glob. Chang. Biol. 2010, 16, 2287–2299. [Google Scholar] [CrossRef]
- Wang, Y.; Shen, Y.; Chen, Y.; Guo, Y. Vegetation dynamics and their response to hydroclimatic factors in the Tarim River Basin, China. Ecohydrology 2012, 6, 927–936. [Google Scholar] [CrossRef]
- Messina, C.; Technow, F.; Tang, T.; Totir, R.; Gho, C.; Cooper, M. Leveraging biological insight and environmental variation to improve phenotypic prediction: Integrating crop growth models (CGM) with whole genome prediction (WGP). Eur. J. Agron. 2018, 100, 151–162. [Google Scholar] [CrossRef]
- Siad, S.M.; Iacobellis, V.; Zdruli, P.; Gioia, A.; Stavi, I.; Hoogenboom, G. A review of coupled hydrologic and crop growth models. Agric. Water Manag. 2019, 224, 105746. [Google Scholar] [CrossRef]
- Balda, M.C.; Kawajiri, K. The right crops in the right place for the food-energy nexus: Potential analysis on rice and wheat in Hokkaido using crop growth models. J. Clean. Prod. 2020, 263, 121373. [Google Scholar] [CrossRef]
- Gompertz, B. On the nature of the function expressive of the law of human mortality, and on a new mode of determining the value of life contingencies. Philos. Trans. R. Soc. 1825, 115, 513–583. [Google Scholar] [CrossRef]
- Verhulst, P.F. Notice sur la loi que la population suit dans son accroissement. Corresp. Math. Phys. 1838, 10, 113–126. [Google Scholar]
- Richards, F.J. A Flexible Growth Function for Empirical Use. J. Exp. Bot. 1959, 10, 290–301. [Google Scholar] [CrossRef]
- Paine, C.E.T.; Marthews, T.R.; Vogt, D.R.; Purves, D.; Rees, M.; Hector, A.; Turnbull, L.A. How to fit nonlinear plant growth models and calculate growth rates: An update for ecologists. Methods Ecol. Evol. 2012, 3, 245–256. [Google Scholar] [CrossRef]
- Jiang, T.; Liu, J.; Gao, Y.; Sun, Z.; Chen, S.; Yao, N.; Ma, H.; Feng, H.; Yu, Q.; He, J. Simulation of plant height of winter wheat under soil Water stress using modified growth functions. Agric. Water Manag. 2020, 232, 106066. [Google Scholar] [CrossRef]
- Ding, D.; Feng, H.; Zhao, Y.; Robert, L.H.; Yan, H.; Chen, H.; Hou, H.; Chu, X.; Liu, J.; Wang, N.; et al. Effects of continuous plastic mulching on crop growth in a winter wheat-summer maize rotation system on the Loess Plateau of China. Agric. For. Meteorol. 2019, 271, 385–397. [Google Scholar] [CrossRef]
- Fang, H.; Gu, X.; Jiang, T.; Yang, J.; Li, Y.; Huang, P.; Chen, P.; Yang, J. An optimized model for simulating grain-filling of maize and regulating nitrogen application rates under different film mulching and nitrogen fertilizer regimes on the Loess Plateau, China. Soil Tillage Res. 2020, 199, 104546. [Google Scholar] [CrossRef]
- Liu, X.; Liu, X.; Li, Y.; Yuan, J.; Song, L.; Li, H.; Wu, M. Estimation model of canopy stratification porosity based on morphological characteristics: A case study of cotton. Biosyst. Eng. 2020, 193, 174–186. [Google Scholar] [CrossRef]
- Liu, Y.; Su, L.; Wang, Q.; Zhang, J.; Shan, Y.; Deng, M. Comprehensive and quantitative analysis of growth characteristics of winter wheat in China based on growing degree days. Adv. Agron 2020, 159, 237–273. [Google Scholar] [CrossRef]
- Su, L.; Liu, Y.; Wang, Q. Rice growth model in China based on growing degree days. Trans. Chin. Soc. Agric. Eng. 2020, 36, 162–174, (In Chinese with English Abstract). [Google Scholar]
- Guo, X.; Bian, Z.; Wang, S.; Wang, Q.; Zhang, Y.; Zhou, J.; Lin, L. Prediction of the spatial distribution of soil arthropods using a random forest model: A case study in Changtu County, Northeast China. Agric. Ecosyst. Environ. 2020, 292, 106818. [Google Scholar] [CrossRef]
- Tripathee, L.; Guo, J.; Kang, S.; Paudyal, R.; Huang, J.; Sharma, C.; Zhang, Q.; Chen, P.; Ghimire, P.S.; Sigdel, M. Spatial and temporal distribution of total mercury in atmospheric wet precipitation at four sites from the Nepal-Himalayas. Sci. Total Environ. 2019, 655, 1207–1217. [Google Scholar] [CrossRef]
- Yao, X.; Zhu, D.; Ye, S.; Yun, W.; Zhang, N.; Li, L. A field survey system for land consolidation based on 3S and speech recognition technology. Comput. Electron. Agric. 2016, 127, 659–668. [Google Scholar] [CrossRef]
- Gaso, D.V.; Berger, A.G.; Ciganda, V.S. Predicting wheat grain yield and spatial variability at field scale using a simple regression or a crop model in conjunction with Landsat images. Comput. Electron. Agric. 2019, 159, 75–83. [Google Scholar] [CrossRef]
- Franz, T.E.; Pokal, S.; Gibson, J.P.; Zhou, Y.; Gholizadeh, H.; Tenorio, F.A.; Rudnick, D.; Heeren, D.; McCabe, M.; Ziliani, M.; et al. The role of topography, soil, and remotely sensed vegetation condition towards predicting crop yield. Field Crop. Res. 2020, 252, 107788. [Google Scholar] [CrossRef]
- Chen, J.M.; Black, T.A. Defining leaf area index for non-flat leaves. Plant. Cell Environ. 1992, 15, 421–429. [Google Scholar] [CrossRef]
- Gobron, N.; Pinty, B.; Verstraete, M. Theoretical limits to the estimation of the leaf area index on the basis of visible and near-infrared remote sensing data. IEEE Trans. Geosci. Remote Sens. 1997, 35, 1438–1445. [Google Scholar] [CrossRef]
- Hardwick, S.; Toumi, R.; Pfeifer, M.; Turner, E.C.; Nilus, R.; Ewers, R.M. The relationship between leaf area index and microclimate in tropical forest and oil palm plantation: Forest disturbance drives changes in microclimate. Agric. For. Meteorol. 2015, 201, 187–195. [Google Scholar] [CrossRef] [Green Version]
- Latifmanesh, H.; Deng, A.; Nawaz, M.M.; Li, L.; Chen, Z.; Zheng, Y.; Wang, P.; Song, Z.; Zhang, J.; Zheng, C.; et al. Integrative impacts of rotational tillage on wheat yield and dry matter accumulation under corn-wheat cropping system. Soil Tillage Res. 2018, 184, 100–108. [Google Scholar] [CrossRef]
- Sun, S.; Yang, X.; Lin, X.; Zhao, J.; Liu, Z.; Zhang, T.; Xie, W. Seasonal variability in potential and actual yields of winter wheat in China. Field Crop. Res. 2019, 240, 1–11. [Google Scholar] [CrossRef]
- Wang, Q.; Liu, Y.; Su, L. Relative leaf area index of typical crops based on single parameter Logistic model. T. Chin. Soc. Agric. Mach. 2020, 51, 210–219, (In Chinese with English Abstract). [Google Scholar]
- Zhang, Z.; Wang, P.; Chen, Y.; Song, X.; Wei, X.; Shi, P. Global warming over 1960–2009 did increase heat stress and reduce cold stress in the major rice-planting areas across China. Eur. J. Agron. 2014, 59, 49–56. [Google Scholar] [CrossRef]
- Lu, X.; Jia, X.; Niu, J. The present situation and prospects of cotton industry development in China. Sci. Agric. Sin. 2018, 51, 26–36, (In Chinese with English Abstract). [Google Scholar]
- Huang, S.; Lv, L.; Zhu, J.; Li, Y.; Tao, H.; Wang, P. Extending growing period is limited to offsetting negative effects of climate changes on maize yield in the North China Plain. Field Crop. Res. 2018, 215, 66–73. [Google Scholar] [CrossRef]
- Wang, L.; Hu, W.; Zahoor, R.; Yang, X.; Wang, Y.; Zhou, Z.; Meng, Y. Cool temperature caused by late planting affects seed vigor via altering kernel biomass and antioxidant metabolism in cotton (Gossypium hirsutum L.). Field Crop. Res. 2020, 236, 145–154. [Google Scholar] [CrossRef]
- Yang, Y.; Chen, M.; Tian, J.; Xiao, F.; Xu, S.; Zuo, W.; Zhang, W. Improved photosynthetic capacity during the mid- and late reproductive stages contributed to increased cotton yield across four breeding eras in Xinjiang, China. Field Crop. Res. 2019, 240, 177–184. [Google Scholar] [CrossRef]
- Vico, G.; Hurry, V.; Weih, M. Snowed in for survival: Quantifying the risk of winter damage to overwintering field crops in northern temperate latitudes. Agric. For. Meteorol. 2014, 197, 65–75. [Google Scholar] [CrossRef]
- Peltonen-Sainio, P.; Hakala, K.; Jauhiainen, L. Climate-induced overwintering challenges for wheat and rye in northern agriculture. Acta Agric. Scand. Sect. B Soil Plant. Sci. 2011, 61, 75–83. [Google Scholar] [CrossRef]
- Xiao, Z.; Liang, S.; Wang, J.; Chen, P.; Yin, X.; Zhang, L.; Song, J. Use of General Regression Neural Networks for Generating the GLASS Leaf Area Index Product From Time-Series MODIS Surface Reflectance. IEEE Trans. Geosci. Remote Sens. 2014, 52, 209–223. [Google Scholar] [CrossRef]
- Liang, L.; Di, L.; Zhang, L.; Deng, M.; Qin, Z.; Zhao, S.; Lin, H. Estimation of crop LAI using hyperspectral vegetation indices and a hybrid inversion method. Remote Sens. of Environ. 2015, 165, 123–134. [Google Scholar] [CrossRef]
- Ma, S.-C.; Zhang, W.-Q.; Duan, A.-W.; Wang, T.-C. Effects of controlling soil moisture regime based on root-sourced signal characteristics on yield formation and water use efficiency of winter wheat. Agric. Water Manag. 2019, 221, 486–492. [Google Scholar] [CrossRef]
- Mather, J.R.; Yoshioka, G.A. The Role of Climate in the Distribution of Vegetation. Ann. Assoc. Am. Geogr. 1968, 58, 29–41. [Google Scholar] [CrossRef]
- Li, N.; Lin, H.; Wang, T.; Li, Y.; Chen, X.; Hu, X. Impact of climate change on cotton growth and yields in Xinjiang, China. Field Crop. Res. 2020, 247, 107590. [Google Scholar] [CrossRef]
- Shen, Y.-J.; Guo, Y.; Zhang, Y.; Pei, H.; Brenning, A. Review of historical and projected future climatic and hydrological changes in mountainous semiarid Xinjiang (northwestern China), central Asia. CATENA 2020, 187, 104343. [Google Scholar] [CrossRef]
- Sun, L.; Gao, F.; Anderson, M.; Kustas, W.; Alsina, M.; Sanchez, L.; Sams, B.; McKee, L.; Dulaney, W.; White, W.A.; et al. Daily mapping of 30 m LAI and NDVI for grape yield prediction in California vineyards. Remote Sens. 2017, 9, 317. [Google Scholar] [CrossRef] [Green Version]
- Lunagaria, M.M.; Patel, H.R. Evaluation of PROSAIL inversion for retrieval of chlorophyll, leaf dry matter, leaf angle, and leaf area index of wheat using spectrodirectional measurements. Int. J. Remote Sens. 2019, 40, 8125–8145. [Google Scholar] [CrossRef]
- Tian, B.-J.; Zhu, J.-C.; Liu, X.-W.; Huang, S.-B.; Wang, P. Interacting leaf dynamics and environment to optimize maize sowing date in North China Plain. J. Integr. Agric. 2020, 19, 1227–1240. [Google Scholar] [CrossRef]
- Xu, E.; Wang, R.; Zhang, H.; Yu, Z. Coupling index of water consumption and soil fertility correlated with winter wheat production in North China Region. Ecol. Indic. 2019, 102, 154–165. [Google Scholar] [CrossRef]
- Bonhomme, R.; Derieux, M.; Kiniry, J.; Edmeades, G.; Ozier-Lafontaine, H. Maize Leaf Number Sensitivity in Relation to Photoperiod in Multilocation Field Trials. Agron. J. 1991, 83, 153–157. [Google Scholar] [CrossRef]
- Meade, K.A.; Cooper, M.; Beavis, W.D. Modeling biomass accumulation in maize kernels. Field Crop. Res. 2013, 151, 92–100. [Google Scholar] [CrossRef]
- Stewart, B.A.; Rattan, L. Increasing World Average Yields of Cereal Crops: It’s All About Water. Adv. Agron. 2018, 151, 1–44. [Google Scholar]
- Ballesteros, R.; Ortega, J.F.; Hernandez, D.; del Campo, A.; Moreno, M.A. Combined use of agro-climatic and very high-resolution remote sensing information for crop monitoring. Int. J. Appl. Earth Obs. Geoinf. 2018, 72, 66–75. [Google Scholar] [CrossRef]
- Kan, Z.-R.; Liu, Q.-Y.; He, C.; Jing, Z.-H.; Virk, A.L.; Qi, J.-Y.; Zhao, X.; Zhang, H.-L. Responses of grain yield and water use efficiency of winter wheat to tillage in the North China Plain. Field Crop. Res. 2020, 249, 107760. [Google Scholar] [CrossRef]
- Peng, Z.; Wang, L.; Xie, J.; Li, L.; Coulter, J.A.; Zhang, R.; Luo, Z.; Cai, L.; Carberry, P.; Whitbread, A. Conservation tillage increases yield and precipitation use efficiency of wheat on the semi-arid Loess Plateau of China. Agric. Water Manag. 2020, 231, 106024. [Google Scholar] [CrossRef]
- Wannasek, L.; Ortner, M.; Kaul, H.-P.; Amon, B.; Amon, T. Double-cropping systems based on rye, maize and sorghum: Impact of variety and harvesting time on biomass and biogas yield. Eur. J. Agron. 2019, 110, 125934. [Google Scholar] [CrossRef]
- Doltra, J.; Gallejones, P.; Olesen, J.E.; Hansen, S.; Frøseth, R.; Krauss, M.; Stalenga, J.; Jończyk, K.; Fernandez, A.M.; Pacini, G. Simulating soil fertility management effects on crop yield and soil nitrogen dynamics in field trials under organic farming in Europe. Field Crop. Res. 2019, 233, 1–11. [Google Scholar] [CrossRef]
- Yu, Q.; Wang, H.; Wen, P.; Wang, S.; Li, J.; Wang, R.; Wang, X. A suitable rotational conservation tillage system ameliorates soil physical properties and wheat yield: An 11-year in-situ study in a semi-arid agroecosystem. Soil Tillage Res. 2020, 199, 104600. [Google Scholar] [CrossRef]
- Zhang, X.; Zhu, A.; Xin, X.; Yang, W.; Zhang, J.; Ding, S. Tillage and residue management for long-term wheat-maize cropping in the North China Plain: I. Crop yield and integrated soil fertility index. Field Crop. Res. 2018, 221, 157–165. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, J.; Bai, Y.; Zhang, S.; Yang, S.; Yao, F. Integrating remote sensing-based process model with environmental zonation scheme to estimate rice yield gap in Northeast China. Field Crop. Res. 2020, 246, 107682. [Google Scholar] [CrossRef]
City | Geographical Position | Altitude (m) | Average Annual Rainfall (mm) | Average Annual Temperature (°C) | Main Soil Type |
---|---|---|---|---|---|
Handan | 36.63° N, 114.54° E | 55.00 | 553.20 | 13.50 | Sandy loam |
Shijiazhuang | 38.04° N, 114.51° E | 450.00 | 632.40 | 14.20 | Loam |
Hengshui | 37.74° N, 115.67° E | 27.40 | 571.02 | 14.51 | Loam |
Langfang | 39.54° N, 116.68° E | 13.00 | 517.39 | 8.98 | Sandy loam |
Baoding | 39.02° N, 116.08° E | 16.80 | 500.73 | 12.88 | Sandy loam |
Qinhuangdao | 39.94° N, 119.60° E | 570.90 | 665.56 | 10.39 | Sandy loam |
Yucheng | 36.94° N, 116.64° E | 23.40 | 573.92 | 14.04 | Sandy loam |
Laizhou | 37.18° N, 119.94° E | 25.00 | 687.76 | 12.79 | Loam |
Jinan | 36.65° N, 117.12° E | 170.30 | 704.01 | 14.90 | Loam |
Jiaozhou | 36.27° N, 120.03° E | 20.00 | 644.80 | 14.49 | Loam |
Zibo | 36.81° N, 118.05° E | 60.00 | 586.01 | 13.74 | Sandy loam |
Liaocheng | 36.46° N, 115.99° E | 23.40 | 600.76 | 14.42 | Clay |
Beijing | 39.91° N, 116.41° E | 31.30 | 636.30 | 11.47 | Loam |
Luopu | 37.08° N, 80.20° E | 1356.00 | 163.33 | 4.26 | Sand |
Zepu | 38.15° N, 77.17° E | 1279.00 | 147.40 | 9.19 | Sandy loam |
Manasi | 43.92° N, 86.07° E | 608.00 | 306.24 | 6.40 | Sandy loam |
Wujiaqu | 44.17° N, 87.54° E | 462.00 | 127.18 | 8.70 | Loam |
Hefei | 31.82° N, 117.23° E | 49.80 | 1111.30 | 16.72 | Clay |
Gaoyou | 32.78° N, 119.46° E | 6.50 | 1103.10 | 16.24 | Clay |
Nanjing | 32.06° N, 118.80° E | 35.20 | 1277 | 16.50 | Clay |
Changshu | 31.66° N, 120.75° E | 11.00 | 945.60 | 15.06 | Clay |
Hangzhou | 30.25° N, 120.21° E | 41.70 | 1620.00 | 17.70 | Clay |
Anshun | 26.25° N, 105.93° E | 143.11 | 1128.50 | 14.48 | Clayey loam |
Qianjiang | 30.42° N, 112.90° E | 30.80 | 1159.10 | 16.97 | Clay |
Yangling | 34.23° N, 108.09° E | 521.00 | 610.59 | 11.16 | Loam |
Xianyang | 34.33° N, 108.71° E | 518.00 | 621.53 | 12.59 | Loam |
Yuncheng | 35.02° N, 111.00° E | 375.00 | 500.79 | 14.54 | Loam |
Linfen | 36.08° N, 111.52° E | 449.50 | 479.99 | 14.22 | Loam |
Jinzhong | 37.70° N, 112.74° E | 902.00 | 549.96 | 12.62 | Loam |
Zhengzhou | 34.76° N, 113.67° E | 110.40 | 618.91 | 15.96 | Loam |
Xuchang | 34.02° N, 113.83° E | 67.20 | 682.6 | 14.87 | Loam |
Luoyang | 34.66° N, 112.43° E | 304.00 | 556.13 | 15.64 | Loam |
Hebi | 35.75° N, 114.30° E | 102.00 | 593.23 | 14.45 | Loam |
Anyang | 36.10° N, 114.35° E | 75.50 | 590.25 | 14.42 | Clayey loam |
Shangqiu | 34.44° N, 115.65° E | 52.00 | 755.01 | 14.70 | Loam |
Yanshi | 34.73° N, 112.79° E | 184.00 | 587.62 | 14.85 | Loam |
Lanzhou | 36.06° N, 103.83° E | 151.72 | 127.26 | 8.56 | Sandy loam |
Cangzhou | 38.31° N, 116.84° E | 8.20 | 517.28 | 13.51 | Loam |
Yining | 43.98° N, 81.53° E | 813.00 | 236.29 | 4.46 | Clay |
Qianxian | 34.52° N, 108.25° E | 580.00 | 720.45 | 14.27 | Loam |
Xinxiang | 35.30° N, 113.88° E | 81.00 | 594.18 | 15.46 | Sandy loam |
Taiyuan | 37.87° N, 112.55° E | 776.30 | 477.23 | 11.13 | Loam |
City | Varieties | Main Treatments | Used for |
---|---|---|---|
Handan | Han 6172, Hanmai 13, Han 4564, Jiaozhuang 3475 | N (375, 450), K 187.5 | M |
Shijiazhuang | Kenong 199 | N 262.5, P 138 | M |
Hengshui | Baofeng 104 | N 300, P 175, K 175 | M |
Langfang | Baofeng 104, Beinong 9549 | N (0, 60, 120, 180, 240, 300), P 75, K 75 | M |
Baoding | Lukenmai 9, Henong 822 | N 284, P 102, K 95 | M |
Qinhuangdao | Chaoyou 66 | I (60, 120, 180, 240), N 300 | M |
Yucheng | Keyu 13 | N 245.3 | M |
Laizhou | PH 99–31, BY 8175 | N 270, P 135, K 110 | M |
Jinan | Yannong 19, Jimai 20, Jimai 19, Taishan 23 | N 225, P 450 | M |
Jiaozhou | Qingmai 7 | I (30, 60, 90, 120, 150, 240), N 108, P (108, 48) | M |
Zibo | Lumai 103 | I (165, 210), N (0, 100, 200, 300) | M |
Liaocheng | LN05–1, LN05–2, LN05–3, LN06–1, LN06–2, LN07–1, LN07–2, LN07–3, LN07–4, LN07–5 | N 488.9, P 400, K 333.3 | M |
Beijing | Zhongyou 9507, Jingdong 8 | I (60, 120), N (0, 75, 150, 225, 300, 375) | M |
Luopu | Nongda 212, Baomai 10, Henong 825, Henongpin 50, Henong 827, Jingdong 8, 5480, Pin 2, Xingmai 4, Shimai 15, Jimai 22, Guan 35, Xindong 20 | N 525, P 450, K 375 | M |
Zepu | Xindong 40 | I 360, N 150, P 375 | M |
Manasi | Xindong 18 | I (232.5, 255, 300, 345, 367.5, 435, 525), N (90, 180, 270, 360, 495) | M |
Wujiaqu | Xindong 8 | I (270, 360, 450), N (160, 450, 750) | M |
Hefei | Wanmai 38 | N (120, 240, 360), P 900, K 112.5 | M |
Gaoyou | Ningmai 9 | N 225, P 300, K 300 | M |
Nanjing | Ningmai 9, Ningmai 13, Yumai 34 | N (0, 75, 90, 150, 180, 225, 270, 300), P 80, K 150 | M |
Changshu | Yangmai 10 | N (0, 93.75, 168.75, 243.75), P 56.25, K 56.25 | M |
Hangzhou | Ningmai 13 | N 275, P 140, K 120 | M |
Anshun | Anmai 6 | N 225, P 120, K 90 | M |
Qianjiang | Zhengmai 9023, Wanmai 369 | N 350 | M |
Yangling | Xiaoyan 22 | I (75, 120, 135, 150), N 256.5, P 240 | M |
Xianyang | Changwu 134 | N (90, 180), P (90, 180) | M |
Yuncheng | Liangxing 99, Jinmai 79 | I (80, 100, 120), N (150, 200, 250), P 240 | M |
Linfen | Yaomai 16 | I (240, 320), N (280, 387), P (50, 79), K (108, 120) | M |
Jinzhong | Ji 22, Lumai 14, Jingdong 8, Jing 9428, Beinongbai, Shannong 9–1, Shannong 9801 | N (75, 150, 225, 300), P 150, K 150 | M |
Zhengzhou | Yumai 49–198, Yumai 13 | N 180, P 90, K 180 | M |
Xuchang | Zhoumai 27, Zhengmai 366, Aikang 58, Yumai 49–198 | N (120, 225, 330), P 134.9, K 104.9 | M |
Luoyang | Yumai 49–198, Yanzhan 4110, Yanshi 918–58 | I (90, 135, 150, 180, 225, 300), N (105, 210, 315), P (37.5, 112.5, 187.5), K 67.5 | M |
Hebi | Xinmai 26, Yumai 49–198, Bainong 66 | I (135, 142.5, 172.5), N (150, 175, 240), P (112.5, 412.5), K (60, 150) | M |
Anyang | Zhoumai 16, Zhou 18 | N (100, 180, 200, 225, 270, 300), P (120, 134.9), K (75, 104.9) | M |
Shangqiu | Yujiao 5 | N (120, 240, 300, 360) | M |
Yanshi | Yumai 18 | K (75, 150, 225) | M |
Lanzhou | Shidong 8, Ningdong 6, Jimai 22 | K (150, 195, 240) | M |
Cangzhou | 9402 | N 450, P 300 | V |
Yining | Yinong 21 | I (345, 375, 435), N (0, 104, 173, 242), P 300 | V |
Qianxian | Shan 229 | N (0, 112.5, 187.5, 262.5, 337.5), P (90, 150, 210, 270) | V |
Xinxiang | Linong 9968 | I 75 | V |
Taiyuan | Yaomai 16 | N 630, P 345, K 75 | V |
City | Geographical Position | Altitude (m) | Average Annual Rainfall (mm) | Average Annual Temperature (°C) | Main Soil Type |
---|---|---|---|---|---|
Haicheng | 40.88° N, 122.68° E | 34.40 | 721.30 | 10.40 | Loam |
Fuxin | 42.02° N, 121.67° E | 153.20 | 565.60 | 8.60 | Loam |
Tongliao | 44.13° N, 123.31° E | 178.70 | 375.50 | 7.56 | Silty loam |
Huadian | 43.23° N, 126.51° E | 263.30 | 824.76 | 4.84 | Clayey loam |
Changchun | 43.81° N, 125.41° E | 236.80 | 649.10 | 6.28 | Loam |
Jinan | 36.71° N, 117.08° E | 170.30 | 704.01 | 14.90 | Sandy loam |
Taian | 36.18° N, 117.04° E | 1533.70 | 637.02 | 13.97 | Sandy loam |
Tengzhou | 35.11° N, 117.17° E | 40.90 | 627.39 | 12.82 | Loam |
Gunzhou | 35.42° N, 116.59° E | 45.60 | 580.30 | 14.10 | Loam |
Qingdao | 36.07° N, 120.38° E | 76.00 | 624.74 | 13.33 | Loam |
Jining | 35.41° N, 116.59° E | 43.70 | 708.50 | 13.70 | Loam |
Linyi | 35.11° N, 118.36° E | 107.40 | 813.77 | 14.37 | Loam |
Laiyang | 36.98° N, 120.71° E | 66.30 | 607.19 | 12.58 | Loam |
Dezhou | 37.44° N, 116.36° E | 27.40 | 600.76 | 14.43 | Loam |
Laizhou | 37.18° N, 119.94° E | 25.00 | 687.76 | 12.79 | Loam |
Jiaozuo | 35.22° N, 113.24° E | 113.20 | 699.80 | 13.80 | Clayey loam |
Pingdingshan | 33.77° N, 113.19° E | 197.20 | 949.50 | 13.55 | Loam |
Zhumadian | 33.01° N, 114.02° E | 106.20 | 855.28 | 15.60 | Clayey loam |
Kaifeng | 34.80° N, 114.31° E | 73.70 | 556.13 | 15.61 | Loam |
Yuzhou | 34.14° N, 113.49° E | 136.60 | 650.00 | 14.50 | Loam |
Xinxiang | 35.31° N, 113.93° E | 81.00 | 594.18 | 15.46 | Sandy loam |
Zhengzhou | 34.75° N, 113.63° E | 110.40 | 618.91 | 15.96 | Sandy loam |
Wenxian | 34.95° N, 113.09° E | 112.00 | 625.00 | 14.50 | Loam |
Hebi | 35.68° N, 114.56° E | 102.00 | 593.23 | 14.45 | Clayey loam |
Anyang | 36.11° N, 114.40° E | 75.50 | 590.25 | 14.42 | Loam |
Shangqiu | 34.42° N, 115.66° E | 52.00 | 755.01 | 14.70 | Loam |
Zhongmou | 34.73° N, 113.98° E | 108.00 | 616.00 | 14.20 | Sandy loam |
Luoyang | 34.63° N, 112.46° E | 304.00 | 556.13 | 15.64 | Loam |
Beijing | 39.91° N, 116.41° E | 31.30 | 636.30 | 11.47 | Sandy loam |
Quzhou | 36.77° N, 114.96° E | 37.20 | 556.20 | 13.10 | Loam |
Cangzhou | 38.31° N, 116.85° E | 8.20 | 517.28 | 13.51 | Loam |
Xinji | 37.95° N, 115.22° E | 37.50 | 586.93 | 12.50 | Sandy loam |
Shijiazhuang | 38.05° N, 114.52° E | 450.00 | 632.40 | 14.20 | Loam |
Langfang | 39.54° N, 116.69° E | 13.00 | 517.39 | 8.98 | Sandy loam |
Baoding | 38.88° N, 115.47° E | 16.80 | 500.73 | 12.88 | Loam |
Tianjin | 39.09° N, 117.21° E | 3.50 | 523.49 | 13.27 | Loam |
Wuwei | 37.94° N, 102.64° E | 1540.20 | 178.48 | 9.55 | Silty loam |
Zhangye | 38.93° N, 100.46° E | 1461.10 | 127.26 | 8.56 | Loam |
Tongxin | 36.99° N, 105.92° E | 1336.40 | 239.89 | 10.11 | Clayey loam |
Yangling | 34.30° N, 108.07° E | 521.00 | 610.59 | 11.16 | Loam |
Weinan | 34.51° N, 109.52° E | 437.40 | 491.45 | 14.15 | Loam |
Yangzhou | 32.40° N, 119.42° E | 7.30 | 951.30 | 15.65 | Clay |
Nanjing | 32.07° N, 118.80° E | 35.20 | 1277.00 | 16.50 | Loamy clay |
Tianchang | 32.67° N, 119.01° E | 43.90 | 917.42 | 14.80 | Clay |
Fuyang | 32.90° N, 115.82° E | 32.70 | 883.98 | 15.61 | Loamy clay |
Xianyang | 34.34° N, 108.72° E | 518.00 | 621.53 | 12.59 | Loam |
Huanghua | 38.38° N, 117.34° E | 5.00 | 580.22 | 13.38 | Sandy loam |
Xuchang | 34.04° N, 113.86° E | 67.20 | 682.60 | 14.87 | Loam |
Zaozhuang | 34.81° N, 117.32° E | 114.30 | 603.59 | 13.41 | Sandy loam |
Jilin | 43.88° N, 126.57° E | 229.50 | 749.80 | 6.02 | Sandy loam |
City | Varieties | Main Treatments | Used For |
---|---|---|---|
Haicheng | Zhengdan 958 | N 250, P 150, K 180 | M |
Fuxin | Danyu 39 | N 200, P 187.5 | M |
Tongliao | Zhengdan 958 | I 280, N 524.25, P 108.75 | M |
Huadian | Jidan 631 | N 225, P 90, K 120 | M |
Changchun | Xianyu 335, Zhengdan 958, Sanbei 9, Changcheng 799, Tongdan 258, Huake 425, Donghua 106, Yuyu 22, Nongda 518 | N (280, 330), P (100, 180), K (60, 100) | M |
Jinan | Nuoda 1 | M | |
Taian | Denghai 661, Zhengdan 958, Yedan 22 | N (160.5, 184.5, 225, 450), P (45, 55.5, 75, 150), K (75, 130.5, 150, 300) | M |
Tengzhou | Denghai 661, Zhengdan 958, Nongda 108 | N 300, P 120, K 240 | M |
Gunzhou | Denghai 661, Zhengdan 958, Nongda 108 | N 300, P 120, K 240 | M |
Qingdao | Qingnong 8 | I (90, 180, 270, 360), N (150, 210, 270, 330), P (60, 120, 180, 240) | M |
Jining | Zhengdan 958 | N (150, 225) | M |
Linyi | Tiantai 33, Tiantai 55, Zhendgan 958 | N 360, P 150, K 300 | M |
Laiyang | Nongda 106, Yedan 22 | N 900, P 75 | M |
Dezhou | Zhengdan 958, Denghai 618 | N 305 | M |
Laizhou | Jinhai 5 | N 225, P 135, K 180 | M |
Jiaozuo | Yedan 13, Yedan 22, Zhengdan 958, Denghai 601 | N (121.5, 300, 478.5, 600, 750), P (45, 112.5, 180, 225, 450), K (76.5, 187.5, 298.5, 375, 600) | M |
Pingdingshan | Xundan 18 | N 260, P 125, K 100 | M |
Zhumadian | Chuangyu 198, Yuyu 2, Yuyu 5, Zhengdan 958, Xundan 22 | N (135, 138, 225), P (45, 48, 75, 150), K (75, 135, 150) | M |
Kaifeng | Zhengdan 958 | M | |
Yuzhou | Zhengdan 958, Xundan 20 | N (86.25, 350), P (114, 150), K (81, 180) | M |
Xinxiang | Zhengdan 958, Xundan 18, Xundan 20, Xindan 2 | I (90, 120), N (350, 506.25), P 150, K 180 | M |
Zhengzhou | Xundan 20, Yedan 22 | I 52.5, N (350, 750), P (56.25, 150, 450), K (56.25, 150, 600) | M |
Wenxian | Zhengdan 17, Yedan 22, Zhendgan 958, Xundan 20 | N (600, 1200), P (600, 1200) | M |
Hebi | Zhengdan 958, Xundan 20, Xundan 22, Denghai 3719 | N (270, 345, 450), P (90, 225), K (25, 120, 225) | M |
Anyang | Zhengdan 958, Yuyu 25, Denghai 661 | N (225, 450, 675), P (150, 300, 450), K 450 | M |
Shangqiu | Jixiang 1, Qiaoyu 8, Zhengdan 958 | N (530, 750), P (205, 1200), K (450, 540) | M |
Zhongmou | Yedan 22 | N 489, P 804 | M |
Luoyang | Luoyu 8, Yuyu 28, Luoyu 863, Luoyu 818 | N (390, 585, 600), P (135, 900), K (168.5, 255, 303.5) | M |
Beijing | Jingken 114, Jiyuan 101 | I (83.3, 86.9, 91.1, 98.9, 99, 99.79, 100.1, 100.4, 103.2, 108.1, 111.8, 114.2), N (12.45, 112.45, 212.45, 300), P (12.45, 126), K 12.45 | M |
Quzhou | Nongda 108 | I 157.5 | M |
Cangzhou | CF008, Zhengdan 958, Jinhai 5 | N (90, 180, 210, 270), P (90, 103.5), K (60, 112.5) | M |
Xinji | Zhengdan 958 | I (180, 250, 350, 450, 520), N (75, 180, 290, 365), K (50, 120, 190, 235) | M |
Shijiazhuang | Yongyu 1, Xianyu 335, Zhengdan 958 | N 250, P 125 | M |
Langfang | Yedan 4, Yedan 12, Yedan 13, Danyu 13, Yinong 103, Xianyu 335, Denghai 661 | N (80, 363), P (30, 172.5), K 150 | M |
Baoding | Yedan13 | N (135, 270, 540), P (90, 180, 360) | M |
Tianjin | Jiyuan 1 | N (225, 300, 375), P (90, 112.5, 120, 150, 187.5), K (90, 120, 135, 150, 180, 225) | M |
Wuwei | Funong 963 | I (225, 325, 450), N 262.5, P 525 | M |
Zhangye | Longdan 3 | N 300, P 270 | M |
Tongxin | Xianyu 335 | I (135, 165, 210, 255), N 204, P 68, K 54.4 | M |
Yangling | Qinlong 11, Shandan 10, Shandan 8806, Zhengdan 958 | I30, N (225, 450), P (90, 225), K 450 | M |
Weinan | Xundan 29 | N 300, P 120 | M |
Yangzhou | Suyu 31, Suyu 33 | N 300, P 120, K 150 | M |
Nanjing | Jiangyu 403 | N (75, 112.5) | M |
Tianchang | Denghai 11 | N 225, P 75, K 150 | M |
Fuyang | Anlong 4, Ludan 981, Zhengdan 958, Liyu 16, Zhongke 11, Huadan 986 | N 345, P 67.5, K 67.5 | M |
Xianyang | Yudan 6 | N 300, P 200 | V |
Huanghua | Zhengdan 958 | N 300 | V |
Xuchang | Zhengdan 958 | N 75, P 105, K 75 | V |
Zaozhuang | Huawan 602, Denghai 605, Denghai 618, Longping 206, Longping 208, Qidan 1, Zhengdan 958 | N 300 | V |
Jilin | Zhengdan 958 | N (90, 180, 270) | V |
City | Geographical Position | Altitude (m) | Average Annual Rainfall (mm) | Average Annual Temperature (°C) | Main Soil Type |
---|---|---|---|---|---|
Changsha | 28.23° N, 112.94° E | 42.00 | 1447.90 | 16.50 | Clayey loam |
Qiyang | 26.58° N, 111.84° E | 172.60 | 1410.41 | 18.52 | Clayey loam |
Yueyang | 29.36° N, 113.13° E | 53.00 | 1396.24 | 17.95 | Clay |
Liling | 27.65° N, 113.50° E | 114.00 | 1450.00 | 18.00 | Clay |
Yiyang | 28.56° N, 112.36° E | 102.00 | 1465.00 | 16.50 | Loam |
Dawa | 41.00° N, 122.08° E | 3.00 | 645.00 | 8.30 | Clayey loam |
Panjin | 41.12° N, 122.07° E | 3.30 | 446.60 | 9.90 | Sandy loam |
Shenyang | 41.68° N, 123.46° E | 51.00 | 681.06 | 8.30 | Clayey loam |
Jingshan | 31.02° N, 113.12° E | 77.00 | 1179.00 | 16.30 | Clayey loam |
Wuhan | 30.59° N, 114.31° E | 23.60 | 1322.61 | 16.97 | Sandy loam |
Suizhou | 31.69° N, 113.38° E | 122.00 | 967.50 | 15.50 | Clay |
Wuxi | 31.49° N, 120.31° E | 5.30 | 1121.70 | 16.20 | Clayey loam |
Yancheng | 33.35° N, 120.16° E | 2.50 | 882.47 | 14.13 | Sandy loam |
Changshu | 31.66° N, 120.75° E | 4.10 | 1615.30 | 16.90 | Sandy loam |
Lianyungang | 34.60° N, 119.22° E | 4.70 | 883.60 | 14.00 | Clayey loam |
Nanjing | 32.06° N, 118.80° E | 35.20 | 1277.00 | 16.50 | Clayey loam |
Huaian | 33.61° N, 119.02° E | 12.50 | 945.60 | 15.06 | Clay |
Changzhou | 31.81° N, 119.97° E | 7.60 | 1149.70 | 17.50 | Clayey loam |
Zhangjiagang | 31.88° N, 120.56° E | 5.40 | 957.04 | 14.81 | Sandy loam |
Hangzhou | 30.28° N, 120.16° E | 41.70 | 1620.00 | 17.70 | Clayey loam |
Ningbo | 29.88° N, 121.55° E | 9.40 | 1480.00 | 16.40 | Clay |
Huzhou | 30.89° N, 120.09° E | 194.30 | 1270.50 | 14.75 | Clay |
Jiaxing | 30.75° N, 120.76° E | 7.30 | 1168.60 | 15.90 | Clayey loam |
Cixi | 30.17° N, 121.27° E | 5.40 | 1561.71 | 17.75 | Loamy clay |
Linhai | 28.86° N, 121.14° E | 302.10 | 1424.94 | 17.10 | Clayey loam |
Anji | 30.64° N, 119.68° E | 247.40 | 1861.40 | 17.00 | Loam |
Yujiang | 28.21° N, 116.82° E | 33.20 | 1758.00 | 17.60 | Clay |
Nanchang | 28.68° N, 115.86° E | 47.20 | 1751.92 | 18.76 | Clayey loam |
Wenjiang | 30.68° N, 103.86° E | 547.70 | 936.12 | 16.41 | Clayey loam |
Meixian | 24.29° N, 116.12° E | 116.00 | 1551.09 | 21.83 | Clay |
Guangzhou | 23.13° N, 113.26° E | 70.70 | 2119.89 | 22.03 | Clay |
Sanming | 26.40° N, 117.79° E | 285.00 | 1700.00 | 18.20 | Clay |
Zhangzhou | 24.51° N, 117.65° E | 205.00 | 1860.89 | 19.30 | Clayey loam |
Harbin | 45.80° N, 126.54° E | 118.30 | 541.62 | 4.94 | Loam |
Hulin | 45.76° N, 132.94° E | 98.10 | 614.81 | 3.95 | Loam |
Mudanjiang | 44.55° N, 129.63° E | 305.70 | 587.03 | 4.62 | Clay |
Fujin | 47.25° N, 132.04° E | 66.40 | 550.04 | 3.19 | Loam |
Kiamusze | 46.80° N, 130.32° E | 82.00 | 638.89 | 3.72 | Sandy loam |
Daan | 45.51° N, 124.29° E | 132.10 | 413.70 | 4.30 | Clayey loam |
Tonghua | 41.73° N, 125.94° E | 402.90 | 891.99 | 6.20 | Loam |
Hanzhong | 33.16° N, 107.33° E | 509.50 | 908.21 | 15.66 | Loam |
Zunyi | 27.73° N, 106.93° E | 753.30 | 930.87 | 15.10 | Sandy loam |
Guiyang | 26.66° N, 106.63° E | 1227.30 | 1102.46 | 14.75 | Sandy loam |
Liuzhou | 24.33° N, 109.42° E | 306.00 | 1479.10 | 21.26 | Sandy loam |
Shanghai | 31.23° N, 121.47° E | 5.50 | 1294.11 | 17.30 | Loam |
Qingtongxia | 38.02° N, 106.08° E | 1131.00 | 260.70 | 8.50 | Loam |
Nanning | 22.82° N, 108.37° E | 152.00 | 1311.33 | 21.75 | Clay |
Qiqihar | 47.36° N, 123.92° E | 146.70 | 462.37 | 4.33 | Sandy loam |
Yangzhou | 32.39° N, 119.41° E | 7.30 | 951.30 | 15.65 | Sandy loam |
Jingzhou | 30.34° N, 112.24° E | 31.80 | 1071.90 | 17.13 | Clayey loam |
Beijing | 39.91° N, 116.41° E | 31.30 | 636.30 | 11.47 | Loam |
City | Varieties | Main Treatments | Used For |
---|---|---|---|
Changsha | Shanyou 64, Luliangyou 996, Jinyou 402, Zhongjiazao 17, Yueyou 360, Peiai 64S/R292, Y58S/R292, Fengyuanyou 299, Zhuliangyou 90, Yueyou 9113, Xiangzaocan 5 | N (90, 105, 120, 135, 150, 165, 375, 480), P (240, 375), K (112.5, 120) | M |
Qiyang | Unbongbyeo | N (55, 77, 110), P 45, K 57 | M |
Yueyang | Xiangzaocan 24, Jinyou 207 | N (93, 176, 180, 177, 226, 230), P (503, 753), K (133, 142, 256) | M |
Liling | Xiangzaocan 45, Fengyuanyou 299 | N (150, 180), P (60, 75), K (90, 120) | M |
Yiyang | T You705, Xiangfengyou 103, Jinyou 974, Fengyuanyou 272, Jinyou 402, T You 6135, Xiangzaocan 45, Xiangwancan 12 | N 196.5, P 90, K (90, 117) | M |
Dawa | Yanfeng 47 | N (135, 187.5, 240, 270, 292.5, 345), P (103.5, 105, 135), K (45, 67.5, 75, 90, 135, 150, 180) | M |
Panjin | Shennong 265, Yanjing 377, Qiaoke 951, Yanfeng 47, Yanjing 218 | N (135.57, 180, 188.01, 225, 240.45, 270, 292.2, 315, 345.33, 360), P 105, K 52.5, 75 | M |
Shenyang | Liaojing 294, Liaojing 371, Shennong 265, Liaojing 326, Aoyu 316, Qiuguang, Liaojing 294, Shennong 606, Liaoxing 1, Yanfeng 47, Liaojing 9, Shen 98–20, Liaojing 5, Shendao 4, Fengjin, Nonglin 313, Shennong 91, Liaojing 9 | N (90, 120, 150, 160, 180, 210, 487.5), P (13.05, 26.25, 39.3, 41.4, 52.35, 65.4, 90, 300), K (49.8, 90, 99.6, 149.4, 199.2, 225, 249) | M |
Jingshan | Shanyou 63, Shanyou 6, Zhongxian 910, 75632 | N (112.5, 157.5, 202.5), P 75, K 60 | M |
Wuhan | Jiannanbaigu, Shenglixian, Xinteqing, Shanyou 63 | N 112.5, P 600 | M |
Suizhou | Yangliangyou 6, P88S/747, Luoyou 8, Luoyou 234, Tianliangyou 2 | N (195, 240), P (60, 120), K (60, 330) | M |
Wuxi | Wuxiangjing 14, Shanyou 63 | N (150, 250, 350), P (35, 70) | M |
Yancheng | Liangyou 363, Xudao 3, Wuyujing 3, Huaidao 5 | N (77.25, 153, 232.5, 300, 319.65, 345, 375, 439.5, 631.65, 768.45), P 75, K 150 | M |
Changshu | Changyou 1, Liangyoupeijiu, Youming 86, You 084, D You 527, P88S/0293, Shanyou 63 | N (200, 202.5, 216, 225, 229.5, 240, 270), P (40, 112.5, 174, 187.5), K (70, 118.5, 225, 375) | M |
Lianyungang | Lianjiajing 2, Huajing 5, 0026, 9823, Lianjing 7 | N (248.4, 265.7, 269.1, 282.9), P 600, K 240 | M |
Nanjing | Wuyujing 7, Wuyujing 3, Teyou 559, Liangyoupeijiu, Shanyou 63, Takanari, IR72, Sankeiso, CH86, IR65564–44–2-2, Nipponbare, Banten | N (147, 219, 225, 294), P 120, K 120 | M |
Huaian | Huaidao 11, Yongyou 2640 | N 315 | M |
Changzhou | Wuyunjing 19 | N 270, P 60, K 135 | M |
Zhangjiagang | Youjing 5356, Zhongyou 1 | N (76.5, 135, 142.5, 190.5), P (34.5, 45), K (84, 112.5) | M |
Hangzhou | Xieyou 9308, Xiushui 63, Xiushui 110, Bing 9904, Bing 98110 | N (45, 120, 135, 225, 240, 315) | M |
Ningbo | Yongyou 12 | N (270, 300, 330), P (900, 1050, 1250), K (600, 675, 750) | M |
Huzhou | Bing 9904, Yongyou 538, Xiushui 134 | N (70, 140, 210, 280), P 990, K 750 | M |
Jiaxing | Jiayu 293, Bing 93390, You 161 | N (120, 142.5, 165, 187.5, 210, 232.5, 375, 450), P (300, 375), K (112.5, 150, 180) | M |
Cixi | Shanyou 63 | N (150, 225, 300, 375, 450), P 600, K 225 | M |
Linhai | Liangyoupeijiu, Jiayou 99 | N (160.5, 189, 207, 229.5) | M |
Anji | Xieyou 413 | N 180 | M |
Yujiang | Youhang 2 | N (195, 288), P 72, K 195 | M |
Nanchang | Youming 86 | N (105, 150, 195, 240, 285) | M |
Wenjiang | Fuyou 838, Chuanxiang 9838 | N 150, P 500 | M |
Meixian | Shanyou 63 | N 120, P 300 | M |
Guangzhou | Yuxiangyouzhan, Peizataifeng, Tengxi 138, Peiai 64s/E32, Peiai 64s/9311, Yueza 122, Tesanai 2, Yuexiangzhan, Guangfenxgiang 8, Hemeizhan, Xiangdao 1 | I (204.82, 267.77, 294.55), N (100, 150, 200, 300, 187.5), P (90, 100, 375), K 150 | M |
Sanming | Teyou 73, Youhang 1 | N (195, 203.25, 300.15), P (79.2, 125.7, 300), K (90, 225, 255) | M |
Zhangzhou | Zhangfeng 8, 78130 | N 190, P 170, K 150 | M |
Harbin | Dongnong 423, Dongnong 425, Songjing 9, Longdao 5, Longjing 14, Tengxi 138, Longdao 3, Hejiang 19 | I (414.2, 484.9, 571.1), N (120, 150, 171.5, 346.9, 514.4, 685.8), P (70, 75, 120), K (37.5, 50, 100) | M |
Hulin | Zhonglongxiang 1, Longyang 16 | N 200, P 150, K 120 | M |
Mudanjiang | Mudanjiang 32, Duxiang 1, Longdao 5, Songjing 9, Mudanjiang 19 | N (100, 125, 150, 160, 220), P 50, K 120 | M |
Fujin | Longjing 46, Kongyu 131 | N 105, P 60, K 75 | M |
Kiamusze | Kongyu 131, Kenjing 1 | N 390, K (220.8, 330, 552) | M |
Daan | Changbai 9 | N 298, P 90, K 138 | M |
Tonghua | Nongda 3 | N 120, P 51.75, K 56.3 | M |
Hanzhong | Changbai 9 | N 330, P 120, K 75 | M |
Zunyi | Maoxiang 2, Feiyouduo 1, Gangyou 151 | N (157.5, 211.2), P (90, 123), K 150 | M |
Guiyang | Yunguang 14, Huailiangyou 527, Q You 6, You 838, Qiannanyou 2058 | N (150, 240), P (90, 120), K (180, 240) | M |
Liuzhou | Xinfengliangyou 6, Fengliangyou 1, Fuxiangyou 98, Fuyaomei 3, Lingyou 6602 | N 180, P 120, K 120 | M |
Shanghai | Huayou 14, 9734 | N (225, 300, 375, 525), P 60, K 60 | M |
Qingtongxia | Jingdao 92 | N 525 | M |
Nanning | Qixuan 42 | N 37.5 | V |
Qiqihar | Suijing 4 | N 135, P 46.9, K 60 | V |
Yangzhou | Shanyou 63, Xianyou 63, IR661, Yangdao 4, Suxiejing 1, Yanjing 2, Wuyujing 3, Guanglingxiangjing, Yangjing 4227, Zhendao 88, Huaidao 5, C Liangyou 608, Y Liangyou 1, Xiangjing 97–3017 | N (157.5, 172.5, 225, 247.5, 292.5, 321.75) | V |
Jingzhou | Ganxin 203, Fengliangyou 1, Xiangfengyou 9 | N 150, P 100, K 100 | V |
Beijing | IR75, IR7521 7H, PSBRC52, Mestizo | N (75, 145 215), P 30, K 40 | V |
City | Geographical Position | Altitude (m) | Average Annual Rainfall (mm) | Average Annual Temperature (°C) | Main Soil Type |
---|---|---|---|---|---|
Altay | 44.32° N, 86.06° E | 735.30 | 237.06 | 4.75 | Sandy loam |
Shihezi | 44.30° N, 86.06° E | 412.00 | 198.00 | 11.03 | Sandy loam |
Korla | 41.58° N, 86.17° E | 892.00 | 75.79 | 12.41 | Sandy loam |
Aksu | 40.46° N, 80.37° E | 1107.10 | 102.36 | 11.75 | Loam |
Alar | 40.55° N, 81.28° E | 1012.20 | 62.29 | 10.97 | Loam |
Changji | 44.15° N, 87.46° E | 600.00 | 181.70 | 13.10 | Loam |
Yining | 43.91° N, 81.28° E | 646.00 | 245.10 | 10.50 | Loam |
City | Varieties | Main Treatments | Used For |
---|---|---|---|
Altay | Xinluzao 45, Zhongmiansuo 50, Xinluzao 45, 45–21 | I (595.7, 608.7, 699.4, 761.9), N (563, 609, 628, 644), P (169, 201, 221), K (169, 201, 221) | M |
Shihezi | Xinluzao 48, Xinluzao 51, Xinluzao 42 | I (240, 275, 360, 375, 420, 480, 475, 600), N (150, 300, 450, 600, 900), P (120, 300), K 300 | M |
Korla | Xinluzhong 26 | I (390, 450), N (300, 450, 600, 750), P 210, K 90 | V |
Aksu | Xinhai 14, Mianzhongmian 35 | N 252, P 355.5, K 177 | V |
Alar | Xinhai 14, Xinluzhong 67, Zhongmian 35 | I 360, N 736.5, P 297, K 58.5 | V |
Changji | T10 | I (300, 375, 450, 525) | V |
Yining | Xinluzao 33, Lumianyan 24, Xinluzao 60, Biaoza A1, Jinza 9, Xinluzao 31 | I 555 | V |
Index | Winter Wheat | Summer Maize | Rice | Cotton |
---|---|---|---|---|
Lower temperature limit (°C) | 0 | 7 | 10 | 10 |
Upper temperature limit (°C) | 32 | 40 | 40 | 40 |
Crop | RLAI-GDD | RH-GDD | RDMA-GDD | ||||
---|---|---|---|---|---|---|---|
as | bs | cs | as | bs | as | bs | |
Winter wheat | 15.270 | 0.027 | 1.07 × 10−5 | 3.233 | 0.004 | 5.273 | 0.005 |
Summer maize | 9.136 | 0.016 | 5.83 × 10−6 | 3.266 | 0.005 | 3.803 | 0.004 |
Rice | 5.717 | 0.015 | 7.73 × 10−6 | 2.172 | 0.005 | 3.199 | 0.003 |
Cotton | 9.619 | 0.021 | 8.54 × 10−6 | 2.976 | 0.006 | 3.946 | 0.004 |
Crop | GDD0 (°C) | vmax (d−1) | GDD1 (°C) | GDD2 (°C) | GDD2 − GDD1 (°C) | |
---|---|---|---|---|---|---|
RH-GDD | Winter wheat | 762.50 | 1.1 × 10−3 | 451.90 | 1073.10 | 621.21 |
Summer maize | 661.94 | 1.2 × 10−3 | 395.02 | 928.85 | 533.83 | |
Rice | 367.96 | 1.1 × 10−3 | 78.13 | 657.78 | 579.65 | |
Cotton | 531.43 | 1.4 × 10−3 | 296.26 | 766.60 | 470.34 | |
RDMA-GDD | Winter wheat | 1127.91 | 1.2 × 10−3 | 846.21 | 1409.62 | 563.40 |
Summer maize | 1076.73 | 0.9 × 10−3 | 703.86 | 1449.59 | 745.73 | |
Rice | 1005.03 | 0.8 × 10−3 | 591.28 | 1418.77 | 827.49 | |
Cotton | 996.46 | 1.0 × 10−3 | 663.90 | 1329.03 | 665.13 |
Crop | RLAI-RGDD | RH-RGDD | RDMA-RGDD | ||||
---|---|---|---|---|---|---|---|
af | bf | cf | af | bf | af | bf | |
Winter wheat | 18.010 | 53.41 | 34.99 | 3.283 | 8.499 | 4.493 | 8.099 |
Summer maize | 7.385 | 28.15 | 20.32 | 3.192 | 8.013 | 4.143 | 7.028 |
Rice | 6.380 | 26.23 | 20.18 | 2.222 | 6.469 | 3.525 | 5.829 |
Cotton | 8.198 | 29.02 | 19.74 | 2.750 | 8.262 | 3.034 | 5.682 |
Crop | RGDD0 | vmax/d | RGDD1 | RGDD2 | RGDD2 − RGDD1 | |
---|---|---|---|---|---|---|
RH-RGDD | Winter wheat | 0.39 | 2.12 | 0.23 | 0.54 | 0.31 |
Summer maize | 0.40 | 2.00 | 0.23 | 0.56 | 0.33 | |
Rice | 0.34 | 1.62 | 0.14 | 0.55 | 0.41 | |
Cotton in Xinjiang | 0.33 | 2.07 | 0.17 | 0.49 | 0.32 | |
RDMA-RGDD | Winter wheat | 0.55 | 2.02 | 0.39 | 0.72 | 0.33 |
Summer maize | 0.59 | 1.76 | 0.40 | 0.78 | 0.37 | |
Rice | 0.60 | 1.46 | 0.38 | 0.83 | 0.45 | |
Cotton | 0.53 | 1.42 | 0.30 | 0.77 | 0.46 |
Index | Crop | Mean | Standard Deviation | Minimum | Maximum | CV | K–S |
---|---|---|---|---|---|---|---|
LAImax | Winter wheat | 5.91 | 1.45 | 3.53 | 9.55 | 0.25 | 0.19 |
Summer maize | 5.01 | 1.40 | 2.26 | 12.22 | 0.28 | 0.06 | |
Rice | 6.40 | 1.29 | 3.66 | 10.12 | 0.20 | 0.20 | |
Cotton | 4.52 | 0.85 | 3.47 | 5.81 | 0.19 | 0.20 | |
DMAmax (kg·hm−2) | Winter wheat | 15,794.10 | 4159.44 | 6109.35 | 21,696.99 | 0.26 | 0.20 |
Summer maize | 19,826.32 | 5383.91 | 6976.74 | 27,279.07 | 0.27 | 0.19 | |
Rice | 16,061.03 | 4168.45 | 8945.50 | 27,502.31 | 0.26 | 0.20 | |
Cotton | 16,807.65 | 5882.23 | 8547.97 | 25,754.73 | 0.35 | 0.20 |
Index | Crop | Parameter | Validation Results | ||||||
---|---|---|---|---|---|---|---|---|---|
m1 | m2 | m3 | m4 | m5 | m6 | R2 | RE | ||
LAImax | Winter wheat | 0.028 | 0.029 | −5.92 × 10−6 | −1.55 × 10−5 | −6.61 × 10−6 | −28.42 | 0.82 | 6.6% |
Summer maize | −0.067 | −0.014 | 3.58 × 10−5 | −2.10 × 10−6 | 1.80 × 10−6 | 24.59 | 0.84 | 7.7% | |
Rice | 0.023 | 0.022 | −3.93 × 10−6 | −1.42 × 10−5 | −5.67 × 10−6 | −17.75 | 0.74 | 6.5% | |
Cotton | 0.078 | −0.128 | 2.05 × 10−4 | 3.60 × 10−4 | 1.28 × 10−5 | 66.14 | 0.87 | 4.8% | |
DMAmax | Winter wheat | 378.26 | 176.23 | −0.151 | −0.076 | −0.023 | −2.65 × 105 | 0.84 | 5.8% |
Summer maize | −156.54 | −42.64 | 0.078 | 0.013 | 0.007 | 7.11 × 104 | 0.88 | 5.6% | |
Rice | 31.80 | 68.96 | 0.018 | −0.047 | −0.033 | −3.09 × 104 | 0.93 | 4.2% | |
Cotton | 2225.20 | −449.99 | −0.570 | −1.553 | 0.265 | −2.02 × 105 | 0.85 | 4.7% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, F.; Liu, Y.; Su, L.; Tao, W.; Wang, Q.; Deng, M. Integrated Growth Model of Typical Crops in China with Regional Parameters. Water 2022, 14, 1139. https://doi.org/10.3390/w14071139
Liu F, Liu Y, Su L, Tao W, Wang Q, Deng M. Integrated Growth Model of Typical Crops in China with Regional Parameters. Water. 2022; 14(7):1139. https://doi.org/10.3390/w14071139
Chicago/Turabian StyleLiu, Fangliang, Yunhe Liu, Lijun Su, Wanghai Tao, Quanjiu Wang, and Mingjiang Deng. 2022. "Integrated Growth Model of Typical Crops in China with Regional Parameters" Water 14, no. 7: 1139. https://doi.org/10.3390/w14071139
APA StyleLiu, F., Liu, Y., Su, L., Tao, W., Wang, Q., & Deng, M. (2022). Integrated Growth Model of Typical Crops in China with Regional Parameters. Water, 14(7), 1139. https://doi.org/10.3390/w14071139