Investigation of Groundwater Logging for Possible Changes in Recharge Boundaries and Conditions in the City of Aswan, Egypt
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Area
2.1.1. Case Study
2.1.2. Climate in the Study Area
2.1.3. Geology of the Study Area
2.1.4. Hydrological of Recharge and Withdrawal Rates in Aswan Aquifer
2.2. Geometry of the Aquifer
2.3. Numerical Model, Model Calibration and Scenarios
3. Results and Discussion
3.1. Investigation of the Leakage of Drinking Water and Sewage in Aswan City
3.2. Impact of the Leakage of Drinking Water and Sewage on Groundwater Heads in Aswan City
3.3. Impact of El hebs’ Boundary Conditions on Groundwater Heads in Aswan City
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Salem, A.; Dezső, J.; El-Rawy, M. Assessment of Groundwater Recharge, Evaporation, and Runoff in the Drava Basin in Hungary with the WetSpass Model. Hydrology 2019, 6, 23. [Google Scholar] [CrossRef] [Green Version]
- Gaur, S.; Chahar, B.; Graillot, D. Combined use of groundwater modeling and potential zone analysis for management of groundwater. Int. J. Appl. Earth Obs. Geoinf. 2011, 13, 127–139. [Google Scholar] [CrossRef]
- Prasad, R.K.; Mondal, N.C.; Banerjee, P.; Nandakumar, M.V.; Singh, V.S. Deciphering potential ground-water zone in hard rock through the application of GIS. Environ. Geol. 2008, 55, 467–475. [Google Scholar] [CrossRef]
- Pathak, D.R.; Hiratsuka, A.; Awata, I.; Chen, L. Groundwater vulnerability assessment in shallow aquifer of Kathmandu Valley using GIS-based DRASTIC model. Environ. Earth Sci. 2009, 57, 1569–1578. [Google Scholar] [CrossRef]
- Yeh, H.-F.; Lee, C.-H.; Hsu, K.-C.; Chang, P.-H. GIS for the assessment of the groundwater recharge potential zone. Environ. Geol. 2009, 58, 185–195. [Google Scholar] [CrossRef]
- Fakharinia, M.; Lalehzari, R.; Yaghoobzadeh, M. The use of subsurface barriers in the sustainable management of groundwater resources. World Appl. Sci. J. 2012, 19, 1585–1590. [Google Scholar]
- Bob, M.; Rahman, N.A.; Elamin, A.; Taher, S. Rising Groundwater Levels Problem in Urban Areas: A Case Study from the Central Area of Madinah City, Saudi Arabia. Arab. J. Sci. Eng. 2016, 41, 1461–1472. [Google Scholar] [CrossRef]
- Al-Sefry, S.A.; Şen, Z. Groundwater Rise Problem and Risk Evaluation in Major Cities of Arid Lands—Jedddah Case in Kingdom of Saudi Arabia. Water Resour. Manag. 2006, 20, 91–108. [Google Scholar] [CrossRef]
- Ray, A. Participatory Governance: Addressing the Problem of Rising Groundwater Level in Cities. J. Hum. Ecol. 2005, 18, 137–147. [Google Scholar] [CrossRef]
- Huntington, J.; McGwire, K.; Morton, C.; Snyder, K.; Peterson, S.; Erickson, T.; Niswonger, R.; Carroll, R.; Smith, G.; Allen, R. Assessing the role of climate and resource management on groundwater dependent ecosystem changes in arid environments with the Landsat archive. Remote Sens. Environ. 2016, 185, 186–197. [Google Scholar] [CrossRef] [Green Version]
- Abd-Elaty, I.; Javadi, A.A.; Abd-Elhamid, H. Management of saltwater intrusion in coastal aquifers using different wells systems: A case study of the Nile Delta aquifer in Egypt. Appl. Hydrogeol. 2021, 29, 1767–1783. [Google Scholar] [CrossRef]
- Abd-Elaty, I.; Said, A.; Abdelaal, G.; Zeleňáková, M.; Jandora, J.; Abd-Elhamid, H. Assessing the Impact of Lining Polluted Streams on Groundwater Quality: A Case Study of the Eastern Nile Delta Aquifer, Egypt. Water 2021, 13, 1705. [Google Scholar] [CrossRef]
- Chitsazan, M.; Movahedian, A. Evaluation of Artificial Recharge on Groundwater Using MODFLOW Model (Case Study: Gotvand Plain-Iran). J. Geosci. Environ. Prot. 2015, 03, 122–132. [Google Scholar] [CrossRef] [Green Version]
- El-Rawy, M.; Zlotnik, V.A.; Al-Raggad, M.; Al-Maktoumi, A.; Kacimov, A.; Abdalla, O. Conjunctive use of groundwater and surface water resources with aquifer recharge by treated wastewater: Evaluation of management sce-narios in the Zarqa River Basin, Jordan. Environ. Earth Sci. 2016, 75, 1146. [Google Scholar] [CrossRef]
- Abd-Elhamid, H.F.; Abdelaal, G.M.; Abd-Elaty, I.; Said, A.M. Evaluation of Groundwater Vulnerability to Seepage from Open Drains Considering Different Pumping Schemes in Unconfined Aquifers. In Proceedings of the Twenty-first International Water Technology Conference, IWTC21, Ismailia, Egypt, 28–30 June 2018. [Google Scholar]
- Al-Maktoumi, A.; Zekri, S.; El-Rawy, M.; Abdalla, O.; Al-Wardy, M.; Al-Rawas, G.; Charabi, Y. Assessment of the impact of climate change on coastal aquifers in Oman. Arab. J. Geosci. 2018, 11, 501. [Google Scholar] [CrossRef]
- El Shinawi, A.; Kuriqi, A.; Zelenakova, M.; Vranayova, Z.; Abd-Elaty, I. Land subsidence and environmental threats in coastal aquifers under sea level rise and over-pumping stress. J. Hydrol. 2022, 608, 127607. [Google Scholar] [CrossRef]
- Abd-Elaty, I.; Zelenakova, M.; Straface, S.; Vranayová, Z.; Abu-Hashim, M.; Elaty, A.; Hashim, A. Integrated Modelling for Groundwater Contamination from Polluted Streams Using New Protection Process Techniques. Water 2019, 11, 2321. [Google Scholar] [CrossRef] [Green Version]
- Chakraborty, S.; Maity, P.K.; Das, S. Investigation, simulation, identification and prediction of groundwater levels in coastal areas of Purba Midnapur, India, using MODFLOW. Environ. Dev. Sustain. 2019, 22, 3805–3837. [Google Scholar] [CrossRef]
- Abd-Elaty, I.; Eldeeb, H.; Vranayova, Z.; Zelenakova, M. Stability of Irrigation Canal Slopes Considering the Sea Level Rise and Dynamic Changes: Case Study El-Salam Canal, Egypt. Water 2019, 11, 1046. [Google Scholar] [CrossRef] [Green Version]
- Ta’any, R.A.; Al-Arabiyat, A.R.E.E.J.; Mahameed, J.I.H.A.D.; Al–Zu’bi, J.A. Groundwater Management Using Modflow Model in Jerash Catchment Area/Jordan. Ass. Univ. Bull. Environ. Res. 2013, 16, 113–139. [Google Scholar]
- Hamzaoui-Azaza, F.; Zammouri, M.; Ameur, M.; Sy, M.B.; Gueddari, M.; Bouhlila, R. Hydrogeochemical modeling for groundwater management in arid and semiarid regions using MODFLOW and MT3DMS: A case study of the Jeffara of Medenine coastal aquifer, South-Eastern Tunisia. Nat. Resour. Model. 2020, 33, 12282. [Google Scholar] [CrossRef]
- Abd-Elaty, I.; Saleh, O.K.; Ghanayem, H.M.; Grischek, T.; Zelenakova, M. Assessment of hydrological, geo-hydraulic and operational conditions at a riverbank filtration site at Embaba, Cairo using flow and transport modeling. J. Hydrol. Reg. Stud. 2021, 37, 100900. [Google Scholar] [CrossRef]
- Abd-Elhamid, H.; Abdelaty, I.; Sherif, M. Evaluation of potential impact of Grand Ethiopian Renaissance Dam on Seawater Intrusion in the Nile Delta Aquifer. Int. J. Environ. Sci. Technol. 2019, 16, 2321–2332. [Google Scholar] [CrossRef]
- Abd-Elhamid, H.F.; Sherif, M.; Abd-Elaty, I. Impact of Aquifer Geometry and Boundary Conditions on Saltwater Intrusion in Coastal Aquifers. In Proceedings of the World Environmental and Water Resources Congress (EWRI), West Palm Beach, FL, USA, 22–26 May 2016. [Google Scholar]
- Abd-Elaty, I.; Pugliese, L.; Bali, K.M.; Grismer, M.E.; Eltarabily, M.G. Modelling the impact of lining and covering irrigation canals on underlying groundwater stores in the Nile Delta, Egypt. Hydrol. Process. 2021, 36, e14466. [Google Scholar] [CrossRef]
- Abdelrhem, I.M.; Raschid, K.; Ismail, A. Integrated groundwater management for great man-made river project in Libya. Eur. J. Sci. Res. 2008, 22, 562–569. [Google Scholar]
- Rejani, R.; Jha, M.K.; Panda, S.N.; Mull, R. Simulation Modeling for Efficient Groundwater Management in Balasore Coastal Basin, India. Water Resour. Manag. 2007, 22, 23–50. [Google Scholar] [CrossRef]
- Youssef, T.; Gad, M.I.; Ali, M.M. Assessment of groundwater resources management in Wadi El-Farigh area using MODFLOW. IOSR J. Eng. (IOSRJEN) 2012, 2, 69–78. [Google Scholar] [CrossRef]
- Antoniou, M.; Theodossiou, N.; Karakatsanis, D. Groundwater management optimization with combined use of Harmony Search Algorithm and modular finite-difference flow model Modflow. In Proceedings of the 14th Conference of the Hellenic Hydrotechnical Association (HHA), Volos, Greece, 16–17 May 2019. [Google Scholar]
- Hadded, R.; Nouiri, I.; Alshihabi, O.; Maßmann, J.; Huber, M.; Laghouane, A.; Yahiaoui, H.; Tarhouni, J. A Decision Support System to Manage the Groundwater of the Zeuss Koutine Aquifer Using the WEAP-MODFLOW Framework. Water Resour. Manag. 2013, 27, 1981–2000. [Google Scholar] [CrossRef]
- Malekinezhad, H.; Banadkooki, F.B. Modeling impacts of climate change and human activities on ground-water resources using MODFLOW. J. Water Clim. Change 2018, 9, 156–177. [Google Scholar] [CrossRef]
- Hamdan, A.M.A.; Rady, A.R.A. Vulnerability of the groundwater in the quaternary aquifer at El Shalal-Kema area, Aswan, Egypt. Arab. J. Geosci. 2011, 6, 337–358. [Google Scholar] [CrossRef]
- Abdelrady, A.; Sharma, S.; Sefelnasr, A.; El-Rawy, M.; Kennedy, M. Analysis of the Performance of Bank Filtration for Water Supply in Arid Climates: Case Study in Egypt. Water 2020, 12, 1816. [Google Scholar] [CrossRef]
- Gameh, M.A.; Abdalazem, A.H.; Hamdan, A.M.; Awad, A.; Mohamed, A.G. Groundwater Quality As-sessment for Irrigation in West Edfu Region, Aswan, Egypt. Assiut J. Agric. Sci. 2020, 51, 125–149. [Google Scholar]
- Selim, S.A.; Hamdan, A.M.; Rady, A.A. Groundwater Rising as Environmental Problem, Causes and Solutions: Case Study from Aswan City, Upper Egypt. Open J. Geol. 2014, 4, 324–341. [Google Scholar] [CrossRef] [Green Version]
- McDonald, M.G.; Harbaugh, A.W. A Modular Three-Dimensional Finite-Difference Ground-Water Flow Model; USGS TWRI Chapter 6-A1; US Geological Survey: Denver, CO, USA, 1984; Volume 586, p. 11.
- Pinder, G.F.; Bredehoeft, J.D. Application of the Digital Computer for Aquifer Evaluation. Water Resource. Res. 1968, 4, 1069–1093. [Google Scholar] [CrossRef]
- Farrag, A.E.-H.A.; Megahed, H.A.; Darwish, M.H. Remote sensing, GIS and chemical analysis for assessment of environmental impacts on rising of groundwater around Kima Company, Aswan, Egypt. Bull. Natl. Res. Cent. 2019, 43, 14. [Google Scholar] [CrossRef] [Green Version]
- Abd-Elaty, I.; Abd-Elhamid, H.F.; Qahman, K. Coastal aquifer protection from saltwater intrusion using ab-straction of brackish water and recharge of treated wastewater: Case study of the gaza aquifer. J. Hydrol. Eng. 2020, 25, 05020012. [Google Scholar] [CrossRef]
- Abd-Elaty, I.; Zelenakova, M. Saltwater intrusion management in shallow and deep coastal aquifers for high aridity regions. J. Hydrol. Reg. Stud. 2022, 40, 101026. [Google Scholar] [CrossRef]
- Noureldeen, A.S.; Ghaly, S.; Ali, K.; Abozaid, G. ANN-Based Approach to Predict Changes in Ground Water Levels as a Result of Constructing New Naga-Hammadi Barrage, Egypt. In Collaboration and Integration in Construction, Engineering, Management and Technology; Springer: Cham, Swizerland, 2017; pp. 853–856. [Google Scholar]
- Abd-Elaty, I.; Shahawy, A.E.; Santoro, S.; Curcio, E.; Straface, S. Effects of groundwater abstraction and desalination brine deep injection on a coastal aquifer. Sci. Total Environ. 2021, 795, 148928. [Google Scholar] [CrossRef]
Parameter | Hydraulic Conductivity | |
---|---|---|
Kx = Ky (m/s) | Kz (m/s) | |
Value | 0.0001 to 0.0004 | 0.00001 to 0.00004 |
Well | GWH at Levels | ||||
---|---|---|---|---|---|
2020 | 2025 | 2030 | 2035 | 2040 | |
1 | 100.85 | 100.87 | 101.12 | 101.2 | 101.45 |
2 | 102.28 | 102.32 | 102.89 | 103.01 | 103.54 |
3 | 100.12 | 100.15 | 100.52 | 100.62 | 101 |
6 | 106.44 | 106.56 | 107.71 | 108.41 | 109.66 |
7 | 108.04 | 108.46 | 109.63 | 110.36 | 111.66 |
10 | 106.54 | 106.99 | 108.17 | 108.97 | 110.32 |
12 | 104.66 | 105.05 | 106.26 | 107.16 | 108.48 |
13 | 104.36 | 104.71 | 105.93 | 106.78 | 108.15 |
14 | 103.35 | 103.67 | 104.79 | 105.69 | 107.05 |
15 | 105.14 | 105.5 | 106.69 | 107.57 | 108.97 |
19 | 95.6 | 95.84 | 96.98 | 97.5 | 98.6 |
20 | 95.49 | 95.75 | 96.84 | 97.43 | 98.54 |
22 | 91.7 | 91.91 | 92.82 | 93.46 | 94.43 |
25 | 96.61 | 96.93 | 98.04 | 98.75 | 99.96 |
26 | 98.52 | 98.87 | 100.04 | 100.86 | 102.19 |
27 | 99.16 | 99.53 | 100.72 | 101.58 | 102.94 |
28 | 98.64 | 98.99 | 100.17 | 101 | 102.34 |
29 | 98.79 | 99.14 | 100.32 | 101.16 | 102.5 |
30 | 100.44 | 100.83 | 102.04 | 102.98 | 104.42 |
31 | 101.39 | 101.8 | 103.03 | 104.02 | 105.5 |
32 | 104.14 | 104.56 | 105.77 | 106.86 | 108.4 |
35 | 105.33 | 105.59 | 106.34 | 107.04 | 108.01 |
Well | Groundwater Heads at Levels | ||||||
---|---|---|---|---|---|---|---|
106 | 108 | 110 | 112 | 114 | 116 | 118 | |
1 | 100.85 | 102.22 | 103.92 | 105.06 | 106.85 | 108.23 | 109.4 |
2 | 102.28 | 103.65 | 105.25 | 106.55 | 108.37 | 109.69 | 111.03 |
3 | 100.12 | 101.32 | 102.81 | 103.9 | 105.53 | 106.76 | 107.92 |
6 | 106.44 | 107.85 | 109.05 | 110.9 | 112.7 | 113.67 | 114.99 |
7 | 108.04 | 108.98 | 109.99 | 110.79 | 112.29 | 113.04 | 114.24 |
10 | 106.54 | 107.31 | 108.34 | 109.24 | 110.64 | 111.39 | 112.49 |
12 | 104.66 | 105.35 | 106.56 | 107.59 | 108.89 | 109.76 | 110.66 |
13 | 104.36 | 105.05 | 106.16 | 107.21 | 108.26 | 109.16 | 109.96 |
14 | 103.35 | 104 | 104.7 | 105.25 | 106.15 | 107.2 | 107.9 |
15 | 105.14 | 105.85 | 107.14 | 108.01 | 108.59 | 109.19 | 109.84 |
19 | 95.6 | 96.17 | 96.69 | 97.27 | 97.88 | 98.27 | 98.63 |
20 | 95.49 | 96.05 | 96.59 | 97.14 | 97.76 | 98.17 | 98.52 |
22 | 91.7 | 91.96 | 92.2 | 92.46 | 92.75 | 92.93 | 93.09 |
25 | 96.61 | 97.28 | 97.96 | 98.57 | 99.32 | 99.86 | 100.28 |
26 | 98.52 | 99.37 | 100.28 | 101.02 | 102.01 | 102.74 | 103.29 |
27 | 99.16 | 100.08 | 101.07 | 101.85 | 102.91 | 103.71 | 104.3 |
28 | 98.64 | 99.51 | 100.43 | 101.18 | 102.18 | 102.93 | 103.48 |
29 | 98.79 | 99.67 | 100.61 | 101.36 | 102.38 | 103.14 | 103.71 |
30 | 100.44 | 101.47 | 102.62 | 103.47 | 104.69 | 105.63 | 106.31 |
31 | 101.39 | 102.51 | 103.78 | 104.69 | 106.03 | 107.07 | 107.81 |
32 | 104.14 | 105.52 | 107.15 | 108.25 | 109.95 | 111.29 | 112.26 |
35 | 105.33 | 107.01 | 109.05 | 110.34 | 112.41 | 114.07 | 115.28 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hossen, H.; Nour-Eldeen, A.S.; Negm, A.; Hamdan, A.M.; Elsahabi, M.; Zelenakova, M.; Abd-Elaty, I. Investigation of Groundwater Logging for Possible Changes in Recharge Boundaries and Conditions in the City of Aswan, Egypt. Water 2022, 14, 1164. https://doi.org/10.3390/w14071164
Hossen H, Nour-Eldeen AS, Negm A, Hamdan AM, Elsahabi M, Zelenakova M, Abd-Elaty I. Investigation of Groundwater Logging for Possible Changes in Recharge Boundaries and Conditions in the City of Aswan, Egypt. Water. 2022; 14(7):1164. https://doi.org/10.3390/w14071164
Chicago/Turabian StyleHossen, Hickmat, A. S. Nour-Eldeen, Abdelazim Negm, Ali M. Hamdan, Mohamed Elsahabi, Martina Zelenakova, and Ismail Abd-Elaty. 2022. "Investigation of Groundwater Logging for Possible Changes in Recharge Boundaries and Conditions in the City of Aswan, Egypt" Water 14, no. 7: 1164. https://doi.org/10.3390/w14071164
APA StyleHossen, H., Nour-Eldeen, A. S., Negm, A., Hamdan, A. M., Elsahabi, M., Zelenakova, M., & Abd-Elaty, I. (2022). Investigation of Groundwater Logging for Possible Changes in Recharge Boundaries and Conditions in the City of Aswan, Egypt. Water, 14(7), 1164. https://doi.org/10.3390/w14071164