An Integrated Approach to Characterising Sulphur Karst Springs: A Case Study of the Žvepovnik Spring in NE Slovenia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Location and Basic Characteristics of the Spring
2.2. Geological Characterisation
2.3. Field Sampling, Physico-Chemical Measurements, Geochemical and Isotopic Analyses of Groundwater
2.3.1. Hydrogeochemistry
2.3.2. Geochemical Modelling
2.3.3. Determination of Isotope Composition of Hydrogen and Oxygen
2.3.4. Determination of Total Alkalinity after Gran
2.3.5. Determination of Isotopic Composition of Dissolved Inorganic Carbon
2.3.6. Determination of Tritium
2.3.7. Determination of Isotopic Composition of Sulphur and Oxygen in Sulphate
2.4. Microbiological Analyses
Parameter | Sampling Period | Method, Instrument Used |
---|---|---|
Physico-chemical parameters | Monthly, November 2017–July 2018 | WTW Multi 3430 Multiparameter probe (WTW GmbH, Weilheim, Germany) |
Geochemical analyses (anions, cations) | 21 November 2017, 23 July 2018 | Inductively Coupled Plasma-Mass Spectrometry (ICP-MS), Ion Chromatography (IC), Overrange Inductively Coupled Plasma-Optical Emission Spectrometry (ICP-OES) (for details see https://actlabs.com/: accessed 30 November 2021) and YSI 9300 spectrophotometer (YSI, Yellow Springs, OH, USA) |
Dissolved hydrogen sulphide | 21 November 2017 and 23 July 2018 | YSI 9300 spectrophotometer (YSI, Yellow Springs, OH, USA) |
Isotopic composition of hydrogen and oxygen (δ18O, δ2H) | 21 November 2017, 23 July 2018 | H2–H2O [31] and CO2–H2O [32,33] equilibration technique; dual inlet isotope ratio mass spectrometer (DI IRMS, Finnigan MAT DELTA plus, Finnigan MAT GmbH, Bremen, Germany) with an automated CO2–H2O and H2-H2O HDOeq 48 Equilibration Unit (custom built by M. Jaklitsch) |
Isotopic composition of dissolved inorganic carbon (δ13CDIC) | 21 November 2017, 23 July 2018 | Continuous flow IRMS (Europa Scientific 20–20) with an ANCA-TG preparation module (Sercon Limited, Crewe, UK) |
IsoPrime 100 coupled with the Multiflow preparation module (Elementar, Manchester, UK) | ||
Total alkalinity after Gran | 21 November 2017 | CAT titrator (Ingenierbüro CAT, M. Zipperer GmbH Ballrechten-Dottingen, Germany), pH meter |
(Mettler Toledo AG 8603, Schwerzenbach, Switzerland) | ||
Tritium (3H) | 21 November 2017 | Liquid scintillation counting (LSC) TriCarb 3170 TR/SL (PerkinElmer, Waltham, MA, USA) |
δ34SSO4 and δ18OSO4 in sulphate | 21 November 2017 | Continuous-flow isotope gas-ratio mass spectrometer (ThermoQuest Finnigan Delta PlusXL and Thermo Electron Delta V; Thermo Fisher Scientific Inc., Waltham, MA, USA) |
Microbiological analysis | 23 July 2018 | Biomass (total ATP content), cultivation of microbial indicators (heterotrophic aerobic bacteria, E. coli/coliforms, enterococci) |
3. Results and Discussion
3.1. Geological Characterisation of the Žvepovnik Spring
3.2. Physico-Chemical Parameters of the Žvepovnik Spring
3.3. Hydrogeochemistry of the Žvepovnik Spring
3.4. Geochemical Modelling of the Žvepovnik Spring
3.5. Isotopic Characteristics of the Žvepovnik Spring
3.6. Microbiological Characteristics of the Žvepovnik Spring
3.7. The Origin of Sulphur in the Žvepovnik Spring
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- White, W.B. Springwater geochemistry. In Groundwater Hydrology of Springs: Engeneering, Theory, Management, and Sustainability; Kresic, N., Stevanovic, Z., Eds.; Butterworth-Heinemann: Burlington, NJ, USA, 2010; pp. 231–268. [Google Scholar] [CrossRef]
- Khadka, K.; Rijal, M.L. Hydrogeochemical assessment of spring water resources around Melamchi, Central Nepal. Water Pract. Technol. 2020, 15, 748–758. [Google Scholar] [CrossRef]
- Yang, D.; Yang, Y.; Xia, J. Hydrological cycle and water resources in a changing world: A review. Geogr. Sustain. 2021, 2, 115–122. [Google Scholar] [CrossRef]
- Allshorn, S.J.L.; Bottrell, S.H.; West, L.J.; Odling, N.E. Rapid karstic bypass flow in the unsaturated zone of the Yorkshire chalk aquifer and implications for contaminant transport. In Natural and Anthropogenic Hazards in Karst Areas: Recognition, Analysis and Mitigation; Parise, M., Gunn, J., Eds.; Special Publications; Geological Society: London, UK, 2007; Volume 279, p. 111. [Google Scholar] [CrossRef]
- Maurice, L.; Farrant, A.R.; Mathewson, E.; Atkinson, T. Karst hydrogeology of the Chalk and implications for groundwater protection. In The Chalk Aquifers of Northern Europe; Farrell, R.P., Massei, N., Foley, A.E., Howlett, P.R., West, L.J., Eds.; Special Publications; Geological Society: London, UK, 2021. [Google Scholar] [CrossRef]
- Keim, D.M.; West, L.J.; Odling, N.E. Convergent flow in unsaturated fractured chalk. Vadose Zone J. 2012, 11. [Google Scholar] [CrossRef]
- Mulec, J.; Oarga, A.; Schiller, E.K.; Perşoiu, A.; Holko, L.; Šebela, S. Assessment of the physical environment of epigean invertebrates in a unique habitat: The case of a karst sulfidic spring, Slovenia. Ecohydrology 2015, 8, 1326–1334. [Google Scholar] [CrossRef]
- Zega, M.; Rožič, B.; Gaberšek, M.; Kanduč, T.; Žvab Rožič, P.; Verbovšek, T. Minerlogical, hydrogeochmical and isotopic characteristics of the Žveplenica sulphide karstic spring (Trebuša Valley, NW Sllovenia). Environ. Earth Sci. 2015, 74, 3287–3300. [Google Scholar] [CrossRef]
- Šušmelj, K.; Verbovšek, T.; Kanduč, T.; Vreča, P.; Zuliani, T.; Nagode, K.; Čermelj, B.; Žvab Rožič, P. Hidrogeokemične in izotopske karakteristike žveplenih izvirov pri Izoli. In Geološki Zbornik 26, Proceedings of the 25th Meeting of Slovenian Geologists, Ljubljana, Slovenia, 8 October 2021; Rožič, B., Ed.; Oddelek za Geologijo: Ljubljana, Slovenia, 2021; pp. 133–136. [Google Scholar]
- Mulec, J.; Oarga-Mulec, A.; Skok, S.; Šebela, S.; Cerkvenik, R.; Zorman, T.; Holko, L.; Eleršek, T.; Pašić, L. Emerging Ecotone and Microbial Community of a Sulfidic Spring in the Reka River near Škocjanske jame, Slovenia. Diversity 2021, 13, 655. [Google Scholar] [CrossRef]
- Medici, G.; Smeraglia, L.; Torabi, A.; Botter, C. Review of modeling approaches to groundwater flow in deformed carbonate aquifers. Groundwater 2021, 59, 334–351. [Google Scholar] [CrossRef]
- Medici, G.; West, L.J. Groundwater flow velocities in karst aquifers; importance of spatial observation scale and hydraulic testing for contaminant transport prediction. Environ. Sci. Pollut. Res. 2021, 28, 43050–43063. [Google Scholar] [CrossRef]
- Cartwright, I.; Weaver, T.R.; Cendón, D.I.; Keith Fifield, L.; Tweed, S.O.; Petrides, B.; Swane, I. Constraining groundwater flow, residence times, inter-aquifer mixing, and aquifer properties using environmental isotopes in the southeast Murray Basin, Australia. Appl. Geochem. 2012, 27, 1698–1709. [Google Scholar] [CrossRef]
- Dansgaard, W. Stable isotopes in precipitation. Tellus 1964, 16, 436–468. [Google Scholar] [CrossRef]
- Clarke, I.D.; Fritz, P. Environmental Isotopes in Hydrogeology; Lewis: New York, NY, USA, 1997; p. 328. [Google Scholar]
- Aggarwal, P.K.; Froehlich, K.F.; Gat, J.R. Isotopes in the Water Cycle; Springer: Dordrecht, The Netherlands, 2005; p. 382. [Google Scholar]
- Vreča, P.; Kern, Z. Use of Water Isotopes in Hydrological Processes. Water 2020, 12, 2227. [Google Scholar] [CrossRef]
- Atekwana, E.; Krishnamurthy, R. Seasonal variations of dissolved inorganic carbon and δ13C of surface waters: Application of a modified gas evolution technique. J. Hydrol. 1998, 205, 265–278. [Google Scholar] [CrossRef]
- Kanduč, T.; Mori, N.; Kocman, D.; Stibilj, V.; Grassa, F. Hydrochemistry of Alpine springs from North Slovenia: Insights from stable isotopes. Chem. Geol. 2012, 300–301, 40–54. [Google Scholar] [CrossRef]
- Chandrajith, R.; Jayasena, H.A.H.; van Galdern, R.; Barth, J.A.C. Assessment of land subsidence mechanisms triggered by dolomitic marble dissolution from hydrogeochemistry and stable isotopes of spring waters. Appl. Geochem. 2015, 58, 97–105. [Google Scholar] [CrossRef]
- Mohammadi, Z.; Vaselli, O.; Muchez, P.; Claes, H.; Capezzuoli, E.; Swennen, R. Hydrogeochemistry, stable isotope composition and geothermometry of CO2-bearing hydrothermal springs from Western Iran: Evidence for their origin, evolution, and spatio-temporal variations. Sediment. Geol. 2020, 404, 105676. [Google Scholar] [CrossRef]
- Knuth, J.M.; Potter-McIntyre, S.L. Stable isotope fractionation in a cold spring system, Utah, USA: Insights for sample selection on Mars. Astrobiology 2021, 21, 235–245. [Google Scholar] [CrossRef]
- Nriagu, J.; Rees, C.; Mekhtiyeva, V.; Lein, A.Y.; Fritz, P.; Drimmie, R.J.; Pankina, R.G.; Robinson, B.W.; Krouse, H.R. Hydrosphere. In Stable Isotopes in the Assessment of Natural and Anthropogenic Sulphur in the Environment; Krouse, H., Grinenko, V., Eds.; John Wiley and Sons: Chichester, UK, 1991; pp. 229–230. [Google Scholar]
- Pearson, F.J.; Rirhtmire, C.T. Sulphur and oxygen isotopes in aqueous sulfur compounds. In Handbook of Environmental Isotope; Fritz, P., Fontes, J.C., Eds.; Elsevir: Amsterdam, The Netherlands, 1980; pp. 179–226. [Google Scholar]
- Pu, J.; Yuan, D.; Zhang, C.; Zhao, H. Hydrogeochemistry and possible sulfate sources in karst groundwater in Chongqing, China. Environ. Earth Sci. 2013, 68, 159–168. [Google Scholar] [CrossRef]
- Brad, T.; Iepure, S.; Sarbu, S.M. The Chemoautotrophically Based Movile Cave Groundwater Ecosystem, a Hotspot of Subterranean Biodiversity. Diversity 2021, 13, 128. [Google Scholar] [CrossRef]
- Zgonik, V.; Mulec, J.; Eleršek, T.; Ogrinc, N.; Jamnik, P.; Ulrih, N.P. Extremophilic Microorganisms in Central Europe. Microorganisms 2021, 9, 2326. [Google Scholar] [CrossRef]
- Headd, B.; Engel, A.S. Biogeographic congruency among bacterial communities from terrestrial sulfidic springs. Front. Microbiol. 2014, 5, 473. [Google Scholar] [CrossRef] [Green Version]
- Jarvis, A.; Reuter, H.I.; Nelson, A.; Guevara, E. Hole-filled Seamless SRTM Data V4, International Centre for Tropical Agriculture (CIAT). 2008. Available online: https://srtm.csi.cgiar.org (accessed on 22 December 2021).
- Appelo, C.A.J.; Postma, D. Geochemistry, Groundwater and Pollution, 2nd ed.; A.A. Balkema Publishers: Amsterdam, The Netherlands, 2005; p. 649. [Google Scholar]
- Coplen, T.; Wildman, J.; Chen, J. Improvements in the gaseous hydrogen-water equilibration technique for hydrogen isotope ratio analysis. Anal. Chem. 1991, 63, 910–912. [Google Scholar] [CrossRef]
- Epstein, S.; Mayeda, T. Variations of 18O content of waters from natural sources. Geochim. Cosmochim. Acta 1953, 4, 213–224. [Google Scholar] [CrossRef]
- Avak, H.; Brand, W.A. The Finning MAT HDO-Equilibration—A fully automated H2O/gas phase equilibration system for hydrogen and oxygen isotope analyses. Thermo Electron. Corp. Appl. News 1995, 11, 1–13. [Google Scholar]
- International Atomic Energy Agency. Reference Sheet for VSMOW2 and SLAP2 International Measurement Standards. IAEA, Vienna, 8 pp. (Rev 1 dated 2017-07-11). Available online: https://nucleus.iaea.org/sites/ReferenceMaterials/Shared%20Documents/ReferenceMaterials/StableIsotopes/VSMOW2/VSMOW2_SLAP2.pdf (accessed on 31 January 2022).
- Gieskes, J.M. The total alkalinity—Total carbon dioxide stem in seawater. In Marne Chemistry of the Sea; Goldberg, E.D., Ed.; John Wiley ad Sons: New York, NY, USA, 1974; pp. 123–151. [Google Scholar]
- Zuliani, T.; Kanduč, T.; Novak, R.; Vreča, P. Characterization of bottled waters by multielemental analysis, stable and radiogenic isotopes. Water 2020, 12, 2454. [Google Scholar] [CrossRef]
- Miyajima, T.; Yamada, Y.; Hanba, Y.T. Determining the stable isotope ratio of total dissolved inorganic carbon in lake water by GC/C/IRMS. Limnol. Oceanogr. 1995, 40, 994–1000. [Google Scholar] [CrossRef]
- Spötl, C. A robust and fast method of sampling and analysis of δ13C of dissolved inorganic carbon in groundwaters. Isot. Environ. Health Stud. 2005, 41, 217–221. [Google Scholar] [CrossRef]
- Placer, L. Contribution to the macrotectonic subdivision of the border region between Southern Alps and External Dinarides. Geologija 1998, 41, 223–255. [Google Scholar] [CrossRef]
- Placer, L. Principles of the tectonic subdivision of Slovenia. Geologija 2008, 51, 205–217. [Google Scholar] [CrossRef]
- Vrabec, M.; Fodor, L. Late Cenozoic tectonics of Slovenia: Structural styles at the Northeastern corner of the Adriatic microplate. In The Adria Microplate: GPS Geodesy, Tectonics and Hazards—NATO Science Series, IV, Earth and Environmental Sciences; Pinter, N., Grenerczy, G., Weber, J., Stein, S., Medak, D., Eds.; Springer: Dordrecht, The Netherlands, 2006; pp. 151–168. [Google Scholar] [CrossRef]
- Dozet, S.; Buser, S. Triassic. In The Geology of Slovenia; Pleničar, M., Ogorelec, B., Novak, M., Eds.; Geological Survey of Slovenia: Ljubljana, Slovenia, 2009; pp. 161–214. [Google Scholar]
- Celarc, B. Geological Structure of the Northwesternpart of the Kamnik Savinja Alps. Ph.D. Thesis, University of Ljubljana, Ljubljana, Slovenia, 2004. [Google Scholar]
- Miklavc, P.; Celarc, B.; Šmuc, A. Anisian Strelovec Formation in the Robanov kot, Savinja Alps (Northern Slovenia). Geologija 2016, 59, 23–34. [Google Scholar] [CrossRef]
- Jurkovšek, B. Langobardske plasti z daonelami in pozidonijami v Sloveniji. Geologija 1984, 27, 41–95. [Google Scholar]
- Trajanova, M.; Grafenauer, S. Triasni Vulkanizem—Triassic Volcanism. In Geologija Slovenije = The Geology of Slovenia; Pleničar, M., Ogorelec, B., Novak, M., Eds.; Geology Survey of Slovenia: Ljubljana, Slovenia, 2009; pp. 479–490. [Google Scholar]
- Mioč, P.; Žnidarčič, M. Tolmač za List Ravne na Koroškem: L 33-54: Socialistična Federativna Republika Jugoslavija, Osnovna Geološka Karta, 1:100.000; Zvezni Geološki Zavod: Beograd, Yugoslavia, 1983. [Google Scholar]
- Kralj, P. Terciarne vulkanske formacije = Tertiary Volcanic Formations. In Geologija Slovenije = The Geology of Slovenia; Pleničar, M., Ogorelec, B., Novak, M., Eds.; Geološki Zavod Slovenije: Ljubljana, Slovenia, 2009; pp. 503–516. [Google Scholar]
- Buser, S. Geological map of Slovenia 1: 250.000; Geological Survey of Slovenia: Ljubljana, Slovenia, 2010. [Google Scholar]
- Bidovec, M. Antimony ore deposit at Lepa njiva. Geologija 1980, 23, 285–313. [Google Scholar]
- Drovenik, M.; Pleničar, M. The origin of Slovenian ore deposits. Geologija 1980, 23, 1–157. [Google Scholar]
- Mlakar, I. On the lithologic, stratigraphic and structural control of mineralization and the age of the Lepa Njiva antimony deposit. Geologija 1990, 33, 353–395. [Google Scholar] [CrossRef]
- Ogorelec, B. Mikrofacies mezozojskih karbonatnih kamnin Slovenije = Microfacies of mesozoic carbonate rocks of Slovenia. Geologija 2011, 54 (Suppl. S2), 1–136. [Google Scholar] [CrossRef]
- Juvančič, V.; Sadnikar, J.M. Geotermalna Raziskava v Okonini. 2. Faza, Poročilo; GEOKO, Podjetje za Geološko Svetovanje in Raziskave d.o.o.: Ljubljana, Slovenia, 1994; 10p. (In Slovenian) [Google Scholar]
- Hanor, J.S. Barite–Celestine geochemistry and environments of formation. Rev. Mineral. Geochem. 2000, 40, 193–275. [Google Scholar] [CrossRef]
- Tucker, M.E.; Wright, V.P. Carbonate Sedimentology; Blackwell: Oxford, UK, 1990; 482p. [Google Scholar]
- Warren, J. Dolomite: Occurence, evolution and economically important associations. Earth Sci. Rev. 2000, 52, 1–81. [Google Scholar] [CrossRef]
- Morrow, D.W. Diagenesis 1. Dolomite—Part 1. The chemistry of dolomitization and dolomite precipitation. Geosci. Can. 1982, 9, 5–13. [Google Scholar]
- Usdowski, E. Synthesis of dolomite and geochemical implications. In Dolomites. The International Association of Sedimentologists Special Publication; Purser, B., Tucker, M., Zenger, D., Eds.; The International Association of Sedimentologists: Cambridge, UK, 1994; Volume 21, pp. 345–360. [Google Scholar]
- Craig, H. Isotopic variation in meteoric waters. Science 1961, 133, 1702–1703. [Google Scholar] [CrossRef]
- Kanduč, T.; Šlejkovec, Z.; Vreča, P.; Samardžija, Z.; Verbovšek, T.; Božič, D.; Jamnikar, S.; Mori, N.; Grassa, F. The effect of geochemical processes on groundwater in the Velenje coal basin, Slovenia: Insights from mineralogy, trace elements and isotopes signatures. SN App. Sci. 2019, 1, 1518. [Google Scholar] [CrossRef] [Green Version]
- Verbovšek, T.; Kanduč, T. Isotope geochemistry of groundwater from fractured dolomite aquifers in central Slovenia. Aquat. Geochem. 2016, 22, 131–151. [Google Scholar] [CrossRef]
- Kanduč, T.; Mori, N.; Koceli, A.; Verbovšek, T. Hydrogeochemistry and isotopic geochemistry of the Velenje basin groundwater. Geologija 2016, 51, 7–22. [Google Scholar] [CrossRef]
- Brenčič, M.; Vreča, P. Identification of sources and production processes of bottled waters by stable hydrogen and oxygen isotope ratios. Rapid Commun. Mass Spectrom. 2006, 20, 3205–3212. [Google Scholar] [CrossRef]
- Vreča, P.; Malenšek, N. Slovenian Network of Isotopes in Precipitation (SLONIP)—A review of activities in the period 1981–2015. Geologija 2016, 59, 67–84. [Google Scholar] [CrossRef]
- Kern, Z.; Hatvani, I.G.; Czuppon, G.; Fórizs, I.; Erdélyi, D.; Kanduč, T.; Palcsu, L.; Vreča, P. Isotopic ‘altitude’ and ‘continental’ effects in modern precipitation across the Adriatic-Pannonian region. Water 2020, 12, 1797. [Google Scholar] [CrossRef]
- Romanek, C.S.; Grossman, E.L.; Morse, J.W. Carbon isotopic fractionation in synthetic aragonite and calcite: Effects temperature and precipitation rate. Geochim. Cosmochim. Acta 1992, 46, 419–430. [Google Scholar] [CrossRef]
- Šušmelj, K.; Žvab Rožič, P.; Vreča, P.; Kanduč, T.; Verbovšek, T.; Nagode, K.; Zuliani, T.; Čenčur Curk, B.; Rožič, B.; Čermelj, B. Hidrogeokemične in izotopske raziskave podmorskih in kopenskih izvirov pri Izoli. In Raziskave s Področja Geodezije in Geofizike 2021; Slovensko združenje za geodezijo in geofiziko: Ljubljana, Slovenia, 2022; pp. 55–64. [Google Scholar]
- Krouse, H.R.; Mayer, B. Sulphur and Oxygen Isotopes in Sulphate. In Environmental Tracers in Subsurface Hydrology; Cook, P.G., Herczeg, A.L., Eds.; Springer: Boston, MA, USA, 2000; pp. 195–231. [Google Scholar] [CrossRef]
- Boehm, A.B.; Sassoubre, L.M. Enterococci as indicators of environmental fecal contamination. In Enterococci: From Commensals to Leading Causes of Drug Resistant Infection; Gilmore, M.S., Clewell, D.B., Ike, Y., Shankar, N., Eds.; Massachusetts Eye and Ear Infirmary: Boston, MA, USA, 2014. [Google Scholar]
- Skaberne, D.; Ramovš, A.; Ogorelec, B. Middle and Upper Permian. In The Geology of Slovenia; Pleničar, M., Ogorelec, B., Novak, M., Eds.; Geological Survey of Slovenia: Ljubljana, Slovenia, 2009; pp. 161–214. [Google Scholar]
- Verbovšek, T. Diagenetic effects on the well yield of dolomite aquifers in Slovenia. Environ. Geol. 2008, 53, 1173–1182. [Google Scholar] [CrossRef]
- Verbovšek, T. Hydraulic conductivities of fractures and matrix in Slovenian carbonate aquifers. Geologija 2008, 51, 245–255. [Google Scholar] [CrossRef]
- Verbovšek, T.; Veselič, M. Factors influencing the hydraulic properties of wells in dolomite aquifers of Slovenia. Hydrogeol. J. 2008, 16, 779–795. [Google Scholar] [CrossRef]
Scenario | Minerals | SICAL | SIDOL | SIANH | SIGYP | SIBAR | SICO2(g) |
---|---|---|---|---|---|---|---|
S1 | Dol | −0.46 | 0 | −1.94 | −1.62 | 0.54 | −1.67 |
S2 | Cal + Dol | 0 | 0 | −1.73 | −1.4 | 0.54 | −1.8 |
S3 | Dol + Gyp | 0.04 | 0 | −0.32 | 0 | 1.29 | −1.63 |
S4 | Cal + Dol + Gyp | 0 | 0 | −0.32 | 0 | 1.3 | −1.62 |
S5 | Dol + Bar | −0.46 | 0 | −1.94 | −1.62 | 0 | −1.67 |
S6 | Cal + Dol + Bar | 0 | 0 | −1.73 | −1.4 | 0 | −1.8 |
/ | Rajserjev graben | 0.18 | 1.31 | −1.91 | −1.58 | 0.51 | −2.03 |
/ | Žveplenica | −0.17 | 0.71 | −2.87 | −2.55 | −0.53 | −2.1 |
Parameter | Unit | |
---|---|---|
Adenosine triphosphate-total | RLU | 24 |
Bacteria (37 °C) | CFU/ml | 33 |
Bacteria (20 °C) | CFU/ml | 142 |
E. coli | CFU/ml | 0 |
Coliforms | CFU/ml | 7 |
Enterococci | CFU/ml | 3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Žvab Rožič, P.; Polenšek, T.; Verbovšek, T.; Kanduč, T.; Mulec, J.; Vreča, P.; Strahovnik, L.; Rožič, B. An Integrated Approach to Characterising Sulphur Karst Springs: A Case Study of the Žvepovnik Spring in NE Slovenia. Water 2022, 14, 1249. https://doi.org/10.3390/w14081249
Žvab Rožič P, Polenšek T, Verbovšek T, Kanduč T, Mulec J, Vreča P, Strahovnik L, Rožič B. An Integrated Approach to Characterising Sulphur Karst Springs: A Case Study of the Žvepovnik Spring in NE Slovenia. Water. 2022; 14(8):1249. https://doi.org/10.3390/w14081249
Chicago/Turabian StyleŽvab Rožič, Petra, Teja Polenšek, Timotej Verbovšek, Tjaša Kanduč, Janez Mulec, Polona Vreča, Ljudmila Strahovnik, and Boštjan Rožič. 2022. "An Integrated Approach to Characterising Sulphur Karst Springs: A Case Study of the Žvepovnik Spring in NE Slovenia" Water 14, no. 8: 1249. https://doi.org/10.3390/w14081249
APA StyleŽvab Rožič, P., Polenšek, T., Verbovšek, T., Kanduč, T., Mulec, J., Vreča, P., Strahovnik, L., & Rožič, B. (2022). An Integrated Approach to Characterising Sulphur Karst Springs: A Case Study of the Žvepovnik Spring in NE Slovenia. Water, 14(8), 1249. https://doi.org/10.3390/w14081249