Spatiotemporal Distribution of Water and Nitrogen in Border Irrigation and Its Relationship with Root Absorption Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Experimental Treatment
2.3. Measurements
2.4. Data Analysis Methods
3. Results and Analysis
3.1. Spatiotemporal Distribution of Moisture in Soil Profile
3.2. Spatial Distribution of the Root System in Soil Profile
3.3. Spatial Distribution of Nitrogen in the Soil Profile
3.4. Correlation of Water Content, Nitrogen Content, and Particle Composition with the Root Length Density of Apple Trees
3.5. Affect of Root-Zone Water and Nitrogen to Roots with Different Diameters
3.5.1. Relationship between Soil Moisture Content and Response of Roots with Different Diameters
3.5.2. Correlation between Nitrate Nitrogen Content and Root Systems with Different Diameters
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, L.X.; Zhao, Z.L. Research on water management pattern in Fuji apple orchard under different annual precipitations on Weibei rainfed highland. Agric. Res. Arid. Areas 2001, 1, 26–32. [Google Scholar]
- Hernández, A.; Lacasta, C.; Pastor, J. Effects of different management practices on soil conservation and soil water in a rainfed olive orchard. Agric. Water Manag. 2005, 77, 232–248. [Google Scholar] [CrossRef]
- Liao, R.; Wu, W.; Hu, Y.; Xu, D.; Huang, Q.; Wang, S. Micro-irrigation strategies to improve water-use efficiency of cherry trees in Northern China. Agric. Water Manag. 2019, 221, 388–396. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, F.Q.; Zhang, J. Study on Topsoil Water Characteristics of High Quality Apple Orchard in Shaanxi Province. Acta Agric. Boreali-Occident. Sin. 2010, 19, 91–95. [Google Scholar]
- Liu, C.; Du, T.; Li, F.; Kang, S.; Li, S.; Tong, L. Trunk sap flow characteristics during two growth stages of apple tree and its relationships with affecting factors in an arid region of northwest China. Agric. Water Manag. 2011, 104, 193–202. [Google Scholar] [CrossRef]
- Riga, P.; Charpentier, S. Simulation of nitrogen dynamics in an alluvial sandy soil with drip fertigation of apple trees. Soil Use Manag. 2006, 15, 34–40. [Google Scholar] [CrossRef]
- Yang, Q.; Zhang, F.; Li, F. Effect of different drip irrigation methods and fertilization on growth, physiology and water use of young apple tree. Sci. Hortic. 2011, 129, 119–126. [Google Scholar] [CrossRef]
- Barco, A.; Maucieri, C.; Borin, M. Root system characterization and water requirements of ten perennial herbaceous species for biomass production managed with high nitrogen and water inputs. Agric. Water Manag. 2018, 196, 37–47. [Google Scholar] [CrossRef]
- Tawaraya, K.; Horie, R.; Wagatsuma, T.; Saito, K.; Oikawa, A. Metabolite profiling of shoot extract, root extract, and root exudate of rice under nitrogen and phosphorus deficiency. Soil Sci. Plant Nutr. 2018, 64, 312–322. [Google Scholar] [CrossRef]
- Tsoulias, N.; Gebbers, R.; Zude-Sasse, M. Using data on soil ECa, soil water properties, and response of tree root system for spatial water balancing in an apple orchard. Precis. Agric. 2019, 21, 522–548. [Google Scholar] [CrossRef]
- Wright, D.E.J.; Cline, J.A.; Earl, H.J. Physiological responses of four apple (Malus × domestica Borkh.) rootstock genotypes to soil water deficits. Can. J. Plant Sci. 2019, 99, 510–524. [Google Scholar] [CrossRef]
- Zhong, Y.; Fei, L.; Li, Y.; Zeng, J.; Dai, Z. Response of fruit yield, fruit quality, and water use efficiency to water deficits for apple trees under surge-root irrigation in the Loess Plateau of China. Agric. Water Manag. 2019, 222, 221–230. [Google Scholar] [CrossRef]
- Zhang, S.Y.; Zhang, G.C.; Gu, S.Y.; Xia, J.B.; Zhao, J.K. Critical responses of photosynthetic efficiency of goldspur apple tree to soil water variation in semiarid loess hilly area. Photosynthetica 2010, 48, 589–595. [Google Scholar] [CrossRef]
- Zhang, Y.; Xie, Y.S.; Jiang, Q.L. Spatial heterogeneity of soil moisture in apple orchards with different productivity level. Chin. J. Ecol. 2010, 29, 1326–1332. [Google Scholar]
- Zhang, L.; Wang, Y.Q.; Shi, Z.L. Characteristics of spatio-temporal variation of soil moisture in Weibei orchards in dry seasons. Agric. Res. Arid. Areas 2012, 30, 83–89. [Google Scholar]
- Wang, Y.P.; Han, M.Y.; Zhang, L.S. Spatial Characteristics of Soil Moisture of Apple Orchards in the Loess Plateau of Shaanxi Province. Sci. Silvae Sin. 2013, 49, 16–25. [Google Scholar]
- Ran, W.; Xie, Y.S.; Hao, M.D. Study on Change of Soil Water in Orchards of Different Planting-life in Gully Region of Loess Plateau. Acta Agric. Boreali-Occident. Sin. 2008, 27, 229–233. [Google Scholar]
- Sun, G.Z.; Zhao, J.B. Study on soil moisture content under artificial vegetation in Changwu of Xianyang county in spring. J. Shaanxi Norm. Univ. (Nat. Sci. Ed.) 2008, 2, 97–101. [Google Scholar]
- Meng, Q.; Wang, J.; Wu, F.; Zhang, Q. Soil moisture utilization depth of apple orchard in Loess Plateau. Trans. Chin. Soc. Agric. Eng. 2012, 28, 65–71. [Google Scholar]
- Gao, J.M.; Lv, M.C.; Deng, Z.; Li, Y.; Hu, L.; Zhong, Z.B. Spatial Distribution of Water and Nitrogen under Different Strip-border Fertigation. J. Irrig. Drain. 2019, 38, 56–62. [Google Scholar]
- Bai, M.J.; Xu, D.; Li, Y.N.; Zhang, S.H. Spatial and temporal distribution of nitrogen in surface water and soil under scattering and fertigating ammonium-sulphate for border irrigation. Trans. Chin. Soc. Agric. Eng. 2011, 8, 19–24. [Google Scholar]
- Hao, Z.Y.; Yang, P.Y.; Liu, H.L. Experimental investigation on root system distribution of apple tree. J. China Agric. Univ. 1998, 3, 63–66. [Google Scholar]
- Lei, S.J. Research of Apple Root Distribution in the Platform Field Soil. J. Staff. Work. Univ. 2013, 4, 97–99. [Google Scholar]
- Lei, S.J.; Zhao, Y.L. Influence on apple root system distribution in the platform field coastal salinized soil. Soil Fertil. Sci. China 2014, 4, 87–90. [Google Scholar]
- Li, H.F.; Lv, D.G.; Li, L.G. Evolvement of Root System Architecture in Apple. Acta Agric. Boreali-Sin. 2009, 24, 323–326. [Google Scholar]
- Wang, L.X.; Mou, P.P.; Jones, R.H. Nutrient foraging via physiological and morphological plasticity in three plant species. Can. J. For. Res.-Rev. Can. Rech. For. 2006, 36, 164–173. [Google Scholar] [CrossRef]
- Benjamin, J.G.; Nielsen, D.C. Water deficit effects on root distribution of soybean, field pea and chickpea. Field Crops Res. 2006, 97, 248–253. [Google Scholar] [CrossRef]
- Abdellaoui, A.; Talouizte, A. Effect of previous nitrogen starvation on NO3− and NH4+ uptake and assimilation associated with the endogenous soluble carbohydrate utilization in Moroccan wheat seedlings. J. Plant Nutr. 2001, 24, 1995–2007. [Google Scholar] [CrossRef]
- Hodge, A. The plastic plant: Root responses to heterogeneous supplies of nutrients. New Phytol. 2004, 162, 9–24. [Google Scholar] [CrossRef]
- Lynch, J.P. Steep, cheap and deep: An ideotype to optimize water and N acquisition by maize root systems. Ann. Bot. 2013, 112, 347–357. [Google Scholar] [CrossRef] [Green Version]
- Bengough, A.G.; Mc Kenzie, B.; Hallett, P.; Valentine, T. Root elongation, water stress, and mechanical impedance: A review of limiting stresses and beneficial root tip traits. J. Exp. Bot. 2011, 62, 59–68. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marshall, J.D.; Waring, R.H. Predicting Fine Root Production and Turnover by Monitoring Root Starch and Soil Temperature. Can. J. For. Res. 1985, 15, 791–800. [Google Scholar] [CrossRef]
- Wei, X.; Zhang, G.Z. Progress and Prospect in the Main Research Realms of Tree Fine Roots. Chin. Agric. Sci. Bull. 2008, 5, 143–147. [Google Scholar]
- Wen, Y.J.; Li, G.H.; Liu, Y.X.; Gao, X.; Wang, H. Determination nitrogen in the Kjeldahl digests of plant samples by continuous flow analyzer in comparison with automated distillation-titration instrument. Soil Fertil. Sci. China 2015, 6, 146–151. [Google Scholar]
- Li, J.B.; Wang, W.H. Study on Spatial Variability of Soil Water Content and Soil Water Migration in Small-scale Greenhouse. J. Yantai Univ. (Nat. Sci. Eng. Ed.) 2019, 4, 345–351+408. [Google Scholar]
- Li, C.M.; Chen, H.S.; Xu, Q.X.; Wu, P.; Fu, Z.Y. Spatial variability of soil moisture on hillslope in typical karst peak-cluster depression areas. Carsologica Sin. 2018, 2, 159–167. [Google Scholar]
- Liu, H.W.; Gao, F.; Yu, Z.B.; Gao, F.H.; Xiang, L. Study on temporal-spatial variability of soil moisture content on hillslope in a humid area. Water Resour. Prot. 2016, 5, 17–23. [Google Scholar]
- Rieger, M.; Litvin, P. Root system hydraulic conductivity in species with contrasting root anatomy. J. Exp. Bot. 1999, 50, 201–209. [Google Scholar] [CrossRef]
- Zhao, L.J.; Zhang, L.J.; Zhao, S.C. Relationship between root and water content of fruit tree. Hebei Fruits 2007, 1, 1–4. [Google Scholar]
- Guo, X.P.; Kang, S.Z.; Suo, L.P. Effects of Regulated Deficit Irrigation on Root Growth in Maize. J. Irrig. Drain. 2001, 20, 25–27. [Google Scholar]
- Li, W.Y.; Zhang, S.Q.; Ding, S.Y.; Shan, L. Root morphological variation and water use in alfalfa under drought stress. Acta Ecol. Sin. 2010, 19, 5140–5150. [Google Scholar]
- Hao, S.R.; Guo, X.P.; Wang, W.M.; Zhang, L.J.; Wang, Q.; Wang, Q.M.; Liu, Z.P. Effects of water stress in tillering stage and re-watering on rice root growth. Agric. Res. Arid. Areas 2007, 25, 149–152. [Google Scholar]
- Zhang, X.Y.; Wang, Y.; Chen, J.; Chen, A.J.; Wang, L.Y.; Guo, X.Y.; Niu, Y.L.; Zhang, X.Y.; Chen, L.D.; Gao, Q. Effects of Soil Water and Nitrogen on Plant Growth, Root Morphology and Spatial Distribution of Maize at the seedling stage. Sci. Agric. Sin. 2019, 1, 34–44. [Google Scholar]
- Eapen, D.; Barroso, M.L.; Ponce, G.; Campos, M.E.; Cassab, G.I. Hydrotropism: Root growth responses to water. Trends Plant Sci. 2005, 10, 44–50. [Google Scholar] [CrossRef] [PubMed]
- Hong, G.Y. The response of leymus chinensis population root system to waterand nitrogen gradient degraded grassland. Inn. Mong. Univ. 2013, 1, 73–78. [Google Scholar]
- Hu, W.; Liu, J.Z.; Di, Q.; Zhang, Y.M.; Tian, S.B. Relationship Between Different Water Conditions and Nitrogen Leaching in Tobacco Field of Bijie. Chin. Agric. Sci. Bull. 2015, 1, 63–68. [Google Scholar]
- Songsri, P.; Jogloy, S.; Vorasoot, N.; Akkasaeng, C.; Patanothai, A.; Holbrook, C. Root distribution of drought-resistant peanut genotypes in response to drought. J. Agron. Crop Sci. 2008, 194, 92–103. [Google Scholar] [CrossRef]
Distance | Correlation with Water Content | Correlation with Nitrate Content | Correlation with Particle Size | Correlation with Total Nitrogen Content |
---|---|---|---|---|
Root length in L1 | 0.881 ** | −0.105 | 0.621 | 0.883 ** |
Root length in L2 | 0.950 ** | −0.496 | 0.590 | 0.947 ** |
Root length in L2 | 0.072 | −0.383 | −0.488 | 0.064 |
Root length in L2 | −0.625 | −0.375 | 0.040 | −0.622 |
Root length in T1 | 0.901 ** | −0.304 | 0.693 * | 0.895 ** |
Root length in T2 | 0.959 ** | −0.710 * | 0.607 | 0.885 ** |
Root length in T3 | 0.362 | −0.841 ** | 0.718 * | 0.725 * |
Root length in T4 | 0.829 ** | −0.780 ** | 0.521 | 0.698 * |
Total | −0.273 * | −0.360 ** | 0.430 ** | 0.741 ** |
Diameter Range (mm) | L1 | L2 | L3 | L4 | T1 | T2 | T3 | T4 |
---|---|---|---|---|---|---|---|---|
0–1 | −0.801 ** | 0.809 ** | −0.889 ** | −0.953 ** | −0.837 ** | |||
1–2 | 0.655 * | −0.721 * | −0.714 * | |||||
2–3 | ||||||||
3–4 | 0.848 ** | |||||||
4 | −0.728 * | |||||||
0–1.5 | −0.799 ** | 0.812 ** | −0.887 ** | −0.950 ** | −0.835 ** | |||
1.5–3 | ||||||||
3–4.5 | 0.734 * | |||||||
3.5–5 | −0.679 * | |||||||
0–2 | −0.798 ** | 0.814 ** | −0.887 ** | −0.950 ** | −0.834 ** | |||
2–4.0 | ||||||||
3.5–5 | −0.679 * | |||||||
0–2.5 | −0.797 ** | 0.813 ** | −0.888 ** | −0.949 ** | −0.834 ** | |||
2.5–5 | ||||||||
0–3.0 | −0.797 ** | 0.813 ** | −0.888 ** | −0.949 ** | −0.834 ** | |||
2.5–5 |
Diameter Range (mm) | L1 | L2 | L3 | L4 | T1 | T2 | T3 | T4 |
---|---|---|---|---|---|---|---|---|
0–1 | −0.673 * | −0.849 ** | −0.738 * | |||||
1–2 | −0.765 ** | −0.785 ** | −0.658 * | |||||
2–3 | −0.646 * | |||||||
3–4 | −0.835 ** | |||||||
4–5 | −0.798 ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wan, F.; Wu, W.; Liao, R.; Wang, Y. Spatiotemporal Distribution of Water and Nitrogen in Border Irrigation and Its Relationship with Root Absorption Properties. Water 2022, 14, 1253. https://doi.org/10.3390/w14081253
Wan F, Wu W, Liao R, Wang Y. Spatiotemporal Distribution of Water and Nitrogen in Border Irrigation and Its Relationship with Root Absorption Properties. Water. 2022; 14(8):1253. https://doi.org/10.3390/w14081253
Chicago/Turabian StyleWan, Fa, Wenyong Wu, Renkuan Liao, and Yong Wang. 2022. "Spatiotemporal Distribution of Water and Nitrogen in Border Irrigation and Its Relationship with Root Absorption Properties" Water 14, no. 8: 1253. https://doi.org/10.3390/w14081253
APA StyleWan, F., Wu, W., Liao, R., & Wang, Y. (2022). Spatiotemporal Distribution of Water and Nitrogen in Border Irrigation and Its Relationship with Root Absorption Properties. Water, 14(8), 1253. https://doi.org/10.3390/w14081253