On the Calibration of Spatially Distributed Hydrologic Models for Poorly Gauged Basins: Exploiting Information from Streamflow Signatures and Remote Sensing-Based Evapotranspiration Data
Abstract
:1. Introduction
2. Research Justification and Objectives
- To investigate the skill of using multiple streamflow signatures to calibrate and evaluate a hydrologic model;
- To investigate the added value of coupling remote sensing-based evapotranspiration with streamflow signature measures to constrain hydrologic models;
- To explore the potential of streamflow signatures and remote sensing information for model calibration and evaluation of a distributed hydrologic model in a multi-objective framework;
- To characterize rainfall partitioning in the basin in terms of the dominant water balance components.
3. The Study Area
4. Methods and Data
4.1. SWAT Model Description
4.2. The Baseline Model
4.3. Calibration and Evaluation Framework
4.3.1. The Procedures for the Extraction of Streamflow Signatures
- After removing outliers, we considered years with 90% or more completeness assuming these adequately represent the annual streamflow regime.
- Streamflow and thereby the associated FDCs are highly variable from year to year depending on the climate variability. We normalized the daily streamflow by dividing it by the mean and/or median streamflow. The normalization helps to amplify differences in FDCs due to aridity, geology and other factors.
4.3.2. Remote Sensing-Based Evapotranspiration
4.3.3. The Stepwise Spatial Calibration Strategy
4.3.4. The Manual Calibration Strategy
4.3.5. The Automatic, Multi-Objective Calibration Strategy
4.3.6. The Evaluation Criteria
The Statistical Measures
Diagnostic Consistency Assessment
4.3.7. Relative Performance Comparison
5. Results
5.1. The Baseline Model Performance
5.2. The Manual Calibration Results
5.3. The Automatic, Multi-Objective Calibration Results
5.4. The Validation of the Calibrated Models
5.5. Consistency Assessment
5.6. Relative Performance Comparison
6. Discussion
6.1. Parameter Estimation
6.2. Effects of Calibration on the Soil Water Redistribution
6.3. Can Streamflow Signatures and Remote Sensing-Based Evapotranspiration Constrain a Distributed Model Meaningfully?
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Arnold, J.G.; Youssef, M.A.; Yen, H.; White, M.J.; Sheshukov, A.Y.; Sadeghi, A.M.; Moriasi, D.N.; Steiner, J.L.; Amatya, D.M.; Skaggs, R.W.; et al. Hydrological Processes and Model Representation: Impact of Soft Data on Calibration. Trans. ASABE 2015, 58, 1637–1660. [Google Scholar] [CrossRef]
- Clark, M.P.; Schaefli, B.; Schymanski, S.J.; Samaniego, L.; Luce, C.H.; Jackson, B.M.; Freer, J.E.; Arnold, J.R.; Moore, R.D.; Istanbulluoglu, E.; et al. Improving the theoretical underpinnings of process-based hydrologic models. Water Resour. Res. 2016, 52, 2350–2365. [Google Scholar] [CrossRef] [Green Version]
- Grayson, R.; Blöschl, G. Spatial modelling of catchment dynamics. In Spatial Patterns in Catchment Hydrology: Observations and Modelling; Cambridge Univ. Press: Cambridge, UK, 2000; pp. 51–81. ISBN 0521633168. [Google Scholar]
- Breuer, L.; Huisman, J.A.; Willems, P.; Bormann, H.; Bronstert, A.; Croke, B.F.W.; Frede, H.-G.; Gräff, T.; Hubrechts, L.; Jakeman, A.J.; et al. Assessing the impact of land use change on hydrology by ensemble modeling (LUCHEM). I: Model intercomparison with current land use. Adv. Water Resour. 2009, 32, 129–146. [Google Scholar] [CrossRef]
- Smith, M.B.; Seo, D.-J.; Koren, V.I.; Reed, S.M.; Zhang, Z.; Duan, Q.; Moreda, F.; Cong, S. The distributed model intercomparison project (DMIP): Motivation and experiment design. J. Hydrol. 2004, 298, 4–26. [Google Scholar] [CrossRef]
- Teklesadik, A.D.; Alemayehu, T.; van Griensven, A.; Kumar, R.; Liersch, S.; Eisner, S.; Tecklenburg, J.; Ewunte, S.; Wang, X. Inter-model comparison of hydrological impacts of climate change on the Upper Blue Nile basin using ensemble of hydrological models and global climate models. Clim. Change 2017, 141, 517–532. [Google Scholar] [CrossRef]
- Winsemius, H.C.; Savenije, H.H.G.; Bastiaanssen, W.G.M. Constraining model parameters on remotely sensed evaporation: Justification for distribution in ungauged basins? Hydrol. Earth Syst. Sci. Discuss. 2008, 5, 2293–2318. [Google Scholar] [CrossRef] [Green Version]
- Donnelly, C.; Andersson, J.C.M.; Arheimer, B. Using flow signatures and catchment similarities to evaluate the E-HYPE multi-basin model across Europe. Hydrol. Sci. J. 2016, 61, 255–273. [Google Scholar] [CrossRef]
- Euser, T.; Winsemius, H.C.; Hrachowitz, M.; Fenicia, F.; Uhlenbrook, S.; Savenije, H.H.G. A framework to assess the realism of model structures using hydrological signatures. Hydrol. Earth Syst. Sci. 2013, 17, 1893–1912. [Google Scholar] [CrossRef] [Green Version]
- Westerberg, I.K.; Guerrero, J.-L.; Younger, P.M.; Beven, K.J.; Seibert, J.; Halldin, S.; Freer, J.E.; Xu, C.-Y. Calibration of Hydrological Models Using Flow-Duration Curves. Hydrol. Earth Syst. Sci. 2011, 15, 2205–2227. [Google Scholar] [CrossRef] [Green Version]
- Winsemius, H.C.; Schaefli, B.; Montanari, A.; Savenije, H.H.G. On the Calibration of Hydrological Models in Ungauged Basins: A Framework for Integrating Hard and Soft Hydrological Information. Water Resour. Res. 2009, 45, 45. [Google Scholar] [CrossRef] [Green Version]
- Yadav, M.; Wagener, T.; Gupta, H. Regionalization of Constraints on Expected Watershed Response Behavior for Improved Predictions in Ungauged Basins. Adv. Water Resour. 2007, 30, 1756–1774. [Google Scholar] [CrossRef]
- Yilmaz, K.K.; Gupta, H.V.; Wagener, T. A Process-Based Diagnostic Approach to Model Evaluation: Application to the NWS Distributed Hydrologic Model. Water Resour. Res. 2008, 44, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Gupta, H.V.; Wagener, T.; Liu, Y. Reconciling theory with observations: Elements of a diagnostic approach to model evaluation. Hydrol. Process. 2008, 22, 3802–3813. [Google Scholar] [CrossRef]
- Hrachowitz, M.; Savenije, H.H.G.; Blöschl, G.; McDonnell, J.J.; Sivapalan, M.; Pomeroy, J.W.; Arheimer, B.; Blume, T.; Clark, M.P.; Ehret, U.; et al. A decade of Predictions in Ungauged Basins (PUB)—A review. Hydrol. Sci. J. 2013, 58, 1198–1255. [Google Scholar] [CrossRef]
- Hrachowitz, M.; Fovet, O.; Ruiz, L.; Euser, T.; Gharari, S.; Nijzink, R.; Freer, J.; Savenije, H.H.G.; Gascuel-Odoux, C. Process consistency in models: The importance of system signatures, expert knowledge, and process complexity. Water Resour. Res. 2014, 50, 7445–7469. [Google Scholar] [CrossRef] [Green Version]
- Montanari, A.; Toth, E. Calibration of hydrological models in the spectral domain: An opportunity for scarcely gauged basins? Water Resour. Res. 2007, 43, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Pauwels, V.R.N.; De Lannoy, G.J.M. Multivariate calibration of a water and energy balance model in the spectral domain. Water Resour. Res. 2011, 47. [Google Scholar] [CrossRef] [Green Version]
- Pfannerstill, M.; Guse, B.; Fohrer, N. Smart low flow signature metrics for an improved overall performance evaluation of hydrological models. J. Hydrol. 2014, 510, 447–458. [Google Scholar] [CrossRef]
- Pfannerstill, M.; Bieger, K.; Guse, B.; Bosch, D.D.; Fohrer, N.; Arnold, J.G. How to Constrain Multi-Objective Calibrations of the SWAT Model Using Water Balance Components. JAWRA J. Am. Water Resour. Assoc. 2017, 53, 532–546. [Google Scholar] [CrossRef]
- Shafii, M.; Tolson, B.A. Optimizing hydrological consistency by incorporating hydrological signatures into model calibration objectives. Water Resour. Res. 2015, 51, 3796–3814. [Google Scholar] [CrossRef] [Green Version]
- Smakhtin, V.U. Low flow hydrology: A review. J. Hydrol. 2001, 240, 147–186. [Google Scholar] [CrossRef]
- Vogel, R.M.; Fennessey, N.M. Flow-Duration Curves. I: New Interpretation and Confidence Intervals. J. Water Resour. Plan. Manag. 1994, 120, 485–504. [Google Scholar] [CrossRef]
- Boegh, E.; Thorsen, M.; Butts, M.B.; Hansen, S.; Christiansen, J.S.; Abrahamsen, P.; Hasager, C.B.; Jensen, N.O.; van der Keur, P.; Refsgaard, J.C.; et al. Incorporating remote sensing data in physically based distributed agro-hydrological modelling. J. Hydrol. 2004, 287, 279–299. [Google Scholar] [CrossRef]
- Boegh, E.; Poulsen, R.N.; Butts, M.; Abrahamsen, P.; Dellwik, E.; Hansen, S.; Hasager, C.B.; Ibrom, A.; Loerup, J.K.; Pilegaard, K.; et al. Remote sensing based evapotranspiration and runoff modeling of agricultural, forest and urban flux sites in Denmark: From field to macro-scale. J. Hydrol. 2009, 377, 300–316. [Google Scholar] [CrossRef]
- Huffman, G.J.; Bolvin, D.T.; Nelkin, E.J.; Wolff, D.B.; Adler, R.F.; Gu, G.; Hong, Y.; Bowman, K.P.; Stocker, E.F. The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-Global, Multiyear, Combined-Sensor Precipitation Estimates at Fine Scales. J. Hydrometeorol. 2007, 8, 38–55. [Google Scholar] [CrossRef]
- Karimi, P.; Bastiaanssen, W.G.M. Spatial evapotranspiration, rainfall and land use data in water accounting—Part 1: Review of the accuracy of the remote sensing data. Hydrol. Earth Syst. Sci. 2015, 19, 507–532. [Google Scholar] [CrossRef] [Green Version]
- Kite, G.W.; Pietroniro, A. Remote sensing applications in hydrological modelling. Hydrol. Sci. J. 1996, 41, 563–591. [Google Scholar] [CrossRef]
- Lakshmi, V. The role of satellite remote sensing in the prediction of ungauged basins. Hydrol. Process. 2004, 18, 1029–1034. [Google Scholar] [CrossRef]
- Wagner, W.; Verhoest, N.E.C.; Ludwig, R.; Tedesco, M. Editorial “Remote sensing in hydrological sciences”. Hydrol. Earth Syst. Sci. 2009, 13, 813–817. [Google Scholar] [CrossRef] [Green Version]
- Immerzeel, W.W.; Droogers, P. Calibration of a distributed hydrological model based on satellite evapotranspiration. J. Hydrol. 2008, 349, 411–424. [Google Scholar] [CrossRef]
- Rientjes, T.H.M.; Muthuwatta, L.P.; Bos, M.G.; Booij, M.J.; Bhatti, H.a. Multi-variable calibration of a semi-distributed hydrological model using streamflow data and satellite-based evapotranspiration. J. Hydrol. 2013, 505, 276–290. [Google Scholar] [CrossRef]
- Zhang, Y.; Chiew, F.H.S.; Zhang, L.; Li, H. Use of Remotely Sensed Actual Evapotranspiration to Improve Rainfall–Runoff Modeling in Southeast Australia. J. Hydrometeorol. 2009, 10, 969–980. [Google Scholar] [CrossRef]
- Kunnath-Poovakka, A.; Ryu, D.; Renzullo, L.J.; George, B. The efficacy of calibrating hydrologic model using remotely sensed evapotranspiration and soil moisture for streamflow prediction. J. Hydrol. 2016, 535, 509–524. [Google Scholar] [CrossRef]
- Arnold, J.G.; Srinivasan, R.; Muttiah, R.S.; Williams, J.R. Large area hydrologic modeling and assessment part I: Model development. J. Am. Water Resour. Assoc. 1998, 34, 73–89. [Google Scholar] [CrossRef]
- KMD Kenya Meteorological Department. Available online: http://www.meteo.go.ke/data/ (accessed on 20 September 2014).
- Karimi, P.; Bastiaanssen, W.G.M.; Sood, A.; Hoogeveen, J.; Peiser, L.; Bastidas-Obando, E.; Dost, R.J. Spatial evapotranspiration, rainfall and land use data in water accounting—Part 2: Reliability of water acounting results for policy decisions in the Awash Basin. Hydrol. Earth Syst. Sci. 2015, 19, 533–550. [Google Scholar] [CrossRef] [Green Version]
- Juston, J.; Jansson, P.; Gustafsson, D. Rating curve uncertainty and change detection in discharge time series: Case study with 44-year historic data from the Nyangores River, Kenya. Hydrol. Process. 2013, 28, 2509–2523. [Google Scholar] [CrossRef]
- McClain, M.E.; Subalusky, A.L.; Anderson, E.P.; Dessu, S.B.; Melesse, A.M.; Ndomba, P.M.; Mtamba, J.O.D.; Tamatamah, R.A.; Mligo, C. Comparing flow regime, channel hydraulics, and biological communities to infer flow–ecology relationships in the Mara River of Kenya and Tanzania. Hydrol. Sci. J. 2014, 59, 801–819. [Google Scholar] [CrossRef]
- WREM. Mara River Basin Monograph, Mara River Basin Transboundary Integrated Water Resources Management and Development Project, Final Technical Report; WREM International Inc.: Atlanta, GA, USA, 2008. [Google Scholar]
- Gereta, E.; Mwangomo, E.; Wolanski, E. Ecohydrology as a tool for the survival of the threatened Serengeti ecosystem. Ecohydrol. Hydrobiol. 2009, 9, 115–124. [Google Scholar] [CrossRef]
- Neitsch, S.L.; Arnold, J.G.; Kiniry, J.R.; Williams, J.R. Soil & Water Assessment Tool Theoretical Documentation Version 2009; Texas Water Resources Institute Technical Report No. 406; Texas A&M University: College Station, TX, USA, 2011; p. 647. [Google Scholar]
- Alemayehu, T.; van Griensven, A.; Woldegiorgis, B.T.; Bauwens, W. An improved SWAT vegetation growth module and its evaluation for four tropical ecosystems. Hydrol. Earth Syst. Sci. 2017, 21, 4449–4467. [Google Scholar] [CrossRef] [Green Version]
- Nachtergaele, F.O.; van Velthuizen, H.; Verelst, L.; Batjes, N.H.; Dijkshoorn, J.A.; van Engelen, V.W.P.; Fischer, G.; Jones, A.; Montanarella, L.; Petri, M.; et al. Harmonized World Soil Database (Version 1.0); Food and Agric Organization of the UN (FAO): Rome, Italy; International Inst. for Applied Systems Analysis (IIASA): Laxenburg, Austria; ISRIC—World Soil Information: Bengaluru, India; Inst of Soil Science-Chinese Acad of Sciences (ISS-CAS): Lausanne, Switzerland; EC-Joint Research Centre (JRC): Ispra, Italy, 2008. [Google Scholar]
- Roy, T.; Serrat-Capdevila, A.; Gupta, H.; Valdes, J. A platform for probabilistic Multimodel and Multiproduct Streamflow Forecasting. Water Resour. Res. 2017, 53, 376–399. [Google Scholar] [CrossRef] [Green Version]
- Rodell, M.; Houser, P.R.; Jambor, U.; Gottschalck, J.; Mitchell, K.; Meng, C.-J.; Arsenault, K.; Cosgrove, B.; Radakovich, J.; Bosilovich, M.; et al. The Global Land Data Assimilation System. Bull. Am. Meteorol. Soc. 2004, 85, 381–394. [Google Scholar] [CrossRef] [Green Version]
- Alemayehu, T.; Griensven, A.V.; Bauwens, W. Evaluating CFSR and WATCH Data as Input to SWAT for the Estimation of the Potential Evapotranspiration in a Data-Scarce Eastern-African Catchment. J. Hydrol. Eng. 2016, 21, 05015028. [Google Scholar] [CrossRef]
- Dessu, S.B.; Melesse, A.M. Modelling the rainfall-runoff process of the Mara River basin using the Soil and Water Assessment Tool. Hydrol. Process. 2012, 26, 4038–4049. [Google Scholar] [CrossRef]
- Mango, L.M.; Melesse, A.M.; McClain, M.E.; Gann, D.; Setegn, S.G. Land use and climate change impacts on the hydrology of the upper Mara River Basin, Kenya: Results of a modeling study to support better resource management. Hydrol. Earth Syst. Sci. 2011, 15, 2245–2258. [Google Scholar] [CrossRef] [Green Version]
- Mwangi, H.M.; Julich, S.; Patil, S.D.; McDonald, M.A.; Feger, K.-H. Modelling the impact of agroforestry on hydrology of Mara River Basin in East Africa. Hydrol. Process. 2016, 30, 3139–3155. [Google Scholar] [CrossRef] [Green Version]
- Alemayehu, T.; Griensven, A.V.; Senay, G.B.; Bauwens, W. Evapotranspiration Mapping in a Heterogeneous Landscape Using Remote Sensing and Global Weather Datasets: Application to the Mara Basin, East Africa. Remote Sens. 2017, 9, 390. [Google Scholar] [CrossRef] [Green Version]
- Senay, G.B.; Bohms, S.; Singh, R.K.; Gowda, P.H.; Velpuri, N.M.; Alemu, H.; Verdin, J.P. Operational Evapotranspiration Mapping Using Remote Sensing and Weather Datasets: A New Parameterization for the SSEB Approach. J. Am. Water Resour. Assoc. 2013, 49, 577–591. [Google Scholar] [CrossRef] [Green Version]
- Jung, M.; Reichstein, M.; Margolis, H.A.; Cescatti, A.; Richardson, A.D.; Arain, M.A.; Arneth, A.; Bernhofer, C.; Bonal, D.; Chen, J.; et al. Global patterns of land-atmosphere fluxes of carbon dioxide, latent heat, and sensible heat derived from eddy covariance, satellite, and meteorological observations. J. Geophys. Res. 2011, 116, G00J07. [Google Scholar] [CrossRef] [Green Version]
- Hadka, D.; Reed, P. Borg: An Auto-Adaptive Many-Objective Evolutionary Computing Framework. Evol. Comput. 2013, 21, 231–259. [Google Scholar] [CrossRef]
- Reed, P.M.; Hadka, D.; Herman, J.D.; Kasprzyk, J.R.; Kollat, J.B. Evolutionary multiobjective optimization in water resources: The past, present, and future. Adv. Water Resour. 2013, 51, 438–456. [Google Scholar] [CrossRef] [Green Version]
- Hadka, D.; Herman, J.; Reed, P.; Keller, K. An open source framework for many-objective robust decision making. Environ. Model. Softw. 2015, 74, 114–129. [Google Scholar] [CrossRef] [Green Version]
- Wagener, T. Evaluation of catchment models. Hydrol. Process. 2003, 17, 3375–3378. [Google Scholar] [CrossRef]
- Budyko, M.I. Climate and Life; Academic Press: San Diego, CA, USA, 1974. [Google Scholar]
- Du, C.; Sun, F.; Yu, J.; Liu, X.; Chen, Y. New interpretation of the role of water balance in an extended Budyko hypothesis in arid regions. Hydrol. Earth Syst. Sci. 2016, 20, 393–409. [Google Scholar] [CrossRef] [Green Version]
- Troch, P.A.; Carrillo, G.; Sivapalan, M.; Wagener, T.; Sawicz, K. Climate-vegetation-soil interactions and long-term hydrologic partitioning: Signatures of catchment co-evolution. Hydrol. Earth Syst. Sci. 2013, 17, 2209–2217. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Hickel, K.; Dawes, W.R.; Chiew, F.H.S.; Western, A.W.; Briggs, P.R. A rational function approach for estimating mean annual evapotranspiration. Water Resour. Res. 2004, 40, 89–97. [Google Scholar] [CrossRef]
- Fu, B.P. On the calculation of the evaporation from land surface. Sci. Atmos. Sin. 1981, 5, 23–31. (In Chinese) [Google Scholar]
- Gupta, H.V.; Sorooshian, S.; Yapo, P.O. Toward improved calibration of hydrologic models: Multiple and noncommensurable measures of information. Water Resour. Res. 1998, 34, 751–763. [Google Scholar] [CrossRef]
- Marshall, M.T.; Funk, C. Agricultural Drought Monitoring in Kenya Using Evapotranspiration Derived from Remote Sensing and Reanalysis Data. In Remote Sensing of Drought: Innovative Monitoring Approaches; Wardlow, B.D., Anderson, M.C., Verdin, J.P., Eds.; CRC Press: Boca Raton, FL, USA, 2012; pp. 169–194. [Google Scholar]
- Rulinda, C.M.; Dilo, A.; Bijker, W.; Stein, A. Characterising and quantifying vegetative drought in East Africa using fuzzy modelling and NDVI data. J. Arid Environ. 2012, 78, 169–178. [Google Scholar] [CrossRef]
- Coxon, G.; Freer, J.; Wagener, T.; Odoni, N.A.; Clark, M. Diagnostic evaluation of multiple hypotheses of hydrological behaviour in a limits-of-acceptability framework for 24 UK catchments. Hydrol. Process. 2014, 28, 6135–6150. [Google Scholar] [CrossRef]
Watershed ID | Area (km2) | Elevation (m.a.s.l.) | Dominant Land Cover | Dominant Soil Type | P (mm) | ET0 (mm) | ET (mm) | Aridity Index |
---|---|---|---|---|---|---|---|---|
W1 | 691 | 2397 | Forest (63%) | Andosols (100%) | 1605 | 1494 | 1031 | 0.94 |
W2 | 695 | 2684 | Forest (45%) | Andosols (100%) | 1428 | 1452 | 897 | 1.03 |
W3 | 1392 | 1507 | Grassland (79%) | Luvic Phaeozems (67%) | 811 | 1656 | 703 | 2.12 |
W4 | 386 | 1892 | Grassland (92%) | Eutric Planosols (62%) | 1238 | 1739 | 919 | 1.42 |
W5 | 622 | 1292 | Wetland (40%) | Eutric Planosols (56%) | 1446 | 1710 | 953 | 1.19 |
W6 | 11,285 | 1811 | Grassland (60%) | Planosols (19%) | 1117 | 1658 | 835 | 1.50 |
Basin | 13,422 | 1729 | Grassland (35%) | Eutric Planosols (40%) | 1153 | 1666 | 845 | 1.46 |
Parameter | Function (Unit) | Variation Level | Range a | Adjustment b | |
---|---|---|---|---|---|
Min | Max | ||||
SOL_Z | Soil depths (mm) | HRU | 240 | 2000 | R |
SOL_AWC | Soil water content (mm) | HRU | 0 | 0.45 | R |
SOL_K | Soil hydraulic conductivity (mm/h) | HRU | 0 | 67.6 | R |
ESCO | Soil evaporation (-) | HRU | 0 | 1 | V |
EPCO | Plant water uptake (-) | HRU | 0 | 1 | V |
REVAPMN | Depth of water in the aquifer for “revap” (mm) | Watershed | 0 | 200 | V |
CN2 | Surface runoff (-) | HRU | 25 | 98 | R |
SURLAG | Surface runoff routing (day) | HRU | 0.01 | 10 | V |
ALPHA_BF | Baseflow recession constant (day) | Watershed | 0 | 1 | V |
GWQMN | Shallow aquifer minimum level for baseflow (mm) | Watershed | 0 | 500 | V |
GW_REVAP | Groundwater “revap” coefficient (-) | Watershed | 0.02 | 0.2 | V |
RCHRG_DP | Deep aquifer percolation (-) | Watershed | 0 | 1 | V |
GW_DELAY | Groundwater delay (day) | Watershed | 0 | 100 | V |
CANMX | Interception storage (mm) | Land cover | 0 | 6 | R |
FRSE | RNGE | RNGB | ||||
---|---|---|---|---|---|---|
pbias | r | pbias | r | pbias | r | |
FDC | 3.5 | 0.12 | 12.7 | 0.75 | 5.8 | 0.73 |
FDC + ET | 14.3 | 0.67 | 12.5 | 0.76 | 4.9 | 0.73 |
BestMO | 12.1 | 0.64 | 16.9 | 0.81 | 7.2 | 0.78 |
Nyangores River | Mara River | |||||||
---|---|---|---|---|---|---|---|---|
Historical 1 | FDC | FDC + ET | BestMO | Historical 1 | FDC | FDC + ET | BestMO | |
Min | 0.3 | 0.1 | 0.1 | 0.0 | 0.01 | 3.3 | 3.5 | 3.5 |
Median | 5.2 | 5.1 | 5.3 | 8.2 | 16.8 | 27.2 | 30.1 | 31.8 |
IQR | 7.8 | 7.0 | 6.9 | 10.0 | 30.3 | 37.0 | 40.8 | 33.2 |
Max | 52.3 | 50.8 | 47.3 | 82.0 | 655 | 459 | 517 | 546 |
Sub-Basins 1–18 | Sub-Basins 19–89 | ||||||||
---|---|---|---|---|---|---|---|---|---|
FDC | FDC+ET | Pareto Range | FDC | FDC+ET | Pareto Range | ||||
Parameter | Adjustment | Min | Max | Min | Max | ||||
SOL_Z | R | 0.00 | 0.60 | −0.05 | 1.00 | 0.00 | 0.60 | −0.20 | 0.35 |
SOL_AWC | R | −0.21 | −0.18 | −0.40 | 0.40 | −0.21 | −0.18 | −0.12 | 0.18 |
GW_REVAP | V | 0.02 | 0.17 | 0.02 | 0.20 | 0.02 | 0.02 | 0.02 | 0.08 |
GWQMN | V | 150.00 | 150.00 | 49.88 | 278.22 | 100.00 | 100.00 | 157.20 | 462.10 |
RCHRG_DP | V | 0.70 | 0.70 | 0.00 | 0.52 | 0.10 | 0.10 | 0.00 | 0.46 |
SOL_K | R | −0.20 | −0.20 | −0.30 | 0.29 | −0.20 | −0.20 | −0.30 | 0.30 |
REVAPMN | V | 500.00 | 100.00 | 90.00 | 177.41 | 500.00 | 100.00 | 136.20 | 168.30 |
ALPHA_BF | V | 0.90 | 0.90 | 0.00 | 0.90 | 0.02 | 0.02 | 0.04 | 0.89 |
SURLAG | V | 0.10 | 0.10 | 0.00 | 2.00 | 0.35 | 0.35 | 0.90 | 1.93 |
CN2 | R | −0.33 | −0.33 | −0.35 | 0.06 | 0.14 | 0.14 | −0.10 | 0.09 |
ESCO | V | 0.95 | 0.98 | 0.00 | 0.96 | 0.95 | 0.98 | 0.00 | 1.00 |
EPCO | V | 1.00 | 1.00 | 0.00 | 1.00 | 1.00 | 1.00 | 0.02 | 1.00 |
GW_DELAY | V | 15.00 | 15.00 | 15.00 | 46.17 | 60.00 | 60.00 | 45.50 | 60.00 |
CANMX | R | −0.80 | −0.80 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alemayehu, T.; Gupta, H.V.; van Griensven, A.; Bauwens, W. On the Calibration of Spatially Distributed Hydrologic Models for Poorly Gauged Basins: Exploiting Information from Streamflow Signatures and Remote Sensing-Based Evapotranspiration Data. Water 2022, 14, 1252. https://doi.org/10.3390/w14081252
Alemayehu T, Gupta HV, van Griensven A, Bauwens W. On the Calibration of Spatially Distributed Hydrologic Models for Poorly Gauged Basins: Exploiting Information from Streamflow Signatures and Remote Sensing-Based Evapotranspiration Data. Water. 2022; 14(8):1252. https://doi.org/10.3390/w14081252
Chicago/Turabian StyleAlemayehu, Tadesse, Hoshin V. Gupta, Ann van Griensven, and Willy Bauwens. 2022. "On the Calibration of Spatially Distributed Hydrologic Models for Poorly Gauged Basins: Exploiting Information from Streamflow Signatures and Remote Sensing-Based Evapotranspiration Data" Water 14, no. 8: 1252. https://doi.org/10.3390/w14081252
APA StyleAlemayehu, T., Gupta, H. V., van Griensven, A., & Bauwens, W. (2022). On the Calibration of Spatially Distributed Hydrologic Models for Poorly Gauged Basins: Exploiting Information from Streamflow Signatures and Remote Sensing-Based Evapotranspiration Data. Water, 14(8), 1252. https://doi.org/10.3390/w14081252