Spatial Distribution and Source Identification of Water Quality Parameters of an Industrial Seaport Riverbank Area in Bangladesh
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Methods
2.3. Water Quality Index (WQI)
2.4. Comprehensive Pollution Index (CPI)
2.5. Metal Index (MI)
2.6. Statistical Analysis
3. Results and Discussion
3.1. Water Quality Guidelines
3.2. Water Quality Indices
3.3. Spatial Distribution of Water Quality Indices
3.4. Multivariate Analysis
3.4.1. Pearson’s Correlation Matrix
3.4.2. Principal Component Analyses
3.4.3. Hierarchical Cluster Analysis (HCA)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yeh, G.; Lin, C.; Nguyen, D.H.; Hoang, H.G.; Shern, J.C.; Hsiao, P.J. A five-year investigation of water quality and heavy metal mass flux of an industrially affected river. Environ. Sci. Pollut. Res. 2021, 29, 12465–12472. [Google Scholar] [CrossRef]
- Proshad, R.; Zhang, D.; Idris, A.M.; Islam, M.S.; Kormoker, T.; Sarker, M.N.I.; Khadka, S.; Sayeed, A.; Islam, M. Comprehensive evaluation of chemical properties and toxic metals in the surface water of Louhajang River, Bangladesh. Environ. Sci. Pollut. Res. 2021, 28, 49191–49205. [Google Scholar] [CrossRef] [PubMed]
- Pichtel, J. Oil and Gas Production Wastewater: Soil Contamination and Pollution Prevention. Appl. Environ. Soil Sci. 2016, 2016, 2707989. [Google Scholar] [CrossRef] [Green Version]
- Pavlidou, A.; Anastasopoulou, E.; Dassenakis, M.; Hatzianestis, I.; Paraskevopoulou, V.; Simboura, N.; Rousselak, E.; Drakopoulou, P. Effects of olive oil wastes on river basins and an oligotrophic coastal marine ecosystem: A case study in Greece. Sci. Total Environ. 2014, 497–498, 38–49. [Google Scholar] [CrossRef] [PubMed]
- Smedley, P.L.; Kinniburgh, D.G. A review of the source, behaviour and distribution of arsenic in natural waters. Appl. Geochem. 2002, 17, 517–568. [Google Scholar] [CrossRef] [Green Version]
- Apollaro, C.; Di Curzio, D.; Fuoco, I.; Buccianti, A.; Dinelli, E.; Vespasiano, G.; Castrignano, A.; Rusi, S.; Barca, D.; Figoli, A.; et al. A multivariate non-parametric approach for estimating probability of exceeding the local natural background level of arsenic in the aquifers of Calabria region (Southern Italy). Sci. Total Environ. 2022, 806, 150345. [Google Scholar] [CrossRef]
- Lin, Y.; Gritsenko, D.; Feng, S.; Teh, Y.C.; Lu, X.; Xu, J. Detection of heavy metal by paper-based microfluidics. Biosens. Bioelectron. 2016, 83, 256–266. [Google Scholar] [CrossRef]
- Aradpour, S.; Noori, R.; Naseh, M.R.V.; Hosseinzadeh, M.; Safavi, S.; Rozegar, F.G.; Maghrebi, M. Alarming carcinogenic and non-carcinogenic risk of heavy metals in Sabalan dam reservoir, Northwest of Iran. Environ. Pollut. Bioavailab. 2021, 33, 278–291. [Google Scholar] [CrossRef]
- Sorlini, S.; Palazzini, D.; Sieliechi, J.M.; Ngassoum, M.B. Assessment of Physical-Chemical Drinking Water Quality in the Logone Valley (Chad-Cameroon). Sustainability 2013, 5, 3060–3076. [Google Scholar] [CrossRef] [Green Version]
- Mahmoud, E.K.; Ghoneim, A.M. Effect of polluted water on soil and plant contamination by heavy metals in El-Mahla El-Kobra, Egypt. Solid Earth 2016, 7, 703–711. [Google Scholar] [CrossRef] [Green Version]
- Ramachandra, T.V.; Bhat, S.P.; Mahapatra, D.M.; Krishnadas, G. Impact of indiscriminate disposal of untreated effluents from thermal power plant on water resources. Indian J. Environ. Prot. 2012, 32, 705–718. Available online: http://wgbis.ces.iisc.ernet.in/energy/water/paper/ijep_water_resources/ijep_water_resources.pdf (accessed on 7 October 2021).
- Khan, M.H.; Nafees, M.; Muhammad, N.; Ullah, U.; Hussain, R.; Bilal, M. Assessment of Drinking Water Sources for Water Quality, Human Health Risks, and Pollution Sources: A Case Study of the District Bajaur, Pakistan. Arch. Environ. Contam. Toxicol. 2021, 80, 41–54. [Google Scholar] [CrossRef] [PubMed]
- Zereen, F.; Islam, F.; Habib, M.A.; Begum, D.A.; Zaman, M.S. Inorganic pollutants in the Padma River, Bangladesh. Environ. Geol. 2011, 39, 1059–1062. [Google Scholar] [CrossRef]
- Hossain, F.; Islam, M.A.; Al-Mamun, A.; Naher, K.; Khan, R.; Das, S.; Tamim, U.; Hossain, S.M.; Nahid, F.; Islam, M.A. Assessment of Trace Contaminants in Sediments of the Poshur River Nearby Mongla Port of Bangladesh. Nucl. Sci. Appl. 2016, 25, 7–11. Available online: http://baec.portal.gov.bd/sites/default/files/files/baec.portal.gov.bd/page/1f00cd0e_737d_4e2e_ab9f_08183800b7a2/2=2504-F.pdf (accessed on 15 October 2021).
- Environment Review Report; Mongla Economic Zone, Bangladesh Export Zone Authority: Mongla, Bagerhat, 2014; pp. 1–33. Available online: https://www.beza.gov.bd/wp-content/uploads/2015/10/ERR-of-Mongla-EZ.pdf (accessed on 13 June 2021).
- Chowdhury, R.M.; Muntasir, S.Y.; Hossain, M.M. Water quality index of water bodies along Faridpur-Barisal Road in Bangladesh. Glob. Eng. Technol. Rev. 2012, 2, 1–8. Available online: https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.681.1779&rep=rep1&type=pdf (accessed on 13 June 2021).
- Tabrez, S.; Zughaibi, T.A.; Javed, M. Water quality index, Labeo rohita, and Eichhornia crassipes: Suitable bio-indicators of river water pollution. Saudi. J. Biol. Sci. 2022, 29, 75–82. [Google Scholar] [CrossRef]
- Yan, C.A.; Zhang, W.; Zhang, Z.; Liu, Y.; Deng, C.; Nie, N. Assessment of Water Quality and Identification of Polluted Risky Regions Based on Field Observations & GIS in the Honghe River Watershed, China. PLoS ONE 2015, 10, e0119130. [Google Scholar] [CrossRef]
- Xiong, B.; Li, R.; Johnson, D.; Luo, Y.; Xi, Y.; Ren, D.; Huang, Y. Spatial distribution, risk assessment, and source identification of heavy metals in water from the Xiangxi River, Three Gorges Reservoir Region, China. Environ. Geochem. Health 2021, 43, 915–930. [Google Scholar] [CrossRef]
- Bakan, G.; Ozkoc, H.B.; Tulek, S.; Cuce, H. Integrated environmental quality assessment of Kızılırmak River and its coastal environment. Turk. J. Fish. Aquat. Sci. 2010, 10, 453–462. [Google Scholar] [CrossRef]
- Goher, M.E.; Hassan, A.M.; Abdel-Moniem, I.A.; Fahmy, A.H.; El-sayed, S.M. Evaluation of surface water quality and heavy metal indices of Ismailia Canal, Nile River, Egypt. Egypt. J. Aquat. Res. 2014, 40, 225–233. [Google Scholar] [CrossRef] [Green Version]
- Ali, M.M.; Ali, M.L.; Islam, M.S.; Rahman, M.Z. Assessment of toxic metals in water and sediment of Pasur River in Bangladesh. Water Sci. Technol. 2018, 77, 1418–1430. [Google Scholar] [CrossRef] [PubMed]
- Algul, F.; Beyhan, M. Concentrations and sources of heavy metals in shallow sediments in Lake Bafa, Turkey. Sci. Rep. 2020, 10, 11782. [Google Scholar] [CrossRef] [PubMed]
- Krishna, A.K.; Satyanarayanan, M.; Govil, P.K. Assessment of heavy metal pollution in water using multivariate statistical techniques in an industrial area: A case study from Patancheru, Medak District, Andhra Pradesh, India. J. Hazard. Mater. 2009, 167, 366–373. [Google Scholar] [CrossRef] [PubMed]
- Mongla Municipality in Khulna Division. 2011. Available online: https://www.citypopulation.de/en/bangladesh/khulna/admin/bagerhat/015899 (accessed on 20 June 2021).
- Persits, F.M.; Wandrey, C.J.; Milici, R.C.; Manwar, A. Digital geologic and geophysical data of Bangladesh. U.S. Geol. Surv. Open-File Rep. 2001. [Google Scholar] [CrossRef]
- Ling, T.Y.; Gerunsin, N.; Soo, C.L.; Nyanti, L.; Sim, S.F.; Grinang, J. Seasonal Changes and Spatial Variation in Water Quality of a Large Young Tropical Reservoir and Its Downstream River. J. Chem. 2017, 2017, 8153246. [Google Scholar] [CrossRef] [Green Version]
- APHA. Standard Methods for the Examination of Water and Wastewater, 23rd ed.; American Public Health Association: Washington, DC, USA, 2017; pp. 1–1546. Available online: http://dl.mozh.org/upload/StandardMetods23RD.pdf (accessed on 1 April 2022).
- Bhuyan, M.S.; Bakar, M.A.; Nabi, M.R.U.; Senapathi, V.; Chung, S.Y.; Islam, M.S. Monitoring and assessment of heavy metal contamination in surface water and sediment of the Old Brahmaputra River, Bangladesh. Appl. Water Sci. 2019, 9, 125. [Google Scholar] [CrossRef] [Green Version]
- Ali, M.M.; Ali, M.L.; Islam, M.S.; Rahman, M.Z. Preliminary assessment of heavy metals in water and sediment of Karnaphuli River, Bangladesh. Environ. Nanotechnol. Monit. Manag. 2016, 5, 27–35. [Google Scholar] [CrossRef] [Green Version]
- Molekoa, M.D.; Avtar, R.; Kumar, P.; Thu Minh, H.V.; Dasgupta, R.; Johnson, B.A.; Sahu, N.; Verma, R.L.; Yunus, A.P. Spatio-Temporal Analysis Spatio-Temporal Analysis of Surface Water Quality in Mokopane Area, Limpopo, South Africa. Water 2021, 13, 220. [Google Scholar] [CrossRef]
- Noori, R.; Berndtsson, R.; Hosseinzadeh, M.; Adamowski, J.F.; Abyaneh, M.R. A critical review on the application of the National Sanitation Foundation Water Quality Index. Environ. Pollut. 2019, 244, 575–587. [Google Scholar] [CrossRef]
- Horton, R.K. An index number system for rating water quality. J. Water Pollut. Control Fed. 1965, 373, 303–306. [Google Scholar]
- Brown, R.M.; McClelland, N.I.; Deininger, R.A.; O’Connor, M.F. A Water Quality Index—Crashing the Psychological Barrier. In Indicators of Environmental Quality. Environmental Science Research; Thomas, W.A., Ed.; Springer: Boston, MA, USA, 1972; Volume 1. [Google Scholar] [CrossRef]
- Howladar, M.F.; Hossain, M.N.; Anju, K.A.; Das, D. Ecological and health risk assessment of trace metals in water collected from Haripur gas blowout area of Bangladesh. Sci. Rep. 2021, 11, 15573. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Yang, W.; Yao, R.; Zhao, Y.; Zhao, Y.; Zhao, Y.; Zhang, Y.; Yuan, Q.; Lin, A. Evaluating surface water quality using water quality index in Beiyun River, China. Environ. Sci. Pollut. Res. 2021, 27, 35449–35458. [Google Scholar] [CrossRef] [PubMed]
- Bi, S.; Wang, L.; Li, Y.; Zhang, Z.; Wang, Z.; Ding, X.; Zhou, J. A Comprehensive Method for Water Environment Assessment considering Trends of Water Quality. Adv. Civ. Eng. 2021, 2021, 5548113. [Google Scholar] [CrossRef]
- Kumar, A.; Mishra, S.; Taxak, A.K.; Pandey, R.; Yu, Z.G. Nature rejuvenation: Long term (1989–2016) vs short-term memory approach-based appraisal of water quality of the upper part of Ganga River, India. Environ. Technol. Innov. 2020, 20, 101164. [Google Scholar] [CrossRef]
- Mekuria, D.M.; Kassegne, A.B.; Asfaw, S.L. Assessing pollution profiles along Little Akaki River receiving municipal and industrial wastewaters, Central Ethiopia: Implications for environmental and public health safety. Heliyon 2021, 7, e07526. [Google Scholar] [CrossRef]
- Son, C.T.; Giang, N.T.; Thao, T.P.; Nui, N.H.; Lam, N.T.; Cong, V.H. Assessment of Cau river water quality assessment using a combination of water quality and pollution indices. J. Water Supply Res. Technol. 2020, 69, 160–172. [Google Scholar] [CrossRef]
- Ojekunle, O.Z.; Ojekunle, O.V.; Adeyemi, A.A.; Taiwo, A.G.; Sangowusi, O.R.; Taiwo, A.M.; Adekitan, A.A. Evaluation of surface water quality indices and ecological risk assessment for heavy metals in scrap yard neighborhood. Springerplus 2016, 5, 560. [Google Scholar] [CrossRef] [Green Version]
- Piroozfar, P.; Alipour, S.; Modabberi, S.; Cohen, D. Using multivariate statistical analysis in assessment of surface water quality and identification of heavy metal pollution sources in Sarough watershed, NW of Iran. Environ. Monit. Assess. 2021, 193, 564. [Google Scholar] [CrossRef]
- Withanachchi, S.S.; Ghambashidze, G.; Kunchulia, I.; Urushadze, T.; Ploeger, A. Water Quality in Surface Water: A Preliminary Assessment of Heavy Metal Contamination of the Mashavera River, Georgia. Int. J. Environ. Res. Public Health 2018, 15, 621. [Google Scholar] [CrossRef] [Green Version]
- WHO. Guidelines for Drinking-Water Quality. 1984. Available online: https://apps.who.int/iris/bitstream/handle/10665/252072/9241541687eng.pdf?sequence=1&isAllowed=y (accessed on 30 December 2021).
- WHO. Guidelines for Drinking-Water Quality, 4th ed. 2011. Available online: http://apps.who.int/iris/bitstream/handle/10665/44584/9789241548151_eng.pdf (accessed on 2 January 2022).
- Department of Environment, Peoples’ Republic of Bangladesh. Environmental Conservation Rules. 1997. Available online: https://www.elaw.org/system/files/Bangladesh+--+Environmental+Conservation+Rules,+1997.pdf (accessed on 30 December 2021).
- Fatema, K.; Begum, M.; Zahid, M.A.; Hossain, M.E. Water quality assessment of the river Buriganga, Bangladesh. J. Biodivers. Conserv. Bioresour. Manag. 2018, 4, 47–53. [Google Scholar] [CrossRef] [Green Version]
- U.S. Department of Health and Human Services, Public Health Service, Agency for Toxic Substances and Disease Registry. Toxicological Profile for Manganese. 2012. Available online: https://www.atsdr.cdc.gov/toxprofiles/tp151.pdf (accessed on 18 July 2021).
- Islam, M.S.; Nakagawa, K.; Mamun, M.A.A.; Siddique, M.A.B.; Berndtsson, R. Is road-side fishpond water in Bangladesh safe for human use? An assessment using water quality indices. Environ. Chall. 2022, 6, 100434. [Google Scholar] [CrossRef]
- Aradpour, S.; Noori, R.; Tang, Q.; Bhattarai, R.; Hooshyaripor, F.; Hosseinzadeh, M.; Haghighi, A.T.; Klove, B. Metal contamination assessment in water column and surface sediments of a warm monomictic man-made lake: Sabalan Dam Reservoir, Iran. Hydrol. Res. 2020, 51, 799–814. [Google Scholar] [CrossRef]
- Peluso, J.; Coll, C.S.P.; Cristos, D.; Rojas, D.E.; Aronzon, C.M. Comprehensive assessment of water quality through different approaches: Physicochemical and ecotoxicological parameters. Sci. Total. Environ. 2021, 800, 149510. [Google Scholar] [CrossRef] [PubMed]
- Nakagawa, K.; Amano, H.; Berndtsson, R.; Takao, Y.; Hosono, T. Use of sterols to monitor surface water quality change and nitrate pollution source. Ecol. Indic. 2019, 107, 105534. [Google Scholar] [CrossRef]
- El Sorogy, A.S.; Youssef, M. Pollution assessment of the Red Sea Gulf of Aqaba seawater, northwest Saudi Arabia. Environ. Monit. Assess. 2021, 193, 141. [Google Scholar] [CrossRef]
- Jahan, S.; Strezov, V. Water quality assessment of Australian ports using water quality evaluation indices. PLoS ONE 2017, 12, e0189284. [Google Scholar] [CrossRef] [Green Version]
- Huang, Z.; Zheng, S.; Liu, Y.; Zhao, X.; Qiao, X.; Liu, C.; Zheng, B.; Yin, D. Distribution, toxicity load, and risk assessment of dissolved metal in surface and overlying water at the Xiangjiang River in southern China. Sci. Rep. 2021, 11, 109. [Google Scholar] [CrossRef]
- Nakagawa, K.; Amano, H.; Asakura, H.; Berndtsson, R. Spatial trends of nitrate pollution and groundwater chemistry in Shimabara, Nagasaki, Japan. Environ. Earth Sci. 2016, 75, 234. [Google Scholar] [CrossRef] [Green Version]
- Hossain, M.B.; Shanta, T.B.; Ahmed, A.S.S.; Hossain, M.K.; Semme, S.A. Baseline study of heavy metal contamination in the Sangu River estuary, Chattogram, Bangladesh. Mar. Pollut. Bull. 2019, 140, 255–261. [Google Scholar] [CrossRef]
- Khan, M.H.R.; Liu, J.; Liu, S.; Li, J.; Cao, L.; Rahman, A. Anthropogenic effect on heavy metal contents in surface sediments of the Bengal Basin river system, Bangladesh. Environ. Sci. Pollut. Res. 2020, 27, 19688–19702. [Google Scholar] [CrossRef]
- Sharma, G.; Lata, R.; Thakur, N.; Bajala, V.; Kuniyal, J.C.; Kumar, K. Application of multivariate statistical analysis and water quality index for quality characterization of Parbati River, Northwestern Himalaya, India. Discov. Water 2021, 1, 5. [Google Scholar] [CrossRef]
- Amano, H.; Nakagawa, K.; Berndtsson, R. Surface water chemistry and nitrate pollution in Shimabara, Nagasaki, Japan. Environ. Earth Sci. 2018, 77, 354. [Google Scholar] [CrossRef] [Green Version]
- Yu, Z.Q.; Amano, H.; Nakagawa, K.; Berndtsson, R. Hydrogeochemical evolution of groundwater in a Quaternary sediment and Cretaceous sandstone unconfined aquifer in Northwestern China. Environ. Earth Sci. 2018, 77, 629. [Google Scholar] [CrossRef]
Sample ID | Temperature (°C) | pH | TH (mg/L) | TDS (mg/L) | TSS (mg/L) | Chloride (mg/L) | Alkalinity (mg/L) | Fe (mg/L) | Mn (mg/L) |
---|---|---|---|---|---|---|---|---|---|
PS-1 | 27.00 | 8.57 | 75.23 | 144.44 | 643.96 | 215.07 | 100.61 | 1.48 | 0.40 |
PS-2 | 27.33 | 8.57 | 153.80 | 278.12 | 791.58 | 213.13 | 92.85 | 2.25 | 0.68 |
PS-3 | 27.33 | 8.60 | 71.91 | 136.68 | 1482.71 | 250.94 | 88.33 | 1.84 | 0.51 |
PS-4 | 27.67 | 8.67 | 64.72 | 127.74 | 426.64 | 224.59 | 91.67 | 1.13 | 0.46 |
PS-5 | 28.00 | 8.80 | 72.97 | 147.77 | 728.27 | 206.48 | 94.67 | 2.10 | 0.70 |
PS-6 | 27.00 | 8.53 | 85.12 | 142.28 | 567.09 | 221.13 | 92.67 | 1.41 | 0.38 |
PS-7 | 27.57 | 8.53 | 78.97 | 146.52 | 988.60 | 241.09 | 94.00 | 2.06 | 0.79 |
PS-8 | 28.67 | 8.73 | 163.67 | 354.58 | 852.60 | 108.15 | 106.00 | 1.97 | 0.71 |
PS-9 | 18.33 | 8.93 | 34.80 | 135.18 | 582.34 | 148.61 | 91.00 | 1.15 | 0.34 |
PS-10 | 28.33 | 8.70 | 56.70 | 134.78 | 1004.90 | 170.47 | 91.33 | 2.23 | 0.19 |
PS-11 | 29.67 | 8.97 | 173.47 | 326.18 | 926.84 | 708.93 | 67.67 | 2.75 | 1.41 |
PS-12 | 30.57 | 8.87 | 67.28 | 163.81 | 657.54 | 271.51 | 92.00 | 2.32 | 0.86 |
PS-13 | 30.33 | 8.97 | 207.51 | 455.24 | 763.97 | 212.30 | 93.33 | 2.49 | 1.01 |
PS-14 | 31.00 | 8.87 | 79.74 | 153.15 | 363.21 | 233.06 | 87.33 | 1.14 | 0.44 |
PS-15 | 30.50 | 8.93 | 276.55 | 524.60 | 666.32 | 214.06 | 98.67 | 1.86 | 0.68 |
PS-16 | 31.17 | 8.93 | 57.69 | 151.67 | 807.87 | 261.32 | 88.67 | 2.32 | 0.97 |
PS-17 | 30.33 | 8.70 | 77.52 | 142.53 | 582.32 | 205.03 | 98.00 | 2.19 | 0.79 |
PS-18 | 31.00 | 8.43 | 76.89 | 144.64 | 674.90 | 191.70 | 93.00 | 2.22 | 0.78 |
PS-19 | 30.33 | 8.47 | 65.16 | 133.58 | 572.16 | 211.11 | 97.67 | 1.62 | 0.55 |
PS-20 | 31.00 | 8.80 | 472.64 | 893.27 | 652.45 | 368.87 | 165.33 | 1.72 | 0.61 |
Maximum | 31.17 | 8.97 | 472.64 | 893.27 | 1482.71 | 708.93 | 165.33 | 2.75 | 1.41 |
Minimum | 18.33 | 8.43 | 34.80 | 127.74 | 363.21 | 108.15 | 67.67 | 1.13 | 0.19 |
Average | 28.66 | 8.73 | 120.62 | 241.84 | 736.81 | 243.88 | 96.24 | 1.91 | 0.66 |
STD. Dev. | ±2.88 | ±0.18 | ±102.89 | ±193.09 | ±242.82 | ±120.8 | ±17.85 | ±0.47 | ±0.28 |
WHO STD. a,b | 6.5–8.5 | 500 | 1000 | - | 250 | - | 0.3 | 0.1 | |
DoE STD.c | 20–30 | 6.5–8.5 | 200–500 | 1000 | 10 | 150–600 | - | 0.3–1.0 | 0.1 |
Sample ID | WQI | CPI | MI | Pollution Level |
---|---|---|---|---|
PS-1 | 466.4 | 10.80 | 8.93 | High |
PS-2 | 746.6 | 13.72 | 14.30 | High |
PS-3 | 638.8 | 23.13 | 11.23 | High |
PS-4 | 466.1 | 7.62 | 8.37 | High |
PS-5 | 744.8 | 12.73 | 14.00 | High |
PS-6 | 440.2 | 9.65 | 8.50 | High |
PS-7 | 826.5 | 16.58 | 14.77 | High |
PS-8 | 750.6 | 14.46 | 13.67 | High |
PS-9 | 391.3 | 9.64 | 7.23 | High |
PS-10 | 399.9 | 15.99 | 9.33 | High |
PS-11 | 1336.1 | 17.24 | 23.27 | High |
PS-12 | 875.6 | 12.09 | 16.33 | High |
PS-13 | 1008.1 | 13.96 | 18.40 | High |
PS-14 | 447.9 | 6.71 | 8.20 | High |
PS-15 | 706.1 | 11.82 | 13.00 | High |
PS-16 | 967.9 | 14.39 | 17.43 | High |
PS-17 | 807.5 | 10.82 | 15.20 | High |
PS-18 | 808.9 | 12.13 | 15.20 | High |
PS-19 | 582.9 | 10.05 | 10.90 | High |
PS-20 | 641.9 | 11.65 | 11.83 | High |
Average | 702.7 | 12.76 | 13.0 | High |
Parameter | Temp. | pH | TH | TDS | TSS | Chloride | Alkalinity | Fe | Mn |
---|---|---|---|---|---|---|---|---|---|
Temp. | 1 | ||||||||
pH | 0.344 | 1 | |||||||
TH | 0.104 | 0.292 | 1 | ||||||
TDS | 0.137 | 0.365 | 0.992 ** | 1 | |||||
TSS | −0.259 | −0.097 | −0.022 | −0.021 | 1 | ||||
Chloride | 0.068 | 0.328 | 0.32 | 0.287 | 0.165 | 1 | |||
Alkalinity | 0.015 | −0.062 | 0.739 ** | 0.735 ** | −0.159 | −0.123 | 1 | ||
Fe | 0.127 | 0.2 | 0.133 | 0.146 | 0.483 * | 0.391 | −0.205 | 1 | |
Mn | 0.239 | 0.391 | 0.226 | 0.236 | 0.17 | 0.641 ** | −0.227 | 0.757 ** | 1 |
PC 1 | PC 2 | PC 3 | |
---|---|---|---|
Temperature | 0.57 | 0.10 | 0.24 |
pH | 0.48 | 0.10 | −0.70 |
TH | 0.81 | −0.54 | 0.06 |
TDS | 0.81 | −0.54 | 0.02 |
TSS | 0.14 | 0.43 | 0.63 |
Chloride | 0.63 | 0.38 | −0.22 |
Alkalinity | 0.38 | −0.83 | 0.25 |
Fe | 0.59 | 0.63 | 0.30 |
Mn | 0.70 | 0.59 | −0.12 |
Eigen values | 3.29 | 2.40 | 1.16 |
% of variance | 36.59 | 26.65 | 12.84 |
Cumulative % | 36.59 | 63.23 | 76.07 |
Cluster A | Cluster B | Cluster C | Cluster D | |
---|---|---|---|---|
No. of samples | 5 | 13 | 1 | 1 |
Temperature (°C) | 26.2 | 29.34 | 29.67 | 31.0 |
pH | 8.71 | 8.71 | 8.97 | 8.8 |
TH (mg/L) | 67.92 | 109.74 | 173.47 | 472.64 |
TDS (mg/L) | 140.56 | 224.19 | 326.18 | 892.27 |
TSS (mg/L) | 516.65 | 813.36 | 926.84 | 652.45 |
Chloride (mg/L) | 208.49 | 212.10 | 708.93 | 368.87 |
Alkalinity (mg/L) | 92.66 | 94.5 | 67.67 | 165.33 |
Fe (mg/L) | 1.26 | 2.11 | 2.75 | 1.72 |
Mn (mg/L) | 0.40 | 0.71 | 1.41 | 0.61 |
WQI | 442.4 | 758.8 | 1336.1 | 641.9 |
CPI | 8.88 | 14.0 | 17.2 | 11.7 |
MI | 8.25 | 14.14 | 23.3 | 11.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Islam, M.S.; Nakagawa, K.; Abdullah-Al-Mamun, M.; Khan, A.S.; Goni, M.A.; Berndtsson, R. Spatial Distribution and Source Identification of Water Quality Parameters of an Industrial Seaport Riverbank Area in Bangladesh. Water 2022, 14, 1356. https://doi.org/10.3390/w14091356
Islam MS, Nakagawa K, Abdullah-Al-Mamun M, Khan AS, Goni MA, Berndtsson R. Spatial Distribution and Source Identification of Water Quality Parameters of an Industrial Seaport Riverbank Area in Bangladesh. Water. 2022; 14(9):1356. https://doi.org/10.3390/w14091356
Chicago/Turabian StyleIslam, M. Shahidul, Kei Nakagawa, M. Abdullah-Al-Mamun, Abu Shamim Khan, Md. Abdul Goni, and Ronny Berndtsson. 2022. "Spatial Distribution and Source Identification of Water Quality Parameters of an Industrial Seaport Riverbank Area in Bangladesh" Water 14, no. 9: 1356. https://doi.org/10.3390/w14091356
APA StyleIslam, M. S., Nakagawa, K., Abdullah-Al-Mamun, M., Khan, A. S., Goni, M. A., & Berndtsson, R. (2022). Spatial Distribution and Source Identification of Water Quality Parameters of an Industrial Seaport Riverbank Area in Bangladesh. Water, 14(9), 1356. https://doi.org/10.3390/w14091356