Effects of Diazinon on the Survival, Blood Parameters, Gills, and Liver of Grass Carp (Ctenopharyngodon idella Valenciennes, 1844; Teleostei: Cyprinidae)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethical Standard
2.2. Testing Chemical
2.3. Experimental Animals
2.4. Acute Toxicity Test (LC50)
Histopathological Observation
2.5. Chronic Toxicity Test
Haematological Parameters
2.6. Data Analysis
3. Results
3.1. Acute Toxicity Test (LC50)
Histopathological Observation
3.2. Chronic Toxicity Test
Haematological Parameters
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kavitha, C.; Malarvizhi, A.; Senthil Kumaran, S.; Ramesh, M. Toxicological effects of arsenate exposure on hematological, biochemical and liver transaminases activity in an Indian major carp, Catla catla. Food Chem. Toxicol. 2010, 48, 2848–2854. [Google Scholar] [CrossRef]
- Vajargah, M.F.; Hedayati, A.; Yalsuyi, A.M.; Abarghoei, S.; Gerami, M.H.; Farsani, H.G. Acute toxicity of Butachlor to Caspian Kutum (Rutilus frisii Kutum Kamensky, 1991). J. Environ. Treat. Tech. 2014, 2, 155–157. [Google Scholar]
- Vajargah, M.F.; Yalsuyi, A.M.; Hedayati, A. Effects of dietary Kemin multi-enzyme on survival rate of common carp (Cyprinus carpio) exposed to abamectin. Iran. J. Fish. 2018, 17, 564–572. [Google Scholar]
- Vajargah, M.F.; Yalsuyi, A.M.; Sattari, M.; Hedayati, A. Acute toxicity effect of glyphosate on survival rate of common carp, Cyprinus carpio. Environ. Health Eng. Manag. J. 2018, 5, 61–66. [Google Scholar] [CrossRef]
- Stara, A.; Pagano, M.; Albano, M.; Savoca, S.; Di Bella, G.; Albergamo, A.; Zuskova, E.; Sandova, M.; Velisek, J.; Fabrello, J.; et al. Effects of long-term exposure of Mytilus galloprovincialis to thiacloprid: A multibiomarker approach. Environ. Pollut. 2021, 289, 117892. [Google Scholar] [CrossRef]
- Shaluei, F.; Hedayati, A.; Jahanbakhshi, A.; Kolangi, H.; Fotovat, M. Effect of subacute exposure to silver nanoparticle on some hematological and plasma biochemical indices in silver carp (Hypophthalmichthys molitrix). Hum. Exp. Toxicol. 2013, 32, 1270–1277. [Google Scholar] [CrossRef]
- Sanchez-Fortun, S.; Barahona, M.V. Comparative study on the environmental risk induced by several pyrethroids in estuarine and freshwater invertebrate organisms. Chemosphere 2005, 59, 553–559. [Google Scholar] [CrossRef]
- Hedayati, A.; Tarkhani, R. Hematological and gill histopathological changes in iridescent shark, Pangasius hypophthalmus (Sauvage, 1878) exposed to sublethal diazinon and deltamethrin concentrations. Fish Physiol. Biochem. 2014, 40, 715–720. [Google Scholar] [CrossRef]
- Vajargah, M.F.; Hedayati, A. Acute toxicity of trichlorofon on four viviparous fish: Poecilia latipinna, Poecilia reticulata, Gambusia holbrooki and Xiphophorus helleri (Cyprinodontiformes: Poeciliidae). J. Coast. Life Med. 2014, 2, 511–514. [Google Scholar]
- Bibak, M.; Tahmasebi, S.; Sattari, M.; Kafaei, R.; Ramavandi, B. Empirical cumulative entropy as a new trace elements indicator to determine the relationship between algae-sediment pollution in the Persian Gulf, southern Iran. Environ. Sci. Pollut. Res. 2021, 28, 2634–2644. [Google Scholar] [CrossRef]
- Pirbeigi, A.; Poorbagher, H.; Eagderi, S.; Mirvaghefi, A.R. Pathological effects of sublethal diazinon on the blood, gill, liver and kidney of the freshwater fish Capoeta damascina. J. Chem. Ecol. 2016, 32, 270–285. [Google Scholar] [CrossRef]
- Stara, A.; Bellinvia, R.; Velisek, J.; Strouhova, A.; Kouba, A.; Faggio, C. Acute exposure of common yabby (Cherax destructor) to neonicotinoid pesticide. Sci. Total Environ. 2019, 665, 718–723. [Google Scholar] [CrossRef]
- Stara, A.; Kubec, J.; Zuskova, E.; Buric, M.; Faggio, C.; Kouba, A.; Velisek, J. Effects of S-metolachlor and its degradation product metolachlor OA on marbled crayfish (Procambarus virginalis). Chemospere 2019, 224, 616–625. [Google Scholar] [CrossRef]
- Vajargah, M.F.; Sattari, M.; Namin, J.I.; Bibak, M. Predicting the Trace Element Levels in Caspian Kutum (Rutilus kutum) from south of the Caspian Sea Based on Locality, Season and Fish Tissue. Biol. Trace Elem. Res. 2021, 2021, 354–363. [Google Scholar]
- Lavanya, S.; Ramesh, M.; Kavitha, C.; Malarvizhi, A. Hematological, biochemical and ionoregulatory responses of Indian major carp Catla catla during chronic sublethal exposure to inorganic arsenic. Chemosphere 2011, 82, 977–985. [Google Scholar] [CrossRef]
- Chorehi, M.M.; Ghaffari, H.; Hossaini, S.A.; Niazie, E.H.N.; Vajargah, M.F.; Hedayati, A. Acute toxicity of Diazinon to the Caspian vimba, Vimba vimba persa (Cypriniformes: Cyprinidae). Int. J. Aquat. Biol. 2013, 1, 254–257. [Google Scholar]
- Vajargah, M.F.; Hossaini, S.A.; Niazie, E.H.N.; Hedayati, A.; Vesaghi, M.J. Acute toxicity of two pesticides Diazinon and Deltamethrin on Tench (Tinca tinca) larvae and fingerling. Int. J. Aquat. Biol. 2013, 1, 138–142. [Google Scholar]
- FAO; WHO. General Standard for Contaminants and Toxins in Food and Feed (Codex Stan 193-1995). Available online: https://www.fao.org/fao-who-codexalimentarius/sh-proxy/en/?lnk=1&url=https%253A%252F%252Fworkspace.fao.org%252Fsites%252Fcodex%252FStandards%252FCXS%2B193-1995%252FCXS_193e.pdf (accessed on 12 March 2022).
- Larkin, D.J.; Tjeerdema, R.S. Fate and effects of Diazinon. Rev. Environ. Contam. Toxicol. 2000, 166, 49–82. [Google Scholar]
- Banaee, M.; Sureda, A.; Mirvaghefi, A.R.; Ahmadi, K. Biochemical and histological changes in the liver tissue of rainbow trout (Oncorhynchus mykiss) exposed to sublethal concentrations of Diazinon. Fish Physiol. Biochem. 2013, 39, 489–501. [Google Scholar] [CrossRef]
- Dutta, H.M.; Munshi, J.S.D.; Roy, P.K.; Singh, N.K.; Motz, L.; Adhikari, S. Effects of diazinon on blue gill sunfish, Lepomis macrochirus, gills: Scanning electron microscope observations. Exp. Biol. Online 1997, 2, 1–11. [Google Scholar] [CrossRef]
- Saha, S.; Chukwuka, A.V.; Mukherjee, D.; Patnaik, L.; Nayak, S.; Dhara, K.; Saha, N.C.; Faggio, C. Chronic effects of Diazinon® exposures using integrated biomarker responses in freshwater walking catfish, Clarias batrachus. Appl. Sci. 2021, 11, 10902. [Google Scholar] [CrossRef]
- Li, Z.H.; Zlabek, V.; Velíšek, J.; Grabic, R.; Machova, J.; Kolařová, J.; Li, P.; Randák, T. Antioxidant responses and plasma biochemical characteristics in the freshwater rainbow trout, Oncorhynchus mykiss, after acute exposure to the fungicide propiconazole. Czech J. Anim. Sci. 2011, 56, 61–69. [Google Scholar] [CrossRef]
- Dar, O.I.; Aslam, R.; Pan, D.; Sharma, S.; Andotra, M.; Kaur, A.; Jia, A.; Faggio, C. Source, bioaccumulation, degradability and toxicity of triclosan in aquatic environments: A review. Environ. Technol. Innov. 2021, 25, 102122. [Google Scholar] [CrossRef]
- Debski, B.; Kania, B.F.; Kuryl, T. Transformations of diazinon, an organophosphate compound in the environment and poisoning by this compound. Ecology-Bratislava 2007, 26, 68. [Google Scholar]
- Ullah, S.; Zorriehzahra, M.J. Ecotoxicology: A review of pesticides induced toxicity in fish. Adv. Anim. Vet. Sci. 2015, 3, 40–57. [Google Scholar] [CrossRef]
- Dahmardeh Behrooz, R.; Esmaili-sari, A.; Urbaniak, M.; Chakraborty, P. Assessing Diazinon Pollution in the Three Major Rivers Flowing into the Caspian Sea (Iran). Water 2021, 13, 335. [Google Scholar] [CrossRef]
- Pagano, M.; Stara, A.; Aliko, V.; Faggio, C. Impact of Neonicotinoids to Aquatic Invertebrates—In Vitro Studies on Mytilus galloprovincialis: A Review. J. Mar. Sci. Eng. 2020, 8, 801. [Google Scholar] [CrossRef]
- Stara, A.; Pagano, M.; Capillo, G.; Fabrello, J.; Sandova, M.; Albano, M.; Zuskova, E.; Velisek, J.; Matozzo, V.; Faggio, C. Acute effects of neonicotinoid insecticides on Mytilus galloprovincialis: A case study with the active compound thiacloprid and the commercial formulation Calypso 480 S. Ecotoxicol. Environ. Saf. 2020, 203, 110980. [Google Scholar] [CrossRef]
- Stara, A.; Pagano, M.; Capillo, G.; Fabrello, J.; Sandova, M.; Vazzana, I.; Zuskova, E.; Velisek, J.; Matozzo, V.; Faggio, C. Assessing the effects of neonicotinoid insecticide on the bivalve mollusc Mytilus galloprovincialis. Sci. Total Environ. 2020, 700, 134914. [Google Scholar] [CrossRef]
- Sula, E.; Aliko, V.; Barceló, D.; Faggio, C. Combined effects of moderate hypoxia, pesticide and PCBs upon crucian carp fish, Carassius carrasius, from a freshwater lake-in situ ecophysiological approach. Aquat. Toxicol. 2020, 228, 105644. [Google Scholar] [CrossRef]
- Khara, H.; Salar Amoli, J.; Mazloumi, H.; Nezami, S.H.A.; Zolfinezhad, K.; Khodaparast, S.H.; Hasan, J.; Akbarzadeh, A.; Mohammadi, S.; Gholipour, S.; et al. Survey and seasonal measurement of pesticide (hinosan, machete and diazinon) in water of Oshmak River (east of Guilan). J. Biol. Sci. 2008, 2, 29–43. [Google Scholar]
- Yalsuyi, A.M.; Vajargah, M.F. Recent advance on aspect of fisheries: A review. J. Coast. Life Med. 2017, 5, 141–148. [Google Scholar] [CrossRef]
- Montajami, S.; Hajiahmadyan, M.; Forouhar Vajargah, M.; Hosseini Zarandeh, A.S.; Shirood Mirzaie, F.; Hosseini, S.A. Effect of symbiotic (Biomin imbo) on growth performance and survival rate of Texas cichlid (Herichthys cyanoguttatus) larvae. Glob. Vet. 2012, 9, 358–361. [Google Scholar]
- Lackner, R. Oxidative stress in fish by environmental pollutants. In Fish Ecotoxicology; Birkhäuser: Basel, Switzerland, 1998; pp. 203–224. [Google Scholar]
- Paduraru, E.; Flocea, E.I.; Lazado, C.; Simionov, I.A.; Nicoara, M.; Ciobica, A.; Faggio, C.; Jijie, R. Vitamin C mitigates oxidative stress and behavioral impairments induced by deltamethrin and lead toxicity in zebrafish. Int. J. Mol. Sci. 2021, 22, 12714. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Dar, O.I.; Andotra, M.; Sharma, S.; Kaur, A.; Faggio, C. Environmentally relevant concentrations of Triclosan induce cyto-genotoxicity and biochemical alterations in the hatchlings of Labeo rohita. Appl. Sci. 2021, 11, 10478. [Google Scholar] [CrossRef]
- Blahova, J.; Cocilovo, C.; Lucie Plhalova, L.; Svobodova, Z.; Faggio, C. Embryotoxicity of atrazine and its degradation products to early life stages of zebrafish (Danio rerio). Environ. Toxicol. Pharmacol. 2020, 77, 103370. [Google Scholar] [CrossRef]
- Mohamadi Yalsuyi, A.; Forouhar Vajargah, M.; Hajimoradloo, A.; Mohammadi Galangash, M.; Prokić, M.D.; Faggio, C. Can Betadine (10% povidone-iodine solution) act on the survival rate and gill tissue structure of Oranda goldfish (Carassius auratus)? Vet. Res. Commun. 2021, 2021, 1–8. [Google Scholar] [CrossRef]
- Forouhar Vajargah, M.; Imanpour, M.R.; Shabani, A.; Hedayati, A.; Faggio, C. Effect of long-term exposure of silver nanoparticles on growth indices, hematological and biochemical parameters and gonad histology of male goldfish (Carassius auratus gibelio). Microsc. Res. Tech. 2019, 82, 1224–1230. [Google Scholar] [CrossRef]
- Faria, M.; Prats, E.; Ramírez, J.R.R.; Bellot, M.; Pagano, M.; Valls, A.; Gomez-canela, C.; Porta, J.M.; Mestres, J.; Garcia-reyero, N.; et al. Androgenic activation, impairment of the monoaminergic system and altered behavior in zebrafish larvae exposed to environmental concentrations of fenitrothion. Sci. Total Environ. 2021, 775, 145671. [Google Scholar] [CrossRef]
- Strungaru, S.A.; Pohontiu, C.M.; Nicoara, M.; Teodosiu, C.; Baltag, E.S.; Jijie, R.; Plavan, G.; Pacioglug, O.; Faggio, C. Response of aquatic macroinvertebrates communities to multiple anthropogenic stressors in a lowland tributary river. Environ. Toxicol. Pharmacol. 2021, 16, 103687. [Google Scholar] [CrossRef]
- Jijie, R.; Mihalache, G.; Balmus, I.M.; Strungaru, S.A.; Baltag, E.S.; Ciobica, A.; Nicoara, M.; Faggio, C. Zebrafish as a screening model to study the single and joint effects of antibiotics. Pharmaceuticals 2021, 14, 578. [Google Scholar] [CrossRef] [PubMed]
- Sharma, R.; Jindal, R.; Faggio, C. Impact of cypermethrin in nephrocytes of freshwater fish Catla catla. Environ. Toxicol. Pharmacol. 2021, 88, 103739. [Google Scholar] [CrossRef] [PubMed]
- Bussons, I.N.B.; Da Silva Souza, E.; Aride, P.H.R.; Paxiúba Duncan, W.L.; Pantoja-lima, J.; Furuyam, W.; Oliveira, A.T.; Bussons, M.R.F.M.; Faggio, C. Growth performance and hematological responses of Colossoma macropomum (Cuvier, 1818) fed graded levels of glycerol. Comp. Biochem. Physiol. Part C 2021, 249, 109122. [Google Scholar] [CrossRef] [PubMed]
- Stoliar, O.B.; Lushchak, V. Environmental Pollution and Oxidative Stress in Fish. In Oxidative Stress—Environmental Induction and Dietary Antioxidants; Lushchak, V.I., Ed.; IntechOpen: London, UK, 2012; pp. 131–166. [Google Scholar] [CrossRef] [Green Version]
- Hedayati, A.; Vajargah, M.F.; Yalsuyi, A.M.; Abarghoei, S.; Hajiahmadyan, M. Acute toxicity test of pesticide abamectin on common carp (Cyprinus carpio). J. Coast. Life Med. 2014, 2, 841–844. [Google Scholar]
- Sattari, M.; Namin, J.I.; Bibak, M.; Vajargah, M.F.; Hedayati, A.; Khosravi, A.; Mazareiy, M.H. Morphological comparison of western and eastern populations of Caspian kutum, Rutilus kutum (Kamensky, 1901) (Cyprinidae) in the southern Caspian Sea. Int. J. Aqua. Biol. 2019, 2, 242–247. [Google Scholar]
- OECD. Test No. 203: Fish, Acute Toxicity Test. In OECD Guidelines for the Testing of Chemicals; Organization for Economic Cooperation and Development: Paris, France, 1992. [Google Scholar]
- Natt, M.P.; Herrick, C.A. A new blood diluent for counting the erythrocytes and leucocytes of the chicken. Poult. Sci. 1952, 31, 735–738. [Google Scholar] [CrossRef]
- Houston, A.H. Blood and Circulation. In Methods in Fish Biology; Schreck, C.B., Moyle, P.B., Eds.; American Fisheries Society: Bethesda, MD, USA, 1990; 335p. [Google Scholar]
- U.S. EPA. Technical Overview of Ecological Risk Assessment—Analysis Phase: Ecological Effects Characterization: Ecotoxicity Categories for Terrestrial and Aquatic Organisms; United States Environmental Protection Agency: Washington, DC, USA, 2017. Available online: https://www.epa.gov/pesticide-science-and-assessing-pesticide-risks/technical-overview-ecological-risk-assessment-0 (accessed on 12 March 2022).
- Gallagher, E.P.; Digiulio, R.T. A comparison of glutathione-dependent enzymes in liver, gills and posterior kidney of channel catfish (Ictalurus punctatus). Comp. Biochem. Physiol. 1992, 102, 543–547. [Google Scholar] [CrossRef]
- Petrovici, A.; Strungaru, S.A.; Nicoara, M.; Robea, M.A.; Solcan, C.; Faggio, C. Toxicity of Deltamethrin to Zebrafish gonads revealed by cellular biomarkers. Mar. Sci. Eng. 2020, 8, 73. [Google Scholar] [CrossRef] [Green Version]
- Plhalova, L.; Blahova, J.; Divisova, L.; Enevova, V.; Casuscelli Di Tocco, F.; Faggio, C.; Tichy, F.; Vecerek, V.; Svobodova, Z. The effects of subchronic exposure to NeemAzal T/S on Zebrafish (Danio rerio). J. Chem. Ecol. 2018, 34, 199–210. [Google Scholar] [CrossRef]
- Blahova, J.; Doubkova, V.; Plhalova, L.; Lakdawala, P.; Medkova, D.; Vecerek, V.; Svobodova, Z.; Faggio, C. Embryotoxicity of selective serotonin reuptake inhibitors—Comparative sensitivity of zebrafish (Danio rerio) and African clawed frog (Xenopus laevis) embryos. Appl. Sci. 2021, 11, 10015. [Google Scholar] [CrossRef]
- Vijayaraghavan, K.; Balasubramanian, R. Is biosorption suitable for decontamination of metal-bearing wastewaters? A critical review on the state-of-the-art of biosorption processes and future directions. J. Environ. Manag. 2015, 160, 283–296. [Google Scholar] [CrossRef] [PubMed]
- Vajargah, M.F.; Hedayati, A. Toxicity effects of cadmium in grass carp (Ctenopharyngodon idella) and big head carp (Hypophthalmichthys nobilis). Transylv. Rev. Syst. Ecol. Res. 2017, 19, 43–48. [Google Scholar]
- Bartoskova, M.; Dobsikova, R.; Stancova, V.; Zivna, D.; Blahova, J.; Marsalek, P.; Zelníckova, L.; Bartos, M.; Di Tocco, F.C.; Faggio, C. Evaluation of ibuprofen toxicity for Zebrafish (Danio rerio) targeting on selected biomarkers of oxidative stress. Neuro Endocrinol. Lett. 2013, 34, 102–108. [Google Scholar] [PubMed]
- Al-Otaibi, A.M.; Al-Balawi, H.F.A.; Ahmad, Z.; Suliman, E.M. Toxicity bioassay and sub-lethal effects of diazinon on blood profile and histology of liver, gills and kidney of catfish, Clarias gariepinus. Braz. J. Biol. 2019, 79, 326–336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Menezes, C.C.; Loro, V.L.; da Fonseca, M.B.; Cattaneo, R.; Pretto, A.; Miron, D.S.; Santi, A. Oxidative parameters of Rhamdia quelen in response to commercial herbicide containing clomazone and recovery pattern. Pestic. Biochem. Physiol. 2011, 100, 145–150. [Google Scholar] [CrossRef]
- Vajargah, M.F.; Hashemi, G.; Bibak, M.; Yalsuyi, A.M. The Effect of Vitamin C-Fortified Artemia on Growth and Survival of Sepia pharaonis Larvae. J. Environ. Treat. Tech. 2021, 9, 815–818. [Google Scholar]
- Fukuto, T.R. Mechanism of action of organophosphorus and carbamate insecticides. Environ. Health Perspect. 1990, 87, 245–254. [Google Scholar] [CrossRef]
- Sattari, M.; Bibak, M.; Vajargah, M.F. Trace and Macro Element Contaminations in Tissues of Vimba persa and Alosa braschnikowi From the South Caspian Sea and Potential Human Health Risk Assessment. Avicenna J. Environ. Health Eng. 2021, 8, 84–96. [Google Scholar] [CrossRef]
- Sattari, M.; Bibak, M.; Bakhshalizadeh, S.; Forouhar Vajargah, M. Element accumulations in liver and kidney tissues of some bony fish species in the Southwest Caspian Sea. J. Cell Mol. Res. 2020, 12, 33–40. [Google Scholar]
- Laetz, C.A.; Baldwin, D.H.; Collier, T.K.; Hebert, V.; Stark, J.D.; Scholz, N.L. The synergistic toxicity of pesticide mixtures: Implications for risk assessment and the conservation of endangered Pacific salmon. Environ. Health Perspect. 2009, 117, 348–353. [Google Scholar] [CrossRef] [Green Version]
- AL-Asgah, N.A.; Abdel-Warith, A.W.A.; Younis, E.M.; Allam, H.Y. Hematological and biochemical parameters and tissue accumulations of cadmium in Oreochromis niloticus exposed to various concentrations of cadmium chloride. Saudi J. Biol. Sci. 2015, 22, 543–550. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kretschmann, A.; Ashauer, R.; Preuss, T.G.; Spaak, P.; Escher, B.I.; Hollender, J. Toxicokinetic model describing bioconcentration and biotransformation of diazinon in Daphnia magna. Environ. Sci. Technol. 2011, 45, 4995–5002. [Google Scholar] [CrossRef] [PubMed]
- Rostami, H.; Soltani, M. The effect of diazinon toxin on hematologic indices of Acipenser nudiventris and its LC50 determination. Iran. Sci. Fish. J. 2005, 14, 49–60. [Google Scholar]
- Sheikhi, M.; Hajimoradloo, A.M.; Ghorbani, R.; Mollaei, M.; Khodanazary, A. Effects of Diazinon concentrations on LC50, hematocrit and clinical signs of Roach Torkemani (Rutilus rutilus caspius) fries of Caspian Sea. Iran. Sci. Fish. J. 2011, 20, 55–62. [Google Scholar]
- Yildirim, M.Z.; Benli, A.; Selvi, M.; Özkul, A.; Erkoc, F.; Koçak, O. Acute toxicity, behavioral changes, and histopathological effects of deltamethrin on tissues (gills, liver, brain, spleen, kidney, muscle, skin) of Nile tilapia (Oreochromis niloticus L.) fingerlings. Environ. Toxicol. 2006, 21, 614–620. [Google Scholar] [CrossRef] [PubMed]
- Omitoyin, B.O.; Ajani, E.K.; Adesina, B.T.; Okuagu, C.N.F. Toxicity of Lindane (Gamma Hexachloro-Cyclohexane) to Clarias gariepinus (Burchell 1822). World J. Zool. 2006, 1, 57–63. [Google Scholar]
- Rahman, M.Z.; Hossain, Z.; Mellah, M.F.R.; Ahmed, G.U. Effect of Diazinon 60 EC on Anabus testudinus, Channa punctatus and Barbades gomonotus. Naga ICLARM Q. 2002, 25, 8–11. [Google Scholar]
- Ezemonye, L.; Ogbomida, T.E. Histopathological effects of Gammalin 20 on African catfish (Clarias gariepinus). Appl. Environ. Soil Sci. 2010, 2010, 138019. [Google Scholar] [CrossRef] [Green Version]
- Svoboda, M.; Luskova, V.; Drastichova, J.; Zlabek, V. The effect of diazinon on haematological indices of common carp (Cyprinus carpio L.). Acta Vet. Brunesis-VFU Brno 2001, 70, 457–465. [Google Scholar] [CrossRef] [Green Version]
Point | Concentration (mg·L−1) | |||
---|---|---|---|---|
24 h | 48 h | 72 h | 96 h | |
LC10 | 0.885 | 0.521 | 0.347 | 0.099 |
LC20 | 1.211 | 0.882 | 0.694 | 0.451 |
LC30 | 1.446 | 1.142 | 0.943 | 0.704 |
LC40 | 1.647 | 1.365 | 1.157 | 0.921 |
LC50 | 1.835 | 1.573 | 1.356 | 1.124 |
LC60 | 2.022 | 1.780 | 1.556 | 1.326 |
LC70 | 2.223 | 2.003 | 1.769 | 1.543 |
LC80 | 2.458 | 2.263 | 2.019 | 1.796 |
LC90 | 2.784 | 2.624 | 2.365 | 2.148 |
LC95 | 3.053 | 2.922 | 2.651 | 2.438 |
Liver Tissue Damage | Concentration of DZN (mg·L−1) | ||||||
---|---|---|---|---|---|---|---|
0 | 0.5 | 1 | 1.5 | 2 | 2.5 | 3 | |
Cytoplasmic vacuolation of the hepatocytes (CV) | − | ++ | ++ | +++ | +++ | +++ | ++++ |
Necrosis (N) | − | − | ++ | +++ | +++ | ++++ | ++++ |
Dilation of sinusoids (DSS) | − | − | ++ | +++ | ++++ | ++++ | ++++ |
Vascular dilation (D) | − | ++ | +++ | +++ | ++++ | ++++ | +++ |
Tissue Damages | Concentration (mg·L−1) | ||||||
---|---|---|---|---|---|---|---|
0 | 0.5 | 1 | 1.5 | 2 | 2.5 | 3 | |
Primary lamellar oedema | − | ++ | ++ | +++ | +++ | ++++ | +++ |
Hyperplasia of epithelial cells | − | + | ++ | +++ | +++ | ++++ | +++ |
Hypertrophy of epithelial cells | − | ++ | ++ | +++ | +++ | +++ | +++ |
Secondary lamellar sloughing | − | − | ++ | +++ | +++ | +++ | +++ |
Haemorrhage | − | − | ++ | +++ | ++ | +++ | ++++ |
Necrosis | − | − | − | ++ | +++ | +++ | ++++ |
Blood Parameters | Treatments | ||
---|---|---|---|
Control | 0.01 * | 0.05 * | |
Haematocrit (%) | 26.73 ± 0.36 a | 26.66 ± 0.39 a | 19.73 ± 0.14 b |
Haemoglobin (g/dL) | 8.04 ± 0.31 a | 7.91 ± 0.76 a | 5.25 ± 0.46 b |
Red blood cells (106/μL) | 1.87 ± 0.07 a | 1.85 ± 0.11 a | 1.34 ± 0.4 b |
White blood cells (103/μL) | 14,833.33 ± 828 a | 13,837 ± 782 a | 6000 ± 569 b |
Mean corpuscular volume (fL) | 149.25 ± 1.23 a | 147.91 ± 1.63 a | 124.17 ± 0.87 b |
Toxicity Rating of Pesticides for Living Organisms | LC50 (mg·L−1) |
---|---|
Relatively non-toxic | 0 > 500 |
Less toxic | 100–500 |
Moderate toxicity | 10–100 |
Toxic | 1–10 |
Very toxic | 0.1–1 |
Highly toxic | <0.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vali, S.; Majidiyan, N.; Azadikhah, D.; Varcheh, M.; Tresnakova, N.; Faggio, C. Effects of Diazinon on the Survival, Blood Parameters, Gills, and Liver of Grass Carp (Ctenopharyngodon idella Valenciennes, 1844; Teleostei: Cyprinidae). Water 2022, 14, 1357. https://doi.org/10.3390/w14091357
Vali S, Majidiyan N, Azadikhah D, Varcheh M, Tresnakova N, Faggio C. Effects of Diazinon on the Survival, Blood Parameters, Gills, and Liver of Grass Carp (Ctenopharyngodon idella Valenciennes, 1844; Teleostei: Cyprinidae). Water. 2022; 14(9):1357. https://doi.org/10.3390/w14091357
Chicago/Turabian StyleVali, Sara, Nava Majidiyan, Dariush Azadikhah, Matin Varcheh, Nikola Tresnakova, and Caterina Faggio. 2022. "Effects of Diazinon on the Survival, Blood Parameters, Gills, and Liver of Grass Carp (Ctenopharyngodon idella Valenciennes, 1844; Teleostei: Cyprinidae)" Water 14, no. 9: 1357. https://doi.org/10.3390/w14091357
APA StyleVali, S., Majidiyan, N., Azadikhah, D., Varcheh, M., Tresnakova, N., & Faggio, C. (2022). Effects of Diazinon on the Survival, Blood Parameters, Gills, and Liver of Grass Carp (Ctenopharyngodon idella Valenciennes, 1844; Teleostei: Cyprinidae). Water, 14(9), 1357. https://doi.org/10.3390/w14091357