Doping of TiO2 Using Metal Waste (Door Key) to Improve Its Photocatalytic Efficiency in the Mineralization of an Emerging Contaminant in an Aqueous Environment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Synthesis of Photocatalysts
2.3. Characterization of Photocatalysts
2.4. Evaluation of Photocatalytic Activity
3. Results
3.1. Sample Characterization
3.1.1. XRD
3.1.2. HRTEM and Elemental Analysis
3.1.3. DRS
3.1.4. X-ray Photoelectron Spectroscopy
3.2. Photocatalytic Activity Measurement
- i.
- First, the doping ions induced the reduction of Eg in TiO2 (see Table 1). The decrease in the value of Eg for T-DK (0.5) and T-DK (1.0) indicates that these materials can be activated with visible light radiation. This means solar light absorption is more efficient in doped TiO2 than pure TiO2 [46]. This increases the efficiency of generating electron–hole pairs that initiate redox reactions that directly or indirectly produce the hydroxyl radicals that cause the pollutant to be mineralized. Due to the many possible reaction mechanisms during the diclofenac mineralization process, those considered the main ones in the photocatalytic mechanism are given below [24].Hydroxyl radical attack:Oxidation by the positive hole:
- ii.
- Second, the synergistic effect of the dopant species inhibited the recombination of the e−/h+ pairs. This information was obtained by analyzing the charge carrier recombination of each synthesized material. In the emission spectra in Figure 5c, pure TiO2 obtained the higher intensity emission spectra, meaning rapid recombination of the electron–hole pairs. Contrary to TiO2, the intensity of the emission spectra was lower when the percentage by weight of the doping ions increased, which suggests a low recombination rate for the electron–hole pairs photogenerated in T-DK (0.5) and T-DK (1.0). According to the results obtained using XPS, in doped TiO2 Cu2+ and Zn2+ ions in interstitial positions and oxides of the doping ions coexist. The low recombination of photogenerated charge carriers at T-DK (0.5) and T-DK (1.0) can be understood due to the positions of the band edges of the oxides in the heterojunction. The measured conduction band (CB) potential values of TiO2 and CuO are –0.35 and +0.12 V (vs. SCE), respectively. The valence band of TiO2 is lower than ZnO by about 0.36 V (vs. NHE), and this is superior to CuO by approximately 0.20 V (vs. SHE). The relative position difference of the energy band of CuO and ZnO charge transfer occurs between them and TiO2. Thus, an electron photogenerated in TiO2 is transferred from the conduction band of this semiconductor to ZnO and CuO, acting as an electron trap to inhibit their recombination. Concurrent with the above, hole transfer can arise from the valence band (VB) of TiO2 to the VB of ZnO and CuO [43,44,47,48]. Therefore, in addition to the decrease in Eg, the coupled effect between energy bands of TiO2, CuO, and ZnO was an essential factor to suppress the recombination of the electron–hole pairs, improving the photocatalytic activity of doped TiO2.
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, D.; Cheng, Y.; Zhou, N.; Chen, P.; Wang, Y.; Li, K.; Huo, S.; Cheng, P.; Peng, P.; Zhang, R.; et al. Photocatalytic degradation of organic pollutants using TiO2-based photocatalysts: A review. J. Clean. Prod. 2020, 268, 121725. [Google Scholar] [CrossRef]
- Zambrano, J.; Irusta-Mata, R.; Jiménez, J.J.; Bolado, S.; García-Encina, P.A. Chapter 24—Photocatalytic removal of emerging contaminants in water and wastewater treatments: A review. Dev. Wastewater Treat. Res. Processes 2022, 1, 543–572. [Google Scholar] [CrossRef]
- Naciri, Y.; Hsini, A.; Bouziani, A.; Djellabi, R.; Ajmal, Z.; Laabd, M.; Navío, J.A.; Mills, A.; Bianchi, C.L.; Li, H.; et al. Photocatalytic oxidation of pollutants in gas-phase via Ag3PO4-based semiconductor photocatalysts: Recent progress, new trends, and future perspectives. Crit. Rev. Environ. Sci. Technol. 2021, 52, 1–44. [Google Scholar] [CrossRef]
- Tanji, K.; Zouheir, M.; Naciri, Y.; Ahmoum, H.; Hsini, A.; Mertah, O.; El Gaidoumi, A.; Navio, J.A.; Hidalgo, M.C.; Kherbeche, A. Visible light photodegradation of blue basic 41 using cobalt doped ZnO: Box–Behnken optimization and DFT calculation. J. Iran. Chem. Soc. 2022, 18, 1–16. [Google Scholar] [CrossRef]
- Tanji, K.; Zouheir, M.; Hachhach, M.; Ahmoum, H.; Jellal, I.; El Masaoudi, H.; Naciri, Y.; Huynh, T.-P.; Nouneh, K.; Benaissa, M.; et al. Design and simulation of a photocatalysis reactor for rhodamine B degradation using cobalt-doped ZnO film. React. Kinet. Mech. Catal. 2021, 134, 1017–1038. [Google Scholar] [CrossRef]
- Zaleska, A. Doped-TiO2: A Review. Recent Patents Eng. 2008, 2, 157–164. [Google Scholar] [CrossRef]
- Sescu, A.M.; Favier, L.; Lutic, D.; Soto-Donoso, N.; Ciobanu, G.; Harja, M. TiO2 Doped with Noble Metals as an Efficient Solution for the Photodegradation of Hazardous Organic Water Pollutants at Ambient Conditions. Water 2021, 13, 19. [Google Scholar] [CrossRef]
- Hsini, A.; Naciri, Y.; Laabd, M.; Bouziani, A.; Navío, J.; Puga, F.; Boukherroub, R.; Lakhmiri, R.; Albourine, A. Development of a novel PANI@WO3 hybrid composite and its application as a promising adsorbent for Cr(VI) ions removal. J. Environ. Chem. Eng. 2021, 9, 105885. [Google Scholar] [CrossRef]
- Briffa, J.; Sinagra, E.; Blundell, R. Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon 2020, 6, e04691. [Google Scholar] [CrossRef]
- Laabd, M.; Imgharn, A.; Hsini, A.; Naciri, Y.; Mobarak, M.; Szunerits, S.; Boukherroub, R.; Albourine, A. Efficient detoxification of Cr(VI)-containing effluents by sequential adsorption and reduction using a novel cysteine-doped PANi@faujasite composite: Experimental study supported by advanced statistical physics prediction. J. Hazard. Mater. 2022, 422, 126857. [Google Scholar] [CrossRef]
- Raguram, T.; Rajni, K.S. Synthesis and analysing the structural, optical, morphological, photocatalytic and magnetic properties of TiO2 and doped (Ni and Cu) TiO2 nanoparticles by sol–gel technique. Appl. Phys. A 2019, 125, 288. [Google Scholar] [CrossRef]
- Yadav, H.M.; Otari, S.; Koli, V.B.; Mali, S.S.; Hong, C.K.; Pawar, S.H.; Delekar, S.D. Preparation and characterization of copper-doped anatase TiO2 nanoparticles with visible light photocatalytic antibacterial activity. J. Photochem. Photobiol. A Chem. 2014, 280, 32–38. [Google Scholar] [CrossRef]
- Zhang, R.; Shao, M.; Xu, S.; Ning, F.; Zhou, L.; Wei, M. Photo-assisted synthesis of zinc-iron layered double hydroxides/TiO2 nanoarrays toward highly-efficient photoelectrochemical water splitting. Nano Energy 2017, 33, 21–28. [Google Scholar] [CrossRef]
- Bashiri, R.; Norani, M.M.; Kait, C.F.; Sufian, S. Study on Synthesis and Characterization of Cu-Ni Doped TiO2 by Sol-Gel Hydrothermal. Adv. Mater. Res. 2014, 925, 248–252. [Google Scholar] [CrossRef]
- Liu, B.; Chen, H.M.; Liu, C.; Andrews, S.C.; Hahn, C.; Yang, P. Large-Scale Synthesis of Transition-Metal-Doped TiO2 Nanowires with Controllable Overpotential. J. Am. Chem. Soc. 2013, 135, 9995–9998. [Google Scholar] [CrossRef] [Green Version]
- Shakil, R.; El-Sawy, A.M.; Tasnim, H.; Meguerdichian, A.G.; Jin, J.; Dubrosky, J.P.; Suib, S.L. Single-Doped and Multidoped Transition-Metal (Mn, Fe, Co, and Ni) ZnO and Their Electrocatalytic Activities for Oxygen Reduction Reaction. Inorg. Chem. 2018, 57, 9977–9987. [Google Scholar] [CrossRef]
- Yadav, S.; Jaiswar, G. Review on Undoped/Doped TiO2 Nanomaterial; Synthesis and Photocatalytic and Antimicrobial Activity. J. Chin. Chem. Soc. 2017, 64, 103–116. [Google Scholar] [CrossRef]
- Naciri, Y.; Hsini, A.; Bouziani, A.; Tanji, K.; El Ibrahimi, B.; Ghazzal, M.; Bakiz, B.; Albourine, A.; Benlhachemi, A.; Navío, J.; et al. Z-scheme WO3/PANI heterojunctions with enhanced photocatalytic activity under visible light: A depth experimental and DFT studies. Chemosphere 2022, 292, 133468. [Google Scholar] [CrossRef]
- Imgharn, A.; Anchoum, L.; Hsini, A.; Naciri, Y.; Laabd, M.; Mobarak, M.; Aarab, N.; Bouziani, A.; Szunerits, S.; Boukherroub, R.; et al. Effectiveness of a novel polyaniline@Fe-ZSM-5 hybrid composite for Orange G dye removal from aqueous media: Experimental study and advanced statistical physics insights. Chemosphere 2022, 295, 133786. [Google Scholar] [CrossRef]
- Imgharn, A.; Ighnih, H.; Hsini, A.; Naciri, Y.; Laabd, M.; Kabli, H.; Elamine, M.; Lakhmiri, R.; Souhail, B.; Albourine, A. Synthesis and characterization of polyaniline-based biocomposites and their application for effective removal of Orange G dye using adsorption in dynamic regime. Chem. Phys. Lett. 2021, 778, 138811. [Google Scholar] [CrossRef]
- Fahoul, Y.; Tanji, K.; Zouheir, M.; El Mrabet, I.; Naciri, Y.; Hsini, A.; Nahali, L.; Kherbeche, A. Novel River Sediment@ZnO Co nanocomposite for photocatalytic degradation and COD reduction of crystal violet under visible light. J. Mol. Struct. 2022, 1253, 132298. [Google Scholar] [CrossRef]
- Mimouni, I.; Bouziani, A.; Naciri, Y.; Boujnah, M.; El Belghiti, M.A.; El Azzouzi, M. Effect of heat treatment on the photocatalytic activity of α-Fe2O3 nanoparticles: Towards diclofenac elimination. Environ. Sci. Pollut. Res. 2021, 29, 7984–7996. [Google Scholar] [CrossRef] [PubMed]
- Aguilar, T.; Navas, J.; Alcántara, R.; Lorenzo, C.F.; Gallardo, J.; Blanco, G.; Martín-Calleja, J. A route for the synthesis of Cu-doped TiO2 nanoparticles with a very low band gap. Chem. Phys. Lett. 2013, 571, 49–53. [Google Scholar] [CrossRef]
- Mogal, S.I.; Mishra, M.; Gandhi, V.G.; Tayade, R.J. Metal Doped Titanium Dioxide: Synthesis and Effect of Metal Ions on Physico-Chemical and Photocatalytic Properties. Mater. Sci. Forum 2013, 734, 364–378. [Google Scholar] [CrossRef]
- Hampel, B.; Pap, Z.; Sapi, A.; Szamosvolgyi, A.; Baia, L.; Hernadi, K. Application of TiO2-Cu Composites in Photocatalytic Degradation Different Pollutants and Hydrogen Production. Catalysts 2020, 10, 85. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Zhou, P.; Liu, J.; Yu, J. New understanding of the difference of photocatalytic activity among anatase, rutile and brookite TiO2. Phys. Chem. Chem. Phys. 2014, 16, 20382–20386. [Google Scholar] [CrossRef]
- Scanlon, D.O.; Dunnill, C.W.; Buckeridge, J.; Shevlin, S.A.; Logsdail, A.J.; Woodley, S.M.; Catlow, C.R.A.; Powell, M.J.; Palgrave, R.G.; Parkin, I.P.; et al. Band alignment of rutile and anatase TiO2. Nat. Mater. 2013, 12, 798–801. [Google Scholar] [CrossRef]
- Luttrell, T.; Halpegamage, S.; Tao, J.; Kramer, A.; Sutter, E.; Batzill, M. Why is anatase a better photocatalyst than rutile?—Model studies on epitaxial TiO2 films. Sci. Rep. 2014, 4, 4043. [Google Scholar] [CrossRef] [Green Version]
- Zhang, D.; Zeng, F. Photocatalytic oxidation of organic dyes with visible-light-driven codoped TiO2 photocatalysts. Russ. J. Phys. Chem. A 2011, 85, 1077–1083. [Google Scholar] [CrossRef]
- Tobaldi, D.; Piccirillo, C.; Rozman, N.; Pullar, R.; Seabra, M.; Škapin, A.S.; Castro, P.; Labrincha, J. Effects of Cu, Zn and Cu-Zn addition on the microstructure and antibacterial and photocatalytic functional properties of Cu-Zn modified TiO2 nano-heterostructures. J. Photochem. Photobiol. A Chem. 2016, 330, 44–54. [Google Scholar] [CrossRef]
- Khairy, M.; Zakaria, W. Effect of metal-doping of TiO2 nanoparticles on their photocatalytic activities toward removal of organic dyes. Egypt. J. Pet. 2014, 23, 419–426. [Google Scholar] [CrossRef] [Green Version]
- Niu, B.; Wang, X.; Wu, K.; He, X.; Zhang, R. Mesoporous Titanium Dioxide: Synthesis and Applications in Photocatalysis, Energy and Biology. Materials 2018, 11, 1910. [Google Scholar] [CrossRef] [Green Version]
- Hernández, S.; Hidalgo, D.; Sacco, A.; Chiodoni, A.; Lamberti, A.; Cauda, V.; Tresso, E.; Saracco, G. Comparison of photocatalytic and transport properties of TiO2 and ZnO nanostructures for solar-driven water splitting. Phys. Chem. Chem. Phys. 2015, 17, 7775–7786. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reddam, H.A.; Elmail, R.; Lloria, S.C.; Tomás, G.M.; Reddam, Z.A.; Coloma-Pascual, F. Synthesis of Fe, Mn and Cu modified TiO2 photocatalysts for photodegradation of Orange II. Boletín de la Sociedad Española de Cerámica y Vidrio 2020, 59, 138–148. [Google Scholar] [CrossRef]
- Mishra, A.P.; Sharma, N.; Jain, R.K. Microwave Synthesis, Spectral, Thermal and Antimicrobial Studies of Some Ni(II) and Cu(II) Schiff Base Complexes. Open J. Synth. Theory Appl. 2012, 2, 56–62. [Google Scholar] [CrossRef] [Green Version]
- Arévalo-Pérez, J.C.; De La Cruz-Romero, D.; García, A.C.; Lobato-García, C.E.; Aguilar-Elguezabal, A.; Torres-Torres, J.G. Photodegradation of 17 α-methyltestosterone using TiO2-Gd3+ and TiO2-Sm3+ photocatalysts and simulated solar radiation as an activation source. Chemosphere 2020, 249, 126497. [Google Scholar] [CrossRef] [PubMed]
- Cordero-García, A.; Palomino, G.T.; Hinojosa-Reyes, L.; Guzmán-Mar, J.L.; Maya-Teviño, L.; Hernández-Ramírez, A. Photocatalytic behaviour of WO3/TiO2-N for diclofenac degradation using simulated solar radiation as an activation source. Environ. Sci. Pollut. Res. 2016, 24, 4613–4624. [Google Scholar] [CrossRef]
- Cordero-García, A.; Guzmán-Mar, J.; Hinojosa-Reyes, L.; Ruiz-Ruiz, E.; Hernández-Ramírez, A. Effect of carbon doping on WO3/TiO2 coupled oxide and its photocatalytic activity on diclofenac degradation. Ceram. Int. 2016, 42, 9796–9803. [Google Scholar] [CrossRef]
- Mathew, S.; Ganguly, P.; Rhatigan, S.; Kumaravel, V.; Byrne, C.; Hinder, S.J.; Bartlett, J.; Nolan, M.; Pillai, S.C. Cu-Doped TiO2: Visible Light Assisted Photocatalytic Antimicrobial Activity. Appl. Sci. 2018, 8, 2067. [Google Scholar] [CrossRef] [Green Version]
- Obregón, S.; Muñoz-Batista, M.J.; Fernández-García, M.; Kubacka, A.; Colón, G. Cu–TiO2 systems for the photocatalytic H2 production: Influence of structural and surface support features. Appl. Catal. B: Environ. 2015, 179, 468–478. [Google Scholar] [CrossRef]
- Xu, D.; Fan, D.; Shen, W. Catalyst-free direct vapor-phase growth of Zn1−xCuxO micro-cross structures and their optical properties. Nanoscale Res. Lett. 2013, 8, 46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, M.; Jiang, L.; Kim, E.J.; Hahn, S.H. Electronic structure and optical properties of Zn(OH)2: LDA+U calculations and intense yellow luminescence. RSC Adv. 2015, 5, 87496–87503. [Google Scholar] [CrossRef]
- Thirupathi, B.; Smirniotis, P.G. Co-doping a metal (Cr, Fe, Co, Ni, Cu, Zn, Ce, and Zr) on Mn/TiO2 catalyst and its effect on the selective reduction of NO with NH3 at low-temperatures. Appl. Catal. B: Environ. 2011, 110, 195–206. [Google Scholar] [CrossRef]
- Adrover, E.; Boldrini, D.; Divins, N.J.; Casanovas, A.; Tonetto, G.; López, E.; Llorca, J. Study of Cu-Zn and Au/TiO2 catalysts on anodized aluminum monoliths for hydrogen generation and purification. Int. J. Chem. React. Eng. 2016, 14, 831–842. [Google Scholar] [CrossRef] [Green Version]
- Mizutani, U. Hume-Rothery rules for structurally complex alloy phases. MRS Bull. 2012, 37, 169. [Google Scholar] [CrossRef] [Green Version]
- Sulaiman, S.N.A.; Noh, M.Z.; Adnan, N.N.; Bidin, N.; Ab Razak, S.N. Ab Razak, Effects of photocatalytic activity of metal and non-metal doped TiO2 for Hydrogen production enhancement—A Review. J. Phys. Conf. Ser. 2018, 5, 1027–1045. [Google Scholar] [CrossRef]
- Rana, A.G.; Ahmad, W.; Al-Matar, A.; Shawabkeh, R.; Aslam, Z. Synthesis and characterization of Cu–Zn/TiO2 for the photocatalytic conversion of CO2 to methane. Environ. Technol. 2017, 38, 1085–1092. [Google Scholar] [CrossRef]
- Paulino, P.; Salim, V.M.; Resende, N. Zn-Cu promoted TiO2 photocatalyst for CO2 reduction with H2O under UV light. Appl. Catal. B Environ. 2016, 185, 362–370. [Google Scholar] [CrossRef]
Catalyst | Cu wt.% | Zn wt.% | Average Particle Size (nm) | Eg (eV) | |||||
---|---|---|---|---|---|---|---|---|---|
Sol. A 1 | EDX | ICP-OES | Sol. A 1 | EDX | ICP-OES | DRX | SEM | ||
T | nd | nd | nd | nd | nd | nd | 19.50 | 21 | 3.23 |
T-DK (0.5) | 0.21 | 0.19 | 0.23 | 0.13 | 0.12 | 0.11 | 15.7 | 16 | 2.90 |
±0.009 | ±0.002 | ±0.014 | ±0.005 | ±0.004 | ±0.003 | ||||
T-DK (1.0) | 0.47 | 0.43 | 0.44 | 0.24 | 0.22 | 0.21 | 11.3 | 11 | 2.76 |
±0.011 | ±0.015 | ±0.009 | ±0.008 | ±0.007 | ±0.006 |
Catalyst | Residual TOC (%) | Kapp (min−1) | t1/2 (min) | R2 |
---|---|---|---|---|
T | 59 | 3.2 × 10−3 | 216.61 | 0.997 |
T-DK (0.5) | 35 | 6.1 × 10−3 | 113.63 | 0.993 |
T-DK (1.0) | 6 | 1.23 × 10−2 | 56.35 | 0.990 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Juárez-Cortazar, D.E.; Torres-Torres, J.G.; Hernandez-Ramirez, A.; Arévalo-Pérez, J.C.; Cervantes-Uribe, A.; Godavarthi, S.; de los Monteros, A.E.E.; Silahua-Pavón, A.A.; Cordero-Garcia, A. Doping of TiO2 Using Metal Waste (Door Key) to Improve Its Photocatalytic Efficiency in the Mineralization of an Emerging Contaminant in an Aqueous Environment. Water 2022, 14, 1389. https://doi.org/10.3390/w14091389
Juárez-Cortazar DE, Torres-Torres JG, Hernandez-Ramirez A, Arévalo-Pérez JC, Cervantes-Uribe A, Godavarthi S, de los Monteros AEE, Silahua-Pavón AA, Cordero-Garcia A. Doping of TiO2 Using Metal Waste (Door Key) to Improve Its Photocatalytic Efficiency in the Mineralization of an Emerging Contaminant in an Aqueous Environment. Water. 2022; 14(9):1389. https://doi.org/10.3390/w14091389
Chicago/Turabian StyleJuárez-Cortazar, Dany Edgar, José Gilberto Torres-Torres, Aracely Hernandez-Ramirez, Juan Carlos Arévalo-Pérez, Adrián Cervantes-Uribe, Srinivas Godavarthi, Alejandra Elvira Espinosa de los Monteros, Adib Abiu Silahua-Pavón, and Adrián Cordero-Garcia. 2022. "Doping of TiO2 Using Metal Waste (Door Key) to Improve Its Photocatalytic Efficiency in the Mineralization of an Emerging Contaminant in an Aqueous Environment" Water 14, no. 9: 1389. https://doi.org/10.3390/w14091389
APA StyleJuárez-Cortazar, D. E., Torres-Torres, J. G., Hernandez-Ramirez, A., Arévalo-Pérez, J. C., Cervantes-Uribe, A., Godavarthi, S., de los Monteros, A. E. E., Silahua-Pavón, A. A., & Cordero-Garcia, A. (2022). Doping of TiO2 Using Metal Waste (Door Key) to Improve Its Photocatalytic Efficiency in the Mineralization of an Emerging Contaminant in an Aqueous Environment. Water, 14(9), 1389. https://doi.org/10.3390/w14091389