Hydrological Modeling in the Chaohu Lake Basin of China—Driven by Open-Access Gridded Meteorological and Remote Sensing Precipitation Products
Abstract
:1. Introduction
2. Study Area
3. Datasets and Methods
3.1. In Situ Meteorological Measurements
3.2. The CFSR and CMADS Meteorological Data
3.3. The TRMM, CMORPH, and CHIRPS Precipitation Datasets
3.4. SWAT Modelling Procedures
4. Results
4.1. Comparison of Different Meteorological Inputs
4.2. Simulation Results Using Different Meteorological Inputs
4.3. Comparison of Calibrated Parameters and Water Balance Components
5. Discussion
5.1. Comparison with Existing Studies
5.2. Uncertainty of the Evaluation
6. Conclusions
- (1)
- In this study area, the three satellite-based precipitation datasets (i.e., TRMM, CMORPH, and CHIRPS) were generally close to gauged data except for some lower peaks, while CMADS had overall lower precipitation than gauged data and CFSR had poor temporal consistency with gauged data. For the other meteorological variables, excluding precipitation, CFSR and CMADS had fairly good agreement with gauged data in the maximum temperature, minimum temperature, and relative humidity, but there are large discrepancies among them for the solar radiation and wind speed. In particular, for solar radiation, gauged data had smaller fluctuations than the other two datasets; for wind speed, CMADS was considerably lower than the gauged and CFSR datasets. However, despite these discrepancies, overall monthly PET totals from the three datasets were in good agreement, suggesting that the discrepancies in individual weather variables cancelled each other to a certain degree.
- (2)
- The impact of precipitation data on simulated streamflow is much larger than that of other meteorological data. In this study, the best simulation results were obtained using gauged data for both precipitation and other meteorological variables. At the same time, this study also got satisfactory daily simulation results using the CMORPH precipitation data and monthly simulation results using the TRMM and CHIRPS precipitation data. These results suggested that different gridded precipitation datasets should be used to obtain optimal results for daily and monthly streamflow simulations. Although the models using different meteorological datasets had comparable performance, CFSR usually performed better than CMADS especially at the monthly scale in this area.
- (3)
- There were considerable differences in the calibrated optimal parameters and water balance components among the eighteen scenarios even for the scenarios with similar water yield to streamflow (e.g., the scenarios using gauged precipitation data and those using CFSR precipitation data). This highlights the inherent limitations of model calibration only based on measured streamflow at the outlet, which should be reduced through multivariable and multisite calibration once data allows.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Duan, Z.; Chen, Q.; Chen, C.; Liu, J.; Gao, H.; Song, X.; Wei, M. Spatiotemporal analysis of nonlinear trends in precipitation over Germany during 1951–2013 from multiple observation-based gridded products. Int. J. Climatol. 2019, 39, 2120–2135. [Google Scholar] [CrossRef]
- Liu, J.; Duan, Z.; Jiang, J.; Zhu, A. Evaluation of three satellite precipitation products TRMM 3B42, CMORPH, and PERSIANN over a subtropical watershed in China. Adv. Meteorol. 2015, 2015, 151239. [Google Scholar] [CrossRef] [Green Version]
- Dai, Q.; Yang, Q.; Zhang, J.; Zhang, S. Impact of gauge representative error on a radar rainfall uncertainty model. J. Appl. Meteorol. Climatol. 2018, 57, 2769–2787. [Google Scholar] [CrossRef]
- Duan, Z.; Gao, H.; Ke, C. Estimation of lake outflow from the poorly gauged Lake Tana (Ethiopia) using satellite remote sensing data. Remote Sens. 2018, 10, 1060. [Google Scholar] [CrossRef] [Green Version]
- Tauro, F.; Selker, J.; Van De Giesen, N.; Abrate, T.; Uijlenhoet, R.; Porfiri, M.; Manfreda, S.; Caylor, K.; Moramarco, T.; Benveniste, J. Measurements and observations in the XXI century (MOXXI): Innovation and multi-disciplinarity to sense the hydrological cycle. Hydrol. Sci. J. 2018, 63, 169–196. [Google Scholar] [CrossRef] [Green Version]
- Cornes, R.C.; van der Schrier, G.; van den Besselaar, E.J.; Jones, P.D. An ensemble version of the E-OBS temperature and precipitation data sets. J. Geophys. Res. Atmos. 2018, 123, 9391–9409. [Google Scholar] [CrossRef] [Green Version]
- Duan, Z.; Liu, J.; Tuo, Y.; Chiogna, G.; Disse, M. Evaluation of eight high spatial resolution gridded precipitation products in Adige Basin (Italy) at multiple temporal and spatial scales. Sci. Total Environ. 2016, 573, 1536–1553. [Google Scholar] [CrossRef] [Green Version]
- Duan, Z.; Tuo, Y.; Liu, J.; Gao, H.; Song, X.; Zhang, Z.; Yang, L.; Mekonnen, D.F. Hydrological evaluation of open-access precipitation and air temperature datasets using SWAT in a poorly gauged basin in Ethiopia. J. Hydrol. 2019, 569, 612–626. [Google Scholar] [CrossRef] [Green Version]
- Harris, I.; Jones, P.D.; Osborn, T.J.; Lister, D.H. Updated high-resolution grids of monthly climatic observations–the CRU TS3. 10 Dataset. Int. J. Climatol. 2014, 34, 623–642. [Google Scholar] [CrossRef] [Green Version]
- Saha, S.; Moorthi, S.; Wu, X.; Wang, J.; Nadiga, S.; Tripp, P.; Behringer, D.; Hou, Y.-T.; Chuang, H.-Y.; Iredell, M. The NCEP climate forecast system version 2. J. Clim. 2014, 27, 2185–2208. [Google Scholar] [CrossRef]
- Tapiador, F.J.; Turk, F.J.; Petersen, W.; Hou, A.Y.; García-Ortega, E.; Machado, L.A.; Angelis, C.F.; Salio, P.; Kidd, C.; Huffman, G.J. Global precipitation measurement: Methods, datasets and applications. Atmos. Res. 2012, 104, 70–97. [Google Scholar] [CrossRef]
- Meng, X.; Wang, H.; Shi, C.; Wu, Y.; Ji, X. Establishment and evaluation of the China meteorological assimilation driving datasets for the SWAT model (CMADS). Water 2018, 10, 1555. [Google Scholar] [CrossRef] [Green Version]
- Arnold, J.G.; Moriasi, D.N.; Gassman, P.W.; Abbaspour, K.C.; White, M.J.; Srinivasan, R.; Santhi, C.; Harmel, R.; Van Griensven, A.; Van Liew, M.W. SWAT: Model use, calibration, and validation. Trans. ASABE 2012, 55, 1491–1508. [Google Scholar] [CrossRef]
- Cao, Y.; Zhang, J.; Yang, M.; Lei, X.; Guo, B.; Yang, L.; Zeng, Z.; Qu, J. Application of SWAT model with CMADS data to estimate hydrological elements and parameter uncertainty based on SUFI-2 algorithm in the Lijiang River Basin, China. Water 2018, 10, 742. [Google Scholar] [CrossRef] [Green Version]
- Chen, M.; Yue, S.; Lü, G.; Lin, H.; Yang, C.; Wen, Y.; Hou, T.; Xiao, D.; Jiang, H. Teamwork-oriented integrated modeling method for geo-problem solving. Environ. Model. Softw. 2019, 119, 111–123. [Google Scholar] [CrossRef]
- Dile, Y.T.; Srinivasan, R. Evaluation of CFSR climate data for hydrologic prediction in data-scarce watersheds: An application in the Blue Nile River Basin. JAWRA J. Am. Water Resour. Assoc. 2014, 50, 1226–1241. [Google Scholar] [CrossRef]
- Liu, J.; Shanguan, D.; Liu, S.; Ding, Y. Evaluation and hydrological simulation of CMADS and CFSR reanalysis datasets in the Qinghai-Tibet Plateau. Water 2018, 10, 513. [Google Scholar] [CrossRef] [Green Version]
- Huffman, G.J.; Bolvin, D.T.; Nelkin, E.J.; Wolff, D.B.; Adler, R.F.; Gu, G.; Hong, Y.; Bowman, K.P.; Stocker, E.F. The TRMM multisatellite precipitation analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeorol. 2007, 8, 38–55. [Google Scholar] [CrossRef]
- Fuka, D.R.; Walter, M.T.; MacAlister, C.; Degaetano, A.T.; Steenhuis, T.S.; Easton, Z.M. Using the climate forecast system reanalysis as weather input data for watershed models. Hydrol. Process. 2014, 28, 5613–5623. [Google Scholar] [CrossRef]
- Reichstein, M.; Camps-Valls, G.; Stevens, B.; Jung, M.; Denzler, J.; Carvalhais, N. Prabhat. Deep learning and process understanding for data-driven earth system science. Nature 2019, 566, 195–204. [Google Scholar] [CrossRef]
- Moraux, A.; Dewitte, S.; Cornelis, B.; Munteanu, A. A deep learning multimodal method for precipitation estimation. Remote Sens. 2021, 13, 3278. [Google Scholar] [CrossRef]
- Gilewski, P.; Nawalany, M. Inter-comparison of rain-gauge, radar, and satellite (IMERG GPM) precipitation estimates performance for rainfall-runoff modeling in a mountainous catchment in Poland. Water 2018, 10, 1665. [Google Scholar] [CrossRef] [Green Version]
- Sapountzis, M.; Kastridis, A.; Kazamias, A.; Karagiannidis, A.; Nikopoulos, P.; Lagouvardos, K. Utilization and uncertainties of satellite precipitation data in flash flood hydrological analysis in ungauged watersheds. Glob. Nest J. 2021, 23, 388–399. [Google Scholar]
- Bitew, M.M.; Gebremichael, M.; Ghebremichael, L.T.; Bayissa, Y.A. Evaluation of high-resolution satellite rainfall products through streamflow simulation in a hydrological modeling of a small mountainous watershed in Ethiopia. J. Hydrometeorol. 2012, 13, 338–350. [Google Scholar] [CrossRef]
- Tuo, Y.; Duan, Z.; Disse, M.; Chiogna, G. Evaluation of precipitation input for SWAT modeling in Alpine catchment: A case study in the Adige river basin (Italy). Sci. Total Environ. 2016, 573, 66–82. [Google Scholar] [CrossRef] [Green Version]
- Gao, F.; Zhang, Y.; Chen, Q.; Wang, P.; Yang, H.; Yao, Y.; Cai, W. Comparison of two long-term and high-resolution satellite precipitation datasets in Xinjiang, China. Atmos. Res. 2018, 212, 150–157. [Google Scholar] [CrossRef]
- Mahmoud, M.T.; Hamouda, M.A.; Mohamed, M.M. Spatiotemporal evaluation of the GPM satellite precipitation products over the United Arab Emirates. Atmos. Res. 2019, 219, 200–212. [Google Scholar] [CrossRef]
- Radcliffe, D.; Mukundan, R. PRISM vs. CFSR precipitation data effects on calibration and validation of SWAT models. JAWRA J. Am. Water Resour. Assoc. 2017, 53, 89–100. [Google Scholar] [CrossRef]
- Zhang, L.; Meng, X.; Wang, H.; Yang, M. Simulated runoff and sediment yield responses to land-use change using the SWAT model in northeast China. Water 2019, 11, 915. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Q.; Hsu, K.L.; Xu, Y.P.; Yang, T. Evaluation of a new satellite-based precipitation data set for climate studies in the Xiang River basin, southern China. Int. J. Climatol. 2017, 37, 4561–4575. [Google Scholar] [CrossRef]
- Jiang, S.; Liu, R.; Ren, L.; Wang, M.; Shi, J.; Zhong, F.; Duan, Z. Evaluation and hydrological application of CMADS reanalysis precipitation data against four satellite precipitation products in the Upper Huaihe River Basin, China. J. Meteorol. Res. 2020, 34, 1096–1113. [Google Scholar] [CrossRef]
- Yong, B.; Hong, Y.; Ren, L.L.; Gourley, J.J.; Huffman, G.J.; Chen, X.; Wang, W.; Khan, S.I. Assessment of evolving TRMM-based multisatellite real-time precipitation estimation methods and their impacts on hydrologic prediction in a high latitude basin. J. Geophys. Res. Atmos. 2012, 117, D09108. [Google Scholar] [CrossRef] [Green Version]
- Hu, S.; Qiu, H.; Yang, D.; Cao, M.; Song, J.; Wu, J.; Huang, C.; Gao, Y. Evaluation of the applicability of climate forecast system reanalysis weather data for hydrologic simulation: A case study in the Bahe River Basin of the Qinling Mountains, China. J. Geogr. Sci. 2017, 27, 546–564. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Wang, G.; Wang, L.; Yu, J.; Xu, Z. Evaluation of gridded precipitation data for driving SWAT model in area upstream of three gorges reservoir. PLoS ONE 2014, 9, e112725. [Google Scholar] [CrossRef]
- Li, Y.; Wang, Y.; Zheng, J.; Yang, M. Investigating spatial and temporal variation of hydrological processes in western China driven by CMADS. Water 2019, 11, 435. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Gao, J.; Gao, Y. The influences of land use changes on the value of ecosystem services in Chaohu Lake Basin, China. Environ. Earth Sci. 2015, 74, 385–395. [Google Scholar] [CrossRef]
- Liu, J.; Liu, Z.; Yin, Y.; Croke, B.F.W.; Chen, M.; Qin, C.-Z.; Tang, G.; Zhu, A.X. A hybrid vector-raster approach to drainage network construction in agricultural watersheds with rice terraces and ponds. J. Hydrol. 2021, 601, 126585. [Google Scholar] [CrossRef]
- Kong, X.; He, Q.; Yang, B.; He, W.; Xu, F.; Janssen, A.B.; Kuiper, J.J.; van Gerven, L.P.; Qin, N.; Jiang, Y. Hydrological regulation drives regime shifts: Evidence from paleolimnology and ecosystem modeling of a large shallow Chinese lake. Glob. Chang. Biol. 2017, 23, 737–754. [Google Scholar] [CrossRef]
- Meng, X.; Wang, H. Significance of the China meteorological assimilation driving datasets for the SWAT model (CMADS) of East Asia. Water 2017, 9, 765. [Google Scholar] [CrossRef]
- Xie, P.; Joyce, R.; Wu, S.; Yoo, S.-H.; Yarosh, Y.; Sun, F.; Lin, R. Reprocessed, bias-corrected CMORPH global high-resolution precipitation estimates from 1998. J. Hydrometeorol. 2017, 18, 1617–1641. [Google Scholar] [CrossRef]
- Arnold, J.G.; Srinivasan, R.; Muttiah, R.S.; Williams, J.R. Large area hydrologic modeling and assessment part I: Model development 1. JAWRA J. Am. Water Resour. Assoc. 1998, 34, 73–89. [Google Scholar] [CrossRef]
- Neitsch, S.L.; Arnold, J.G.; Kiniry, J.R.; Williams, J.R. Soil and Water Assessment Tool Theoretical Documentation Version 2009; Texas Water Resources Institute: College Station, TX, USA, 2011. [Google Scholar]
- Song, X.; Duan, Z.; Kono, Y.; Wang, M. Integration of remotely sensed C factor into SWAT for modelling sediment yield. Hydrol. Process. 2011, 25, 3387–3398. [Google Scholar] [CrossRef]
- Abbaspour, K.C.; Johnson, C.; Van Genuchten, M.T. Estimating uncertain flow and transport parameters using a sequential uncertainty fitting procedure. Vadose Zone J. 2004, 3, 1340–1352. [Google Scholar] [CrossRef]
- Abbaspour, K.C.; Yang, J.; Maximov, I.; Siber, R.; Bogner, K.; Mieleitner, J.; Zobrist, J.; Srinivasan, R. Modelling hydrology and water quality in the pre-alpine/alpine Thur watershed using SWAT. J. Hydrol. 2007, 333, 413–430. [Google Scholar] [CrossRef]
- Chow, V.T.; Maidment, D.R.; Mays, L.W. Applied Hydrology; McGraw-Hill Book Company: New York, NY, USA, 1988. [Google Scholar]
- Bredemeier, M.; Cohen, S.; Godbold, D.L.; Lode, E.; Pichler, V.; Schleppi, P. Forest Management and the Water Cycle: An Ecosystem-Based Approach; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2010; Volume 212. [Google Scholar]
- Kastridis, A.; Theodosiou, G.; Fotiadis, G. Investigation of flood management and mitigation measures in ungauged NATURA protected watersheds. Hydrology 2021, 8, 170. [Google Scholar] [CrossRef]
- Schleppi, P. Forested water catchments in a changing environment. In Forest Management and the Water Cycle; Springer: Berlin/Heidelberg, Germany, 2010; pp. 89–110. [Google Scholar]
- Nash, J.E.; Sutcliffe, J.V. River flow forecasting through conceptual models part I—A discussion of principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Peng, J.; Liu, T.; Huang, Y.; Ling, Y.; Li, Z.; Bao, A.; Chen, X.; Kurban, A.; De Maeyer, P. Satellite-based precipitation datasets evaluation using gauge observation and hydrological modeling in a typical arid land watershed of Central Asia. Remote Sens. 2021, 13, 221. [Google Scholar] [CrossRef]
- Bitew, M.M.; Gebremichael, M. Evaluation of satellite rainfall products through hydrologic simulation in a fully distributed hydrologic model. Water Resour. Res. 2011, 47, W06526. [Google Scholar] [CrossRef]
- Tan, M.L.; Gassman, P.W.; Liang, J.; Haywood, J.M. A review of alternative climate products for SWAT modelling: Sources, assessment and future directions. Sci. Total Environ. 2021, 795, 148915. [Google Scholar] [CrossRef]
- Zhang, D.; Tan, M.L.; Dawood, S.R.; Samat, N.; Chang, C.K.; Roy, R.; Tew, Y.L.; Mahamud, M.A. Comparison of NCEP-CFSR and CMADS for hydrological modelling using SWAT in the Muda River Basin, Malaysia. Water 2020, 12, 3288. [Google Scholar] [CrossRef]
- Gao, X.; Zhu, Q.; Yang, Z.; Wang, H. Evaluation and hydrological application of CMADS against TRMM 3B42V7, PERSIANN-CDR, NCEP-CFSR, and gauge-based datasets in Xiang River Basin of China. Water 2018, 10, 1225. [Google Scholar] [CrossRef] [Green Version]
- Chua, Z.-W.; Kuleshov, Y.; Watkins, A. Evaluation of satellite precipitation estimates over Australia. Remote Sens. 2020, 12, 678. [Google Scholar] [CrossRef] [Green Version]
- Yang, W.-T.; Fu, S.-M.; Sun, J.-H.; Zheng, F.; Wei, J.; Ma, Z. Comparative evaluation of the performances of TRMM-3B42 and climate prediction centre morphing technique (CMORPH) precipitation estimates over Thailand. J. Meteorol. Soc. Jpn. Ser. II 2021, 99, 1525–1546. [Google Scholar] [CrossRef]
- Darbandsari, P.; Coulibaly, P. Inter-comparison of lumped hydrological models in data-scarce watersheds using different precipitation forcing data sets: Case study of Northern Ontario, Canada. J. Hydrol. Reg. Stud. 2020, 31, 100730. [Google Scholar] [CrossRef]
- Kumari, N.; Srivastava, A.; Sahoo, B.; Raghuwanshi, N.S.; Bretreger, D. Identification of suitable hydrological models for streamflow assessment in the Kangsabati River Basin, India, by using different model selection scores. Nat. Resour. Res. 2021, 30, 4187–4205. [Google Scholar] [CrossRef]
- Pappenberger, F.; Beven, K.J. Ignorance is bliss: Or seven reasons not to use uncertainty analysis. Water Resour. Res. 2006, 42, W05302. [Google Scholar] [CrossRef]
- Beven, K.; Binley, A. The future of distributed models: Model calibration and uncertainty prediction. Hydrol. Process. 1992, 6, 279–298. [Google Scholar] [CrossRef]
- Vrugt, J.A.; ter Braak, C.J.F.; Diks, C.G.H.; Robinson, B.A.; Hyman, J.M.; Higdon, D. Accelerating markov chain monte carlo simulation by differential evolution with self-adaptive randomized subspace sampling. Int. J. Nonlinear Sci. Numer. Simul. 2009, 10, 273–290. [Google Scholar] [CrossRef]
- Refsgaard, J.C.; Madsen, H.; Andréassian, V.; Arnbjerg-Nielsen, K.; Davidson, T.A.; Drews, M.; Hamilton, D.P.; Jeppesen, E.; Kjellström, E.; Olesen, J.E.; et al. A framework for testing the ability of models to project climate change and its impacts. Clim. Chang. 2014, 122, 271–282. [Google Scholar] [CrossRef] [Green Version]
Parameters | Description | Default | Range |
---|---|---|---|
v_ALPHA_BF.gw | Baseflow alpha factor (1/days) | 0.048 | 0–1 |
v_GW_DELAY.gw | Groundwater delay [days] | 31 | 0–500 |
v_GW_REVAP.gw | Groundwater “revap” coefficient | 0.02 | 0.02–0.2 |
v_ALPHA_BNK.rte | Baseflow alpha factor for bank storage (days) | 0 | 0–1 |
v_CH_K2.rte | Effective hydraulic conductivity [mm/hr] | 0 | 5–130 |
v_CH_N2.rte | Manning’s “n” value for the main channel | 0.014 | 0–0.3 |
r_SOL_AWC.sol | Available water capacity of the soil layer [mm H2O/mm soil] | Soil layer specific | ±60% |
r_SOL_BD.sol | Moist bulk density (Mg/m3 or g/cm3) | Soil layer specific | ±60% |
r_SOL_K.sol | Saturated hydraulic conductivity (mm/hr) | Soil layer specific | ±60% |
r_CN2.mgt | SCS runoff curve number | HRU specific | −30–10% |
v_SFTMP.bsn | Snowfall temperature (°C) | 1 | −5–5 |
r_SLSUBBSN.hru | Average slope length (m) | HRU specific | 0–20% |
Precipitation Data | Meteorological Data (Excluding Precipitation) | 2009–2011 (Calibration) | 2012–2014 (Validation) | ||||
---|---|---|---|---|---|---|---|
NSE | R2 | PBIAS (%) | NSE | R2 | PBIAS (%) | ||
Gauge | Gauge | 0.87 | 0.88 | −23.0 | 0.82 | 0.83 | −24.1 |
CFSR | 0.86 | 0.88 | −28.2 | 0.81 | 0.83 | −32.6 | |
CMADS | 0.85 | 0.88 | −29.4 | 0.79 | 0.83 | −38.1 | |
CFSR | Gauge | 0.32 | 0.34 | −26.0 | 0.15 | 0.45 | 2.6 |
CFSR | 0.32 | 0.34 | −34.2 | 0.15 | 0.44 | −10.9 | |
CMADS | 0.30 | 0.32 | −27.6 | 0.19 | 0.44 | −3.0 | |
CMADS | Gauge | 0.64 | 0.79 | −63.8 | 0.65 | 0.72 | −55.8 |
CFSR | 0.64 | 0.79 | −64.3 | 0.61 | 0.70 | −58.4 | |
CMADS | 0.64 | 0.79 | −63.5 | 0.64 | 0.72 | −58.0 | |
TRMM | Gauge | 0.50 | 0.53 | −25.3 | 0.38 | 0.44 | −13.5 |
CFSR | 0.54 | 0.59 | −39.1 | 0.33 | 0.43 | −22.1 | |
CMADS | 0.45 | 0.48 | −30.6 | 0.37 | 0.44 | −23.0 | |
CMORPH | Gauge | 0.56 | 0.69 | −49.2 | 0.65 | 0.68 | −37.8 |
CFSR | 0.56 | 0.72 | −52.0 | 0.65 | 0.69 | −39.7 | |
CMADS | 0.55 | 0.70 | −53.2 | 0.64 | 0.68 | −43.5 | |
CHIRPS | Gauge | 0.40 | 0.42 | −34.7 | 0.21 | 0.30 | −22.7 |
CFSR | 0.44 | 0.46 | −35.7 | 0.22 | 0.32 | −20.2 | |
CMADS | 0.38 | 0.40 | −37.0 | 0.21 | 0.29 | −27.8 |
Precipitation Data | Meteorological Data (Excluding Precipitation) | 2009–2011 (Calibration) | 2012–2014 (Validation) | ||||
---|---|---|---|---|---|---|---|
NSE | R2 | PBIAS (%) | NSE | R2 | PBIAS (%) | ||
Gauge | Gauge | 0.89 | 0.95 | −23.0 | 0.82 | 0.89 | −24.2 |
CFSR | 0.87 | 0.95 | −28.2 | 0.73 | 0.86 | −32.6 | |
CMADS | 0.86 | 0.95 | −29.4 | 0.67 | 0.85 | −38.2 | |
CFSR | Gauge | 0.40 | 0.44 | −26.2 | −0.40 | 0.42 | 2.2 |
CFSR | 0.37 | 0.44 | −34.4 | −0.34 | 0.38 | −11.4 | |
CMADS | 0.36 | 0.41 | −27.7 | −0.38 | 0.39 | −3.4 | |
CMADS | Gauge | 0.52 | 0.91 | -63.8 | 0.45 | 0.85 | −56.0 |
CFSR | 0.50 | 0.89 | −64.3 | 0.37 | 0.85 | −58.6 | |
CMADS | 0.51 | 0.90 | −63.6 | 0.41 | 0.87 | −58.2 | |
TRMM | Gauge | 0.61 | 0.73 | −25.4 | 0.58 | 0.61 | −13.1 |
CFSR | 0.64 | 0.83 | −39.2 | 0.51 | 0.59 | −21.7 | |
CMADS | 0.59 | 0.72 | −30.8 | 0.54 | 0.60 | −22.7 | |
CMORPH | Gauge | 0.49 | 0.80 | −49.3 | 0.67 | 0.85 | −37.9 |
CFSR | 0.48 | 0.84 | −52.1 | 0.62 | 0.83 | −39.7 | |
CMADS | 0.45 | 0.81 | −53.3 | 0.57 | 0.82 | −43.6 | |
CHIRPS | Gauge | 0.58 | 0.69 | −34.7 | 0.59 | 0.66 | −22.4 |
CFSR | 0.58 | 0.71 | −35.7 | 0.56 | 0.61 | −19.8 | |
CMADS | 0.55 | 0.68 | −36.9 | 0.47 | 0.57 | −27.4 |
Parameters | Gauge_P and Gauge_M | Gauge_P and CFSR_M | Gauge_P and CMADS_M | CFSR_P and Gauge_M | CFSR_P and CFSR_M | CFSR_P and CMADS_M | CMADS_P and Gauge_M | CMADS_P and CFSR_M | CMADS_P and CMADS_M |
---|---|---|---|---|---|---|---|---|---|
r__CN2.mgt | 0.0181 | 0.0181 | 0.0181 | −0.1025 | −0.1025 | −0.1025 | 0.0518 | 0.0518 | 0.0518 |
v__ALPHA_BF.gw | 0.5350 | 0.5350 | 0.5350 | 0.5207 | 0.5207 | 0.5207 | 0.4736 | 0.4736 | 0.4736 |
v__GW_DELAY.gw | 65.5835 | 65.5835 | 65.5835 | 8.6958 | 8.6958 | 8.6958 | 208.5404 | 208.5404 | 208.5404 |
v__GW_REVAP.gw | 0.0976 | 0.0976 | 0.0976 | 0.0550 | 0.0550 | 0.0550 | 0.0594 | 0.0594 | 0.0594 |
v__ALPHA_BNK.rte | 0.2412 | 0.2412 | 0.2412 | 0.3264 | 0.3264 | 0.3264 | 0.3553 | 0.3553 | 0.3553 |
v__CH_K2.rte | 6.3179 | 6.3179 | 6.3179 | 6.7284 | 6.7284 | 6.7284 | 6.8055 | 6.8055 | 6.80545 |
v__CH_N2.rte | 0.0912 | 0.0912 | 0.0912 | 0.0762 | 0.0762 | 0.0762 | 0.0766 | 0.0766 | 0.0766 |
r__SOL_AWC().sol | −0.4144 | −0.4144 | −0.4144 | −0.7113 | −0.3789 | −0.7113 | −0.1629 | −0.2983 | −0.2983 |
r__SOL_BD().sol | 0.0204 | 0.0204 | 0.0204 | 0.5426 | 0.5426 | 0.5426 | −0.5752 | −0.5752 | −0.5752 |
r__SOL_K().sol | −0.0827 | −0.0827 | −0.0827 | 0.5185 | 0.5185 | 0.5185 | 0.2755 | 0.2755 | 0.2755 |
v__SFTMP.bsn | 2.975 | 3.8442 | 3.8442 | 0.1092 | 0.1092 | 0.1092 | 4.2758 | 4.2758 | 4.2758 |
r__SLSUBBSN.hru | 0.0761 | 0.0761 | 0.0761 | 0.1164 | 0.1164 | 0.1164 | 0.0361 | 0.0361 | 0.0361 |
Parameters | TRMM_P and Gauge_M | TRMM_P and CFSR_M | TRMM_P and CMADS_M | CMORPH_P and Gauge_M | CMORPH_P and CFSR_M | CMORPH_P and CMADS_M | CHIRPS_P and Gauge_M | CHIRPS_P and CFSR_M | CHIRPS_P and CMADS_M |
---|---|---|---|---|---|---|---|---|---|
r__CN2.mgt | 0.0580 | 0.0031 | 0.0181 | 0.0676 | 0.0676 | 0.0676 | 0.0006 | 0.0031 | 0.0006 |
v__ALPHA_BF.gw | 0.8654 | 0.6998 | 0.5350 | 0.8782 | 0.8782 | 0.8782 | 0.3026 | 0.6998 | 0.3026 |
v__GW_DELAY.gw | 154.7278 | 2.7892 | 65.5835 | 318.0529 | 318.0529 | 318.0529 | 2.2707 | 2.7892 | 2.2707 |
v__GW_REVAP.gw | 0.0441 | 0.0694 | 0.0976 | 0.0250 | 0.0250 | 0.0250 | 0.0760 | 0.0694 | 0.0760 |
v__ALPHA_BNK.rte | 0.3662 | 0.3804 | 0.2412 | 0.6512 | 0.6512 | 0.6512 | 0.3525 | 0.3804 | 0.3525 |
v__CH_K2.rte | 5.3577 | 8.5511 | 6.3179 | 7.5657 | 7.5657 | 7.5657 | 8.6323 | 8.5511 | 8.6323 |
v__CH_N2.rte | 0.0897 | 0.0930 | 0.0916 | 0.0840 | 0.0840 | 0.0840 | 0.1252 | 0.0930 | 0.1252 |
r__SOL_AWC().sol | 0.0008 | 0.0062 | −0.4144 | 0.1718 | 0.1718 | 0.1718 | 0.1800 | 0.0062 | 0.1800 |
r__SOL_BD().sol | 0.4754 | 0.5861 | 0.0204 | 0.0106 | 0.0106 | 0.0106 | 0.0098 | 0.5861 | 0.0098 |
r__SOL_K().sol | 0.4548 | 0.5931 | −0.0827 | 0.5160 | 0.5160 | 0.5160 | 0.4455 | 0.5931 | 0.4455 |
v__SFTMP.bsn | 0.7148 | −3.4315 | 3.8442 | 3.4774 | 3.4774 | 3.4774 | 0.5679 | −3.4315 | 0.5679 |
r__SLSUBBSN.hru | 0.1733 | 0.1205 | 0.0760 | 0.0901 | 0.0901 | 0.0901 | 0.0464 | 0.1205 | 0.0464 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Zhang, Y.; Yang, L.; Li, Y. Hydrological Modeling in the Chaohu Lake Basin of China—Driven by Open-Access Gridded Meteorological and Remote Sensing Precipitation Products. Water 2022, 14, 1406. https://doi.org/10.3390/w14091406
Liu J, Zhang Y, Yang L, Li Y. Hydrological Modeling in the Chaohu Lake Basin of China—Driven by Open-Access Gridded Meteorological and Remote Sensing Precipitation Products. Water. 2022; 14(9):1406. https://doi.org/10.3390/w14091406
Chicago/Turabian StyleLiu, Junli, Yun Zhang, Lei Yang, and Yuying Li. 2022. "Hydrological Modeling in the Chaohu Lake Basin of China—Driven by Open-Access Gridded Meteorological and Remote Sensing Precipitation Products" Water 14, no. 9: 1406. https://doi.org/10.3390/w14091406
APA StyleLiu, J., Zhang, Y., Yang, L., & Li, Y. (2022). Hydrological Modeling in the Chaohu Lake Basin of China—Driven by Open-Access Gridded Meteorological and Remote Sensing Precipitation Products. Water, 14(9), 1406. https://doi.org/10.3390/w14091406