Short-Range Movement Pattern of Amphidromous Lagoon Fish Schools: Ecological Applications
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Fish School Data Collection
3.1.1. Straightness Index
3.1.2. Exploratory Swimming Speed (ESS) of Fish Schools
4. Discussion
4.1. Straigtness Index and Fish Migration
4.2. Do Exploratory Swimming Speed Values Can Help to Discriminate Fish Species?
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
Appendix C
Appendix D
Lagoons | Residence Time (s) | ESS (m s−1) | Beeline Value (D) (m) | Path Length (L) (m) | Straigthness Index (SI) |
---|---|---|---|---|---|
Ingril | 2 | 0.777 | 1.55 | 1.57 | 0.988 |
Ingril | 2 | 1.023 | 2.05 | 2.06 | 0.994 |
Ingril | 2 | 2.275 | 4.55 | 4.57 | 0.996 |
Ingril | 3 | 2.615 | 7.84 | 8.79 | 0.893 |
Ingril | 3 | 1.968 | 5.90 | 6.05 | 0.976 |
Ingril | 3 | 1.266 | 3.80 | 3.85 | 0.987 |
Ingril | 3 | 1.897 | 5.69 | 5.75 | 0.989 |
Ingril | 3 | 2.702 | 8.11 | 8.14 | 0.995 |
Ingril | 3 | 2.718 | 8.15 | 8.16 | 1.000 |
Ingril | 4 | 1.657 | 6.63 | 6.63 | 1.000 |
Ingril | 4 | 1.720 | 6.88 | 7.16 | 0.961 |
Ingril | 5 | 0.149 | 0.74 | 2.12 | 0.351 |
Ingril | 5 | 1.022 | 5.11 | 7.43 | 0.688 |
Ingril | 5 | 1.106 | 5.53 | 5.81 | 0.952 |
Ingril | 5 | 0.592 | 2.96 | 2.96 | 1.000 |
Ingril | 5 | 2.009 | 10.04 | 10.25 | 0.980 |
Ingril | 5 | 0.486 | 2.43 | 3.43 | 0.707 |
Ingril | 6 | 2.484 | 14.91 | 14.91 | 1.000 |
Ingril | 7 | 0.048 | 0.34 | 1.08 | 0.313 |
Ingril | 7 | 0.878 | 6.14 | 6.14 | 1.000 |
Ingril | 7 | 1.064 | 7.45 | 17.20 | 1.000 |
Ingril | 8 | 0.785 | 6.28 | 7.25 | 0.867 |
Ingril | 8 | 2.580 | 20.64 | 22.09 | 0.934 |
Ingril | 8 | 2.215 | 17.72 | 17.72 | 1.000 |
Ingril | 9 | 0.836 | 7.53 | 7.58 | 0.993 |
Ingril | 9 | 0.832 | 7.49 | 7.49 | 1.000 |
Ingril | 9 | 1.578 | 14.20 | 17.51 | 0.811 |
Ingril | 11 | 1.076 | 11.83 | 13.24 | 0.894 |
Ingril | 11 | 0.928 | 10.21 | 10.21 | 1.000 |
Ingril | 12 | 0.736 | 8.84 | 27.92 | 0.316 |
Ingril | 13 | 0.525 | 6.82 | 6.88 | 0.992 |
Ingril | 16 | 0.854 | 13.66 | 16.49 | 0.828 |
Ingril | 16 | 1.383 | 22.12 | 22.12 | 1.000 |
Ingril | 17 | 0.498 | 8.47 | 16.05 | 0.528 |
Ingril | 18 | 0.605 | 10.90 | 11.26 | 0.968 |
Ingril | 19 | 0.524 | 9.96 | 10.15 | 0.981 |
Ingril | 21 | 0.639 | 13.42 | 13.62 | 0.985 |
Ingril | 22 | 0.363 | 7.99 | 16.41 | 0.487 |
Ingril | 23 | 0.450 | 10.35 | 12.70 | 0.815 |
Ingril | 23 | 0.473 | 10.88 | 11.57 | 0.941 |
Ingril | 31 | 0.523 | 16.22 | 22.38 | 0.725 |
Prevost | 2 | 3.068 | 6.14 | 6.44 | 0.953 |
Prevost | 2 | 2.187 | 4.37 | 4.58 | 0.955 |
Prevost | 2 | 1.886 | 3.77 | 3.82 | 0.988 |
Prevost | 3 | 2.259 | 6.78 | 8.23 | 0.824 |
Prevost | 3 | 1.515 | 4.54 | 4.96 | 0.915 |
Prevost | 3 | 1.851 | 5.55 | 5.73 | 0.969 |
Prevost | 3 | 2.854 | 8.56 | 8.56 | 1.000 |
Prevost | 3 | 1.001 | 3.00 | 3.00 | 1.000 |
Prevost | 3 | 1.619 | 4.86 | 4.86 | 1.000 |
Prevost | 3 | 3.012 | 9.04 | 9.04 | 1.000 |
Prevost | 3 | 3.637 | 10.91 | 11.13 | 0.980 |
Prevost | 4 | 0.391 | 1.56 | 2.76 | 0.568 |
Prevost | 4 | 0.789 | 3.15 | 5.03 | 0.627 |
Prevost | 4 | 1.093 | 4.37 | 6.78 | 0.645 |
Prevost | 4 | 0.493 | 1.97 | 2.63 | 0.748 |
Prevost | 4 | 0.819 | 3.28 | 3.95 | 0.829 |
Prevost | 4 | 3.774 | 15.10 | 17.86 | 0.845 |
Prevost | 4 | 3.692 | 14.77 | 15.90 | 0.928 |
Prevost | 4 | 0.515 | 2.06 | 2.20 | 0.938 |
Prevost | 4 | 1.801 | 7.20 | 7.67 | 0.939 |
Prevost | 4 | 1.046 | 4.19 | 4.37 | 0.958 |
Prevost | 4 | 1.700 | 6.80 | 7.05 | 0.964 |
Prevost | 4 | 1.998 | 7.99 | 8.06 | 0.991 |
Prevost | 4 | 1.043 | 4.17 | 4.20 | 0.993 |
Prevost | 4 | 3.083 | 12.33 | 12.41 | 0.993 |
Prevost | 4 | 1.721 | 6.88 | 6.91 | 0.996 |
Prevost | 4 | 2.596 | 10.38 | 10.42 | 0.997 |
Prevost | 4 | 0.580 | 2.32 | 2.53 | 0.916 |
Prevost | 5 | 0.564 | 2.82 | 3.75 | 0.753 |
Prevost | 5 | 1.426 | 7.13 | 7.51 | 0.949 |
Prevost | 5 | 0.958 | 4.79 | 4.90 | 0.978 |
Prevost | 5 | 0.906 | 4.53 | 4.63 | 0.980 |
Prevost | 5 | 1.968 | 9.84 | 9.99 | 0.986 |
Prevost | 5 | 1.904 | 9.52 | 9.64 | 0.987 |
Prevost | 5 | 1.235 | 6.18 | 6.22 | 0.993 |
Prevost | 5 | 2.506 | 12.53 | 12.19 | 1.000 |
Prevost | 5 | 1.387 | 6.93 | 9.04 | 0.767 |
Prevost | 6 | 2.269 | 13.61 | 14.20 | 0.959 |
Prevost | 6 | 1.109 | 6.65 | 6.75 | 0.986 |
Prevost | 6 | 1.942 | 11.65 | 11.82 | 0.986 |
Prevost | 6 | 2.337 | 14.02 | 14.05 | 0.998 |
Prevost | 6 | 1.676 | 10.06 | 10.06 | 1.000 |
Prevost | 6 | 1.557 | 9.34 | 9.34 | 1.000 |
Prevost | 6 | 3.256 | 19.54 | 19.54 | 1.000 |
Prevost | 6 | 0.826 | 4.96 | 4.96 | 1.000 |
Prevost | 7 | 1.663 | 11.64 | 20.41 | 0.570 |
Prevost | 7 | 1.602 | 11.21 | 18.57 | 0.604 |
Prevost | 7 | 1.870 | 13.09 | 20.28 | 0.646 |
Prevost | 7 | 1.898 | 13.28 | 19.62 | 0.677 |
Prevost | 7 | 1.914 | 13.40 | 18.76 | 0.714 |
Prevost | 7 | 1.512 | 10.58 | 14.82 | 0.714 |
Prevost | 7 | 0.826 | 5.78 | 6.81 | 0.850 |
Prevost | 7 | 0.685 | 4.80 | 5.27 | 0.911 |
Prevost | 7 | 1.244 | 8.71 | 9.07 | 0.959 |
Prevost | 7 | 1.834 | 12.84 | 15.49 | 0.829 |
Prevost | 7 | 1.739 | 12.17 | 13.44 | 0.905 |
Prevost | 7 | 2.265 | 15.86 | 17.28 | 0.918 |
Prevost | 7 | 1.220 | 8.54 | 8.79 | 0.971 |
Prevost | 7 | 1.987 | 13.91 | 13.97 | 0.996 |
Prevost | 8 | 2.096 | 16.77 | 19.20 | 0.873 |
Prevost | 8 | 0.610 | 4.88 | 4.92 | 0.992 |
Prevost | 8 | 0.478 | 3.82 | 3.84 | 0.996 |
Prevost | 8 | 1.064 | 8.51 | 8.54 | 0.997 |
Prevost | 8 | 1.052 | 8.42 | 8.43 | 0.998 |
Prevost | 8 | 1.385 | 11.08 | 22.30 | 0.497 |
Prevost | 8 | 1.895 | 15.16 | 15.95 | 0.950 |
Prevost | 9 | 0.518 | 4.66 | 5.33 | 0.874 |
Prevost | 9 | 0.382 | 3.44 | 3.77 | 0.914 |
Prevost | 9 | 0.693 | 6.24 | 6.46 | 0.966 |
Prevost | 9 | 1.370 | 12.33 | 12.56 | 0.982 |
Prevost | 9 | 2.610 | 23.49 | 27.38 | 0.858 |
Prevost | 9 | 1.560 | 14.04 | 14.80 | 0.949 |
Prevost | 9 | 2.061 | 18.55 | 19.00 | 0.976 |
Prevost | 10 | 1.693 | 16.93 | 17.20 | 0.985 |
Prevost | 10 | 0.450 | 4.50 | 4.52 | 0.994 |
Prevost | 10 | 1.300 | 13.00 | 13.00 | 1.000 |
Prevost | 10 | 1.489 | 14.89 | 17.79 | 0.837 |
Prevost | 10 | 1.942 | 19.42 | 20.28 | 0.957 |
Prevost | 10 | 1.253 | 12.53 | 12.91 | 0.970 |
Prevost | 10 | 0.941 | 9.41 | 9.42 | 0.999 |
Prevost | 10 | 1.330 | 13.30 | 13.30 | 1.000 |
Prevost | 11 | 0.572 | 6.29 | 7.53 | 0.836 |
Prevost | 11 | 0.857 | 9.43 | 9.66 | 0.976 |
Prevost | 12 | 1.078 | 12.93 | 14.70 | 0.879 |
Prevost | 12 | 0.829 | 9.95 | 10.05 | 0.990 |
Prevost | 12 | 0.773 | 9.27 | 10.63 | 0.872 |
Prevost | 12 | 1.725 | 20.70 | 20.70 | 1.000 |
Prevost | 12 | 1.067 | 12.81 | 12.81 | 1.000 |
Prevost | 13 | 0.682 | 8.87 | 10.09 | 0.879 |
Prevost | 13 | 1.093 | 14.20 | 14.37 | 0.988 |
Prevost | 13 | 0.704 | 9.15 | 9.21 | 0.994 |
Prevost | 13 | 0.349 | 4.54 | 6.12 | 0.742 |
Prevost | 13 | 0.883 | 11.48 | 13.94 | 0.823 |
Prevost | 13 | 0.816 | 10.61 | 12.20 | 0.870 |
Prevost | 13 | 1.362 | 17.71 | 27.67 | 0.640 |
Prevost | 14 | 1.054 | 14.75 | 14.74 | 1.000 |
Prevost | 14 | 1.409 | 19.73 | 19.78 | 0.997 |
Prevost | 15 | 0.700 | 10.50 | 10.80 | 0.972 |
Prevost | 15 | 0.967 | 14.51 | 15.60 | 0.930 |
Prevost | 15 | 1.112 | 16.68 | 18.49 | 0.902 |
Prevost | 16 | 0.612 | 9.78 | 13.11 | 0.747 |
Prevost | 16 | 0.491 | 7.85 | 7.86 | 1.000 |
Prevost | 16 | 0.784 | 12.55 | 16.09 | 0.780 |
Prevost | 16 | 0.815 | 13.05 | 13.70 | 0.953 |
Prevost | 16 | 1.208 | 19.33 | 13.34 | 1.000 |
Prevost | 16 | 0.881 | 14.10 | 16.81 | 0.839 |
Prevost | 17 | 0.951 | 16.17 | 16.19 | 1.000 |
Prevost | 18 | 0.853 | 15.35 | 16.02 | 0.958 |
Prevost | 18 | 2.063 | 37.13 | 42.24 | 0.879 |
Prevost | 19 | 1.124 | 21.36 | 21.97 | 0.972 |
Prevost | 20 | 0.245 | 4.91 | 7.26 | 0.676 |
Prevost | 21 | 0.283 | 5.94 | 50.83 | 0.117 |
Prevost | 21 | 0.229 | 4.81 | 37.74 | 0.127 |
Prevost | 22 | 0.823 | 18.11 | 24.29 | 0.746 |
Prevost | 25 | 0.644 | 16.10 | 16.11 | 1.000 |
Prevost | 27 | 0.746 | 20.13 | 20.10 | 1.000 |
Prevost | 27 | 0.672 | 18.14 | 20.85 | 0.870 |
Prevost | 29 | 0.549 | 15.92 | 16.09 | 0.990 |
Prevost | 33 | 0.419 | 13.83 | 15.86 | 0.872 |
Prevost | 33 | 0.482 | 15.89 | 17.28 | 0.920 |
Prevost | 34 | 0.301 | 10.24 | 27.84 | 0.368 |
Prevost | 34 | 0.241 | 8.19 | 10.47 | 0.782 |
Prevost | 34 | 0.497 | 16.90 | 18.11 | 0.933 |
Residence time (s) | 2 | 4 | 6 | 8 | 10 | 12 | 14 | 16 | 18 | 20 | 22 | 24 | 26 | 28 | 30 | 32 | 34 | 36 | 38 | 40 |
ESS (m s−1) | 20.0 | 10.0 | 6.7 | 5.0 | 4.0 | 3.3 | 2.9 | 2.5 | 2.2 | 2.0 | 1.8 | 1.7 | 1.5 | 1.4 | 1.3 | 1.3 | 1.2 | 1.1 | 1.1 | 1.0 |
References
- Benhamou, S. How to reliably estimate the tortuosity of an animal’s path: Straightness, sinuosity, or fractal dimension? J. Theor. Biol. 2004, 229, 209–220. [Google Scholar] [CrossRef] [PubMed]
- Benhamou, S. Detecting an orientation component in animal paths when the preferred direction is individual-dependent. Ecology 2006, 87, 518–528. [Google Scholar] [CrossRef] [PubMed]
- Simmonds, E.J.; MacLennan, D.N. Fisheries Acoustics: Theory and Practice; Blackwell Publishing: London, UK, 2005. [Google Scholar]
- Brehmer, P.; Gerlotto, F.; Rouault, A. In Situ Inter-Standardization of Acoustics Data: An Integrated Database for Fish School Behaviour Studies. Acta Acust. United Acust. 2002, 88, 730–734. [Google Scholar]
- Guillard, J.; Fernandes, P.; Laloë, T.; Brehmer, P. Three-dimensional internal spatial structure of young-of-the-year pelagic freshwater fish provides evidence for the identification of fish school species. Limnol. Oceanogr. Methods 2011, 9, 322–328. [Google Scholar] [CrossRef] [Green Version]
- David, V.; Mouget, A.; Perrot, Y.; Le Goff, L.; Thiriet, P.; Diogoul, N.; Feunteun, E.; Acou, A.; Brehmer, P. Insights from a multibeam echosounder to survey pelagic fish shoals and their spatio-temporal distribution in ultra-shallow waters. Estuar. Coast. Shelf Sci. 2022, 264, 107705. [Google Scholar] [CrossRef]
- Brehmer, P. Fisheries Acoustics: Theory and Practice, 2nd edn. Fish Fish. 2006, 7, 227–228. [Google Scholar] [CrossRef]
- Brehmer, P.; Mouillot, D.; Chi, T.D. Amphidromus fish school diel flow in two Mediterranean lagoons by combining sonar and fishing data. J. Exp. Mar. Biol. Ecol. 2006, 334, 139–150. [Google Scholar] [CrossRef]
- Brehmer, P.; Guillard, J.; Pinzon, P.I.C.; Bach, P. Exploratory and Instantaneous Swimming Speeds of Amphidromous Fish School in Shallow-Water Coastal Lagoon Channels. Estuaries Coasts 2011, 34, 739–744. [Google Scholar] [CrossRef] [Green Version]
- Stasko, A.B.; Horrall, R.M.; Hasler, A. Coastal Movements of Adult Fraser River Sockeye Salmon (Oncorhynchus nerka) Observed by Ultrasonic Tracking. Trans. Am. Fish. Soc. 1976, 105, 64–71. [Google Scholar] [CrossRef]
- Hawkes, L.A.; Broderick, A.C.; Coyne, M.S.; Godfrey, M.H.; Lopez-Jurado, L.-P.; Lopez-Suarez, P.; Merino, S.E.; Varo-Cruz, N.; Godley, B.J. Phenotypically Linked Dichotomy in Sea Turtle Foraging Requires Multiple Conservation Approaches. Curr. Biol. 2006, 16, 990–995. [Google Scholar] [CrossRef] [Green Version]
- Weimerskirch, H.; Bonadonna, F.; Bailleul, F.; Mabille, G.; Dell’Omo, G.; Lipp, H.P. GPS tracking of foraging albatrosses. Science 2002, 295, 1259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giacalone, V.; D’Anna, G.; Pipitone, C.; Badalamenti, F. Movements and residence time of spiny lobsters, Palinurus elephas released in a marine protected area: An investigation by ultrasonic telemetry. J. Mar. Biol. Assoc. U. K. 2006, 86, 1101–1106. [Google Scholar] [CrossRef]
- Klimley, A.P.; Beavers, S.C.; Curtis, T.C.; Jorgensen, S.J. Movements and Swimming Behavior of Three Species of Sharks in La Jolla Canyon, California. Environ. Biol. Fishes 2002, 63, 117–135. [Google Scholar] [CrossRef]
- Ware, D.M. Bioenergetics of Pelagic Fish: Theoretical Change in Swimming Speed and Ration with Body Size. J. l’Office Rech. Pêcheries Can. 1978, 35, 220–228. [Google Scholar] [CrossRef]
- Brochier, T.; Auger, P.-A.; Pecquerie, L.; Machu, E.; Capet, X.; Thiaw, M.; Mbaye, B.C.; Braham, C.-B.; Ettahiri, O.; Charouki, N.; et al. Complex small pelagic fish population patterns arising from individual behavioral responses to their environment. Prog. Oceanogr. 2018, 164, 12–27. [Google Scholar] [CrossRef]
- Videler, J.J. Fish Swimming; Chapman & Hall: London, UK, 1993. [Google Scholar]
- Marcinek, D.J.; Blackwell, S.B.; Dewar, H.; Freund, E.V.; Farwell, C.; Dau, D.; Seitz, A.C.; Block, B.A. Depth and muscle temperature of Pacific bluefin tuna examined with acoustic and pop-up satellite archival tags. Mar. Biol. 2001, 138, 869–885. [Google Scholar] [CrossRef]
- Zydlewski, G.B.; Haro, A.; Whalen, K.G.; McCormick, S.D. Performance of stationary and portable passive transponder detection systems for monitoring of fish movements. J. Fish Biol. 2001, 58, 1471–1475. [Google Scholar] [CrossRef]
- Dunlop, E.S.; Milne, S.W.; Ridgway, M.S.; Condiotty, J.; Higginbottom, I. In Situ Swimming Behavior of Lake Trout Observed Using Integrated Multibeam Acoustics and Biotelemetry. Trans. Am. Fish. Soc. 2010, 139, 420–432. [Google Scholar] [CrossRef]
- Trygonis, V.; Georgakarakos, S.; Dagorn, L.; Brehmer, P. Spatiotemporal distribution of fish schools around drifting fish aggregating devices. Fish. Res. 2016, 177, 39–49. [Google Scholar] [CrossRef]
- Fréon, P.; Misund, O.A. Dynamics of Pelagic Fish Distribution and Behaviour: Effects on Fisheries and Stock Assessment; Blackwell Science: London, UK, 1999. [Google Scholar]
- Mouillot, D.; Laune, J.; Tomasini, J.A.; Aliaume, C.; Brehmer, P.; Dutrieux, E.; Chi, T.D. Assessment of coastal lagoon quality with taxonomic diversity indices of fish, zoobenthos and macrophyte communities. Hydrobiologia 2005, 550, 121–130. [Google Scholar] [CrossRef]
- Bourquard, C. Structure et Mécanisme de Mise en Place, de Maintien et d’Evolution des Peuplements Ichthyologiques Lagunaires du Golfe du Lion. Ph.D. Thesis, Université Montpellier, Montpellier, France, 1985. [Google Scholar]
- Bach, P.; Legendre, P.; Amanieu, M.; Lasserre, G. Strategy of eel (Anguilla anguilla, L.) exploitation in the Thau lagoon. Estuar. Coast. Shelf Sci. 1992, 35, 55–73. [Google Scholar] [CrossRef]
- Quignard, J.P.; Mazoyer, C.; Vianet, R.; Wai, R.M.; Benharrat, K. Un exemple d’exploitation lagunaire en Languedoc: L’étang de l’Or (Mauguio)—Pêche et production halieutique. Sci. Pêche 1983, 336, 3–23. [Google Scholar]
- Brehmer, P.; Chi, T.D.; Laugier, T.; Galgani, F.; Laloë, F.; Darnaude, A.M.; Fiandrino, A.; Mouillot, D. Field investigations and multi-indicators for shallow water lagoon management: Perspective for societal benefit. Aquat. Conserv. 2011, 21, 728–742. [Google Scholar] [CrossRef] [Green Version]
- Brehmer, P.; Vercelli, C.; Gerlotto, F.; Sanguinède, F.; Pichot, Y.; Buestel, D.; Guénnegan, Y. Multibeam sonar three-dimensional monitoring of mussel culture grounds in open sea for management purpose. Aquaculture 2006, 252, 234–241. [Google Scholar] [CrossRef] [Green Version]
- Epstein, N. On tortuosity and the tortuosity factor in flow and diffusion through porous media. Chem. Eng. Sci. 1989, 44, 777–779. [Google Scholar] [CrossRef]
- Cronkite, G.; Mulligan, T.; Holmes, J.; Enzenhofer, H. Categorising salmon migration behaviour using characteristics of split-beam acoustic data. Aquat. Living Resour. 2007, 20, 205–212. [Google Scholar] [CrossRef]
- Thalinger, B.; Wolf, E.; Traugott, M.; Wanzenböck, J. Monitoring spawning migrations of potamodromous fish species via eDNA. Sci. Rep. 2019, 9, 15388. [Google Scholar] [CrossRef] [Green Version]
- Brehmer, P.; Soncho, G.; Trygornis, V.; Itano, D.; Dalen, J.; Fuchs, A.; Faraj, A.; Taquet, M. Toward an autonomous observatory of pelagic environment: Experiences from fish communities monitoring around drifting FADs. Thalass. Int. J. Mar. Sci. 2019, 35, 177–189. [Google Scholar] [CrossRef] [Green Version]
- Minart, C.; David, V.; Mouget, A.; Brehmer, P.; Acou, A.; Le Goff, L.; Feunteun, E.; Thiriet, P. An innovative sampling protocol for fish species identification methods in shallow waters: Towed diver, towed video and stereoscopic camera system. In Proceedings of the Oceans 2021, San Diego, CA, USA, 20–23 September 2021; pp. 1–10. [Google Scholar] [CrossRef]
- Gladstone, W.; Lindfield, S.; Coleman, M.; Kelaher, B. Optimisation of baited remote underwater video sampling designs for estuarine fish assemblages. J. Exp. Mar. Biol. Ecol. 2012, 429, 28–35. [Google Scholar] [CrossRef]
- Weill, A.; Scalabrin, C.; Diner, N. MOVIES-B: An acoustic detection description software. Application to shoal species’ classification. Aquat. Living Resour. 1993, 6, 255–267. [Google Scholar] [CrossRef]
- Perrot, Y.; Brehmer, P.; Habasque, J.; Roudaut, G.; Behagle, N.; Sarre, A.; Lebourges Dhaussy, A. Matecho: An Open-Source Tool for Processing Fisheries Acoustics Data. Acoust. Aust. 2018, 46, 241–248. [Google Scholar] [CrossRef]
- Brehmer, P.; Lafont, T.; Georgakarakos, S.; Josse, E.; Gerlotto, F.; Collet, C. Omnidirectional multibeam sonar monitoring: Applications in fisheries science. Fish Fish. 2006, 7, 165–179. [Google Scholar] [CrossRef]
- Cury, P.M.; Shin, Y.-J.; Planque, B.; Durant, J.M.; Fromentin, J.M.; Kramer-Schadt, S.; Stenseth, N.C.; Travers, M.; Grimm, V. Ecosystem oceanography for global change in fisheries. Trends Ecol. Evol. 2008, 23, 338–346. [Google Scholar] [CrossRef] [PubMed]
- Fulton, E.A.; Link, J.S.; Kaplan, I.C.; Savina-Rolland, M.; Johnson, P.; Ainsworth, C.; Horne, P.; Gorton, R.; Gamble, R.J.; Smith, A.D.M.; et al. Lessons in modelling and management of marine ecosystems: The Atlantis experience. Fish Fish. 2011, 12, 171–188. [Google Scholar] [CrossRef]
- Moreno, G.; Josse, E.; Brehmer, P.; Nøttestad, L. Echotrace classification and spatial distribution of pelagic fish aggregations around drifting fish aggregating devices (DFAD). Aquat. Living Resour. 2007, 20, 343–356. [Google Scholar] [CrossRef]
- Olsen, K. A note on estimating school size from echotraces. FAO Fish. Rep. 1969, 78, 37–48. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brehmer, P.; Soria, M.; David, V.; Pinzon, P.I.C.; Bach, P.; Diogoul, N.; Guillard, J. Short-Range Movement Pattern of Amphidromous Lagoon Fish Schools: Ecological Applications. Water 2022, 14, 1463. https://doi.org/10.3390/w14091463
Brehmer P, Soria M, David V, Pinzon PIC, Bach P, Diogoul N, Guillard J. Short-Range Movement Pattern of Amphidromous Lagoon Fish Schools: Ecological Applications. Water. 2022; 14(9):1463. https://doi.org/10.3390/w14091463
Chicago/Turabian StyleBrehmer, Patrice, Marc Soria, Viviane David, Pablo Ivan Caballero Pinzon, Pascal Bach, Ndague Diogoul, and Jean Guillard. 2022. "Short-Range Movement Pattern of Amphidromous Lagoon Fish Schools: Ecological Applications" Water 14, no. 9: 1463. https://doi.org/10.3390/w14091463
APA StyleBrehmer, P., Soria, M., David, V., Pinzon, P. I. C., Bach, P., Diogoul, N., & Guillard, J. (2022). Short-Range Movement Pattern of Amphidromous Lagoon Fish Schools: Ecological Applications. Water, 14(9), 1463. https://doi.org/10.3390/w14091463