Field Measurements and Modelling of Vessel-Generated Waves and Caused Bank Erosion—A Case Study at the Sabine–Neches Waterway, Texas, USA
Abstract
:1. Introduction
2. Methods
2.1. Study Area
2.2. Field Study
2.3. Wave and Vessel Data Collection and Significant Wave Height Calculation
2.4. Empirical Models for Predicting Vessel-Generated Maximum Wave Height
2.5. Stream Bed Erosion and Bank Stability
3. Results
3.1. Field Survey and Soil Characteristics
3.2. Wave Data Analysis and Significant Wave Height
3.3. Predictive Models for Long-Period Drawdown Induced Maximum Wave Height
3.4. Channel Bed Erosion due to Waves
3.5. Bank Erosion due to Waterway Flow
3.6. Bank and Toe Protection Measures
4. Discussion
4.1. Predictive Models for Estimating Vessel-Generated Maximum Wave Height
4.2. Wake Wash Erosion and Protection
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Beck, R.F. The wave resistance of a thin ship with a rotational wake. J. Ship Res. 1971, 15, 196–216. [Google Scholar] [CrossRef]
- Brard, R. Viscosity, wake, and ship waves. J. Ship Res. 1970, 4, 207–240. [Google Scholar] [CrossRef]
- Sorensen, M.R. Predication of Vessel-Generated Waves with Reference to Vessels Common to the Upper Mississippi River System; ENV Report 4; U.S. Army Corps of Engineers Waterways Experiment Station: Vicksburg, MS, USA, 1997. [Google Scholar]
- Zaghi, S.; Broglia, R.; Di Mascio, A. Numerical simulation of interference effects on high speed catamaran. J. Mar. Sci. Technol. 2011, 16, 254–269. [Google Scholar]
- Zaghi, S.; Broglia, R.; Di Mascio, A. Analysis of the interference effects for high-speed catamarans by model tests and numerical simulations. Ocean Eng. 2011, 38, 2110–2122. [Google Scholar] [CrossRef]
- Yaakob, O.B.; Nasirudin, A.; Abdul Ghani, M.P.; Mat Lazim, T.; Abd Mukti, M.A.; Ahmed, Y.M. Parametric study of a low wake-wash inland waterways catamaran. Sci. Iran. 2012, 19, 463–471. [Google Scholar] [CrossRef] [Green Version]
- Hartman, M.A.; Styles, R. Vessel Wake Prediction Tool; Coastal and Hydraulics Engineering Technical Note-IV-121 (ERDC/CHL CHETN-IV-121); Engineer Research and Development Center/Coastal and Hydraulics Laboratory, U.S. Army Corps of Engineers: Vicksburg, MS, USA, 2020. [Google Scholar]
- Hagerty, D.J.; Hagerty, M.J. Ohio river bank erosion-traffic effects. J. Waterw. Port Coast. Ocean Eng. 1989, 115, 404–408. [Google Scholar] [CrossRef]
- Nanson, G.C.; Von Krusenstierna, A.; Bryant, E.A.; Renilson, M.R. Experimental measurements of river-bank erosion caused by boat-generated waves on the gordon river, Tasmania. River Res. Appl. 1994, 9, 1–14. [Google Scholar] [CrossRef]
- Duró, G.; Crosato, A.; Kleinhans, M.G.; Roelvink, D.; Uijttewaal, W.S.J. Bank erosion processes in regulated navigable rivers. J. Geophys. Res. Earth. Surf. 2020, 125, e2019JF005441. [Google Scholar] [CrossRef]
- Cornett, A.; Tschirky, P.; Knox, P.; Rollings, S. Moored ship motions due to passing vessels in a narrow inland waterway. Paper No. 1005. In Proceedings of the International Conference on Coastal Engineering, Hamburg, Germany, 31 August–5 September 2008; pp. 1–14. [Google Scholar]
- Li, L.; Yuan, Z.; Gao, Y. Wash wave effects on ships moored in ports. Appl. Ocean Res. 2018, 77, 89–105. [Google Scholar] [CrossRef] [Green Version]
- Havelock, T.H. The propagation of groups of waves in dispersive media, with application to waves on water produced by a travelling disturbance. Proc. R. Soc. A Math. Phys. Eng. Sci. 1908, 81, 398–430. [Google Scholar]
- Thomson, W. On ship waves. Proc. Inst. Mech. Eng. 1887, 38, 409–434. [Google Scholar] [CrossRef]
- Roo, S.D.; Crombrugge, W.V.; Troch, P.; Van, J.; Acker, J.V.; Maes, E. Field monitoring of ship-induced loads on (alternative) bank protections of non-tidal waterways. In Proceedings of the PIANC MMX 32nd Congress, Liverpool, UK, 10–14 May 2010; pp. 1–10. [Google Scholar]
- Allenström, B.; Andreasson, H.; Leer-Andersen, M.; Li, D. Amplification of ship-generated wake wash due to coastal effects. Trans. of Soc. Nav. Archit. Mar. Eng. 2003, 111, 61–77. [Google Scholar]
- Havelock, T.H. Wave resistance: Some cases of three-dimensional fluid motion. Proc. R. Soc. A Math. Phys. Eng. Sci. 1919, 95, 354–365. [Google Scholar]
- Darmon, A.; Benzaquen, M.; Raphaël, E. Kelvin wake pattern at large Froude numbers. J. Fluid Mech. 2014, 738, 1–8. [Google Scholar] [CrossRef]
- Miao, S.; Liu, Y. Wave pattern in the wake of an arbitrary moving surface pressure disturbance. Phys. Fluids 2015, 27, 122102. [Google Scholar] [CrossRef]
- Torsvik, T.; Pedersen, G.; Dysthe, K. Waves generated by a pressure disturbance moving in a channel with a variable cross-sectional topography. J. Waterw. Port Coast. Ocean Eng. 2009, 135, 120–123. [Google Scholar] [CrossRef]
- Chang, C.-H.; Wang, K.-H. Generation of three-dimensional fully nonlinear water waves by a submerged moving object. J. Eng. Mech. 2011, 137, 101–112. [Google Scholar] [CrossRef]
- Soulsby, R.L. Dynamics of Marine Sands; Thomas Telford: London, UK, 1997. [Google Scholar]
- Althage, J. Ship-Induced Waves and Sediment Transport in Göta River, Sweden. Master’s Thesis, Lund University, Lund, Sweden, 2010. [Google Scholar]
- Fleit, G.; Baranya, S.; Rüther, N.; Bihs, H.; Krámer, T.; Józsa, J. Investigation of the effects of ship induced waves on the littoral zone with field measurements and CFD modeling. Water 2016, 8, 300. [Google Scholar] [CrossRef] [Green Version]
- Shi, B.W.; Yang, S.L.; Wang, Y.P.; Bouma, T.J.; Zhu, Q. Geomorphology relating accretion and erosion at an exposed tidal wetland to the bottom shear stress of combined current—Wave action. Geomorphology 2012, 138, 380–389. [Google Scholar] [CrossRef]
- Zhu, Q.; Yang, S.; Ma, Y. Intra-Tidal sedimentary processes associated with combined wave–current action on an exposed erosional mud flat, Southeastern Yangtze River Delta, China. Mar. Geol. 2014, 347, 95–106. [Google Scholar] [CrossRef]
- Thorne, C.R.; Hey, R.D.; Newson, M.D. Applied Fluvial Geomorphology for River Engineering and Management; Wiley & Sons: London, UK, 1998. [Google Scholar]
- Simon, A.; Curini, A.; Darby, S.E.; Langendoen, E.J. Bank and near-bank processes in an incised channel. Geomorphology 2000, 35, 183–217. [Google Scholar] [CrossRef]
- Langendoen, E.J.; Alonso, C.V. Modeling the evolution of incised streams: I. model formulation and validation of flow and streambed evolution components. J. Hydraul. Eng. 2008, 134, 749–762. [Google Scholar] [CrossRef] [Green Version]
- Simon, A.; Pollen-Bankhead, N.; Thomas, R.E. Development and application of a deterministic bank stability and toe erosion model for stream restoration. Geophys. Monogr. Ser. 2011, 194, 453–474. [Google Scholar]
- Langendoen, E.J. Concepts—Conservational Channel Evolution and Pollutant Transport System; Version 1.0, Research Report No. 16; US Department of Agriculture, Agricultural Research Service, National Sedimentation Laboratory: Oxford, MS, USA, 2000.
- Langendoen, E.J. Application of the Concepts channel evolution model in stream restoration strategies. In Stream Restoration in Dynamic Fluvial Systems; Simon, A., Bennett, S.J., Castro, J.M., Eds.; American Geophysical Union: Washington, DC, USA, 2011; pp. 487–502. [Google Scholar]
- Klavon, K.; Fox, G.; Guertault, L.; Langendoen, E.; Enlow, H.; Miller, R.; Khanal, A. Evaluating a process-based model for use in streambank stabilization: Insights on the Bank Stability and Toe Erosion Model (BSTEM). Earth Surf. Process. Landf. 2017, 42, 191–213. [Google Scholar] [CrossRef]
- U.S Department of Agriculture, Agricultural Research Service (USDA ARS). Available online: https://www.ars.usda.gov/southeast-area/oxford-ms/national-sedimentation-laboratory/watershed-physical-processes-research/research/bstem/ (accessed on 1 January 2016).
- Landphair, H.C.; Li, M. Biotechnical Streambank Stabilization: A Viable Technology in Texas; Project Summary Report 1836-S; Texas Department of Transportation: Austin, TX, USA, 2001; Available online: https://static.tti.tamu.edu/tti.tamu.edu/documents/1836-S.pdf (accessed on 1 January 2016).
- Simon, A.; Collison, A.J.C. Quantifying the mechanical and hydrologic effects of riparian vegetation on streambank stability. Earth Surf. Process. Landf. 2002, 27, 527–546. [Google Scholar] [CrossRef]
- Sabine Neches Navigation District (SNND). Available online: https://www.navigationdistrict.org/about/snnd/, (accessed on 1 January 2016).
- NOAA. Available online: https://tidesandcurrents.noaa.gov/stationhome.html?id=8770822 (accessed on 1 January 2016).
- Seabergh, W.C.; Smith, E.R.; Rosati, J.D. Sabine-Neches Waterway, Sabine Pass Jetty System: Past and Future Performance; ERDC/CHL TR-10-2; Engineer Research and Development Center/Coastal and Hydraulics Laboratory, U.S. Army Corps of Engineers: Vicksburg, MS, USA, 2010. [Google Scholar]
- Wu, X.; Mehta, A.; Zaloom, A.V.; Craig, B. Analysis of waterway transportation in Southeast Texas waterway based on AIS data. Ocean Eng. 2016, 121, 196–209. [Google Scholar] [CrossRef]
- Wu, X.; Rahman, A.; Zaloom, A.V. Study of travel behavior of vessels in narrow waterways using AIS data–a case study in Sabine-Neches waterways. Ocean Eng. 2017, 147, 399–413. [Google Scholar] [CrossRef]
- U.S. Army Corps of Engineers (USACE). Available online: http://www.swg.usace.army.mil. (accessed on 1 January 2016).
- Sobey, R.J.; Hughes, S.A. A locally nonlinear interpretation of PUV measurements. Coast. Eng. 1999, 36, 17–36. [Google Scholar] [CrossRef]
- Bonneton, P.; Lannes, D. Recovering water wave elevation from pressure measurements. J. Fluid Mech. 2017, 833, 399–429. [Google Scholar] [CrossRef] [Green Version]
- Oliveras, K.L.; Vasan, V.; Deconinck, B.; Henderson, D. Recovering the water-wave profile from pressure measurements. SIAM J. Appl. Math. 2012, 72, 897–918. [Google Scholar] [CrossRef] [Green Version]
- Marino, M.; Rabionet, I.C.; Musumeci, R.E. Measuring free surface elevation of shoaling waves with pressure transducers. Cont. Shelf Res. 2022, 245, 104803. [Google Scholar] [CrossRef]
- Dean, R.G.; Dalrymple, R.A. Water Wave Mechanics for Engineers and Scientists; Advanced Series on Ocean Engineering; World Scientific: Singapore, 1991; Volume 2. [Google Scholar]
- Weggel, J.R.; Sorensen, R.M. Ship wave prediction for port and channel design. In Proceedings of the Ports ′86 Conference, Oakland, CA, USA, 19–21 May 1986; Paul, H.S., Ed.; ASCE: New York, NY, USA, 1986; pp. 797–814. [Google Scholar]
- Partheniades, E. Erosion and deposition of cohesive soils. J. Hydraul. Div. 1965, 91, 105–139. [Google Scholar] [CrossRef]
- Whitehouse, R.; Soulsby, R.; Roberts, W.; Mitchener, H. Dynamics of Estuarine Muds: A Manual for Practical Applications; Tomas Telford Limited: London, UK, 2000. [Google Scholar]
- Sandford, L.P.; Maa, J.P.Y. A unified erosion formulation for fine sediments. Mar. Geol. 2001, 179, 9–23. [Google Scholar] [CrossRef]
- Shields, A.F. Application of similarity principles and turbulence research to bed-load movement. In Mitteilungen der Preussischen Versuchsanstalt für Wasserbau und Schiffbau, Berlin, Germany; Ott, W.P., van Uchelen, J.C., Eds.; California Institute of Technology, Hydrodynamics Lab: Pasadena, CA, USA, 1936; pp. 5–24. [Google Scholar]
- Miller, M.C.; McCave, I.N.; Komar, P.D. Threshold of sediment motion under unidirectional currents. Sedimentology 1977, 24, 507–527. [Google Scholar] [CrossRef]
- Hanson, G.J.; Simon, A. Erodibility of cohesive streambeds in the loess area of the midwestern USA. Hydrol. Process. 2001, 38, 23–38. [Google Scholar] [CrossRef]
- U.S. Army Corps of Engineers. Waterways Experiment Station, Engineering and Design: Channel Stability Assessment for Flood Control Projects. Technical Report ERDC EM 1110-2-1418; U.S. Army Corps of Engineers: Vicksburg, MS, USA, 1994. [Google Scholar]
- Fischenich, J.C. Channel erosion analysis and control. In Proceedings of the Symposium on Headwaters Hydrology; Woessmer, W., Potts, D.F., Eds.; American Water Resources Association: Bethesda, MD, USA, 1989. [Google Scholar]
- Thorne, C.R.; Tovey, N.K. Stability of composite river banks. Earth Surf. Process. Landf. 1981, 6, 469–484. [Google Scholar] [CrossRef]
- Cruden, D.M.; Varnes, D.J. Landslide Types and Processes; Special Report; Transportation Reseach Board, US National Academy of Sciences: Washington, DC, USA, 1996; Volume 247, pp. 36–75. [Google Scholar]
- Fredlund, D.G.; Morgenstern, N.R.; Widger, R.A. The shear strength of unsaturated soils. Can. Geotech. J. 1978, 15, 313–321. [Google Scholar] [CrossRef]
- Langendoen, E.J.; Simon, A. Modeling the evolution of incised streams: II: Streambank erosion. J. Hydraul. Eng. 2008, 134, 905–915. [Google Scholar] [CrossRef]
- Simon, A.; Curini, A. Pore pressure and bank stability: The influence of matric suction. Hydraul. Eng. 1998, 98, 358–363. [Google Scholar]
- Crosato, A. Physical explanations of variations in river meander migration rates from model comparison. Earth Surf. Process. Landf. 2007, 34, 2078–2086. [Google Scholar] [CrossRef]
- Fischenich, C. Stability Thresholds for Stream Restoration Materials; Technical Report ERDC TN-EMRRP-SR-29; U.S. Army Corps of Engineers: Vicksburg, MS, USA, 2001. Available online: https://www.marincounty.org/-/media/files/departments/pw/mcstoppp/residents/fischenichstabilitythresholds.pdf (accessed on 1 January 2016).
- Kolkmeier, B. Stream Bank Erosion and Protection due to Wake Wash in the Sabine Neches Waterway. Master’ Thesis, Lamar University, Beaumont, TX, USA, 2017. [Google Scholar]
- Macfarlane, G.J.; Bose, N.; Duffy, J.T. Wave wake: Focus on vessel operations within sheltered waterways. In Proceedings of the 2012 SNAME Maritime Convention, Providence, RI, USA, 24–27 October 2012; pp. 27–48. [Google Scholar]
- Heitmuller, F.T.; Greene, L.E. Historical Channel Adjustment and Estimates of Selected Hydraulic Values in the Lower Sabine River and Lower Brazos River Basins; Texas and Louisiana Scientific Investigations Report; U.S. Geological Survey: Reston, VA, USA, 2009. Available online: https://water.usgs.gov/lookup/getwatershed?12010005 (accessed on 1 January 2016).
- U.S. Army Corps of Engineers (USACE). Design of Coastal Revetments, seawalls, and Bulkheads; Engineer Manual EM 1110-2-1614; U.S. Army Corps of Engineers (USACE): Washington, DC, USA, 1995.
Location | Specific Gravity | Medium Size (D50) | Liquid Limit | Plastic Limit | Porosity | Hydraulic Conductivity | Soil Type (AASHTO/USCS) |
---|---|---|---|---|---|---|---|
Location A.1 | 2.60 | 0.19 mm | 21.0 | 18.7 | 0.31 | 0.0006 cm/s | A-2-4/poorly graded sand-silt mixture |
Location A.2 | 2.54 | 2.5 mm | 23 | 17.9 | 0.39 | 1.4 cm/s | A-1-a/poorly graded sand with gravel, silty and clay mixture |
Location A.3 | 2.43 | 0.7 mm | 25 | 20.7 | 0.41 | 0.004 cm/s | A-1-b/silty sand with gravel |
Location B.1 | 2.70 | 0.018 mm | 63 | 19 | 0.51 | 0.000003 cm/s | A-7-6/Fat Clay |
Location B.2 | 2.58 | 0.97 mm | 28.5 | 17.3 | 0.38 | 0.005 cm/s | A-2-6/clayey sand |
Location B.3 | 2.63 | 0.42 mm | 28 | 20 | 0.42 | 0.003 cm/s | A-1-b/silt sand |
Vessel Name | Vessel Type | Speed (knots) | Draft (m) | Length (m) | Beam (m) | Hmax (m) |
---|---|---|---|---|---|---|
SILVIO | LNG Tanker | 6.5 | 8.80 | 220 | 36.6 | 0.202 |
PARAMOUNT HATTERAS | Tanker | 7.7 | 8.50 | 250 | 44.0 | 0.204 |
NS LAGUNA | Tanker | 7 | 9.00 | 250 | 43.8 | 0.207 |
LUBARA | LNG Tanker | 6.7 | 12.05 | 255 | 36.6 | 0.212 |
LONE STAR STATE | Tanker | 6.7 | 11.43 | 186 | 32.2 | 0.217 |
GULF MIST | Tanker | 7.8 | 10.65 | 184 | 27.0 | 0.218 |
GUARDIANSHIP | Cargo | 6 | 12.19 | 190 | 32.3 | 0.221 |
ALTHEA | Tanker | 7.1 | 10.10 | 248 | 43.0 | 0.223 |
ORIENT TRADER | Cargo | 7.7 | 10.10 | 180 | 30.0 | 0.223 |
LEFKARA | Tanker | 5.3 | 11.40 | 183 | 32.2 | 0.230 |
LONE STAR STATE | Tanker | 7.5 | 11.43 | 186 | 32.2 | 0.234 |
EAGLE TORRANCE | Tanker | 8.4 | 8.50 | 236 | 42.1 | 0.236 |
GENER8 ORION | Tanker | 6.9 | 10.60 | 274 | 48.0 | 0.238 |
NS ARCTIC | Tanker | 6 | 10.50 | 250 | 44.0 | 0.241 |
EMERALD SPIRIT | Tanker | 6.9 | 11.70 | 243 | 42.0 | 0.247 |
NORDBAY | Tanker | 6.3 | 8.79 | 249 | 44.0 | 0.249 |
HOUSTON | Tanker | 8 | 11.13 | 187 | 27.4 | 0.250 |
MARAN SAGITTA | Tanker | 6.4 | 8.60 | 244 | 42.0 | 0.251 |
MARAN ATLAS | Tanker | 6.5 | 8.61 | 244 | 42.0 | 0.252 |
SILVIO | LNG Tanker | 7.1 | 12.00 | 220 | 36.6 | 0.256 |
EAGLE SIBU | Tanker | 6.7 | 8.80 | 244 | 42.0 | 0.260 |
GULF MIST | Tanker | 6.4 | 10.65 | 184 | 27.0 | 0.268 |
BOW CARDINAL | Tanker | 7.2 | 8.10 | 183 | 32.2 | 0.277 |
MARAN ATLAS | Tanker | 7.4 | 8.61 | 244 | 42.0 | 0.279 |
ALPINE ETERNITY | Tanker | 6.5 | 10.80 | 183 | 32.2 | 0.282 |
TELLEVIKEN | Tanker | 6.9 | 8.80 | 250 | 43.8 | 0.289 |
HELLAS SPARTA | LNG Tanker | 7.1 | 12.00 | 225 | 36.0 | 0.289 |
BRITISH ROBIN | Tanker | 8.4 | 11.10 | 252 | 43.8 | 0.305 |
BOW TONE | Tanker | 8.1 | 9.50 | 170 | 26.6 | 0.306 |
CORRIDO | Tanker | 6.9 | 10.90 | 183 | 32.0 | 0.309 |
ENERGY PATRIOT | Tanker | 6.8 | 11.10 | 183 | 32.2 | 0.315 |
SCF SAMOTLOR | Tanker | 6.9 | 9.90 | 274 | 48.0 | 0.319 |
EAGLE SIBU | Tanker | 6.2 | 12.19 | 244 | 42.0 | 0.339 |
PELICAN STATE | Tanker | 8.4 | 9.12 | 183 | 32.2 | 0.346 |
TEXAS | Tanker | 7.7 | 10.80 | 183 | 32.2 | 0.352 |
PAZIFIK | LNG Tanker | 6.2 | 11.10 | 205 | 32.0 | 0.357 |
NS ARCTIC | Tanker | 7.8 | 10.50 | 250 | 44.0 | 0.383 |
OVERSEAS ANACORTES | Tanker | 8.4 | 11.41 | 183 | 32.2 | 0.395 |
STAR KVARVEN | Bulk Carrier | 9 | 9.38 | 209 | 32.3 | 0.396 |
AURORA VAR | LNG Tanker | 8.2 | 11.60 | 225 | 36.6 | 0.397 |
EMERALD SPIRIT | Tanker | 8.5 | 11.70 | 243 | 42.0 | 0.404 |
EAGLE KANGAR | Tanker | 7.2 | 9.00 | 244 | 42.0 | 0.428 |
BBC KIMBERLEY | Cargo | 9.4 | 5.45 | 139 | 20.0 | 0.431 |
HOUSTON | Tanker | 6.7 | 11.13 | 187 | 27.4 | 0.440 |
BW LEO | LNG Tanker | 9.1 | 11.70 | 225 | 36.0 | 0.445 |
NS CHAMPION | Tanker | 8.8 | 10.20 | 244 | 42.0 | 0.449 |
EAGLE SIBU | Tanker | 8.8 | 8.80 | 244 | 42.0 | 0.460 |
AGATHONISSOS | Tanker | 8.8 | 8.30 | 244 | 42.0 | 0.465 |
ELKA BENE | Tanker | 8.4 | 11.50 | 189 | 32.2 | 0.473 |
EAGLE FORD | Tanker | 8.4 | 11.38 | 270 | 42.0 | 0.474 |
ORIENT TRADER | Cargo | 8.5 | 10.10 | 180 | 30.0 | 0.527 |
SEABULK CHALLENGE | Tanker | 9.2 | 11.51 | 187 | 32.3 | 0.529 |
OMODOS | Tanker | 9.3 | 7.50 | 183 | 32.2 | 0.552 |
Maximum Wave Height Predictive Models | Model Coefficients | ||||
---|---|---|---|---|---|
α | β | γ | δ | ||
SNWW-1 model (α is a calibrated value.) | 0.063 | 2 | 0.5 | 2.5 | 0.664 |
SNWW-2 model (α and β are calibrated values.) | 0.055 | 2.11 | 0.5 | 2.5 | 0.726 |
SNWW-3 model (α, β, and γ are calibrated values.) | 0.0076 | 2.19 | −0.1 | 2.5 | 0.763 |
SNWW-4 model (α and δ are calibrated values.) | 0.076 | 2 | 0.5 | 1.67 | 0.769 |
Model | Nash–Sutcliffe Model Efficiency Coefficient (NSE) | RMSE (m) |
---|---|---|
USACE Model | −0.574 | 0.127 |
SNWW-1 Model | 0.481 | 0.073 |
SNWW-2 Model | 0.505 | 0.072 |
SNWW-3 Model | 0.483 | 0.073 |
SNWW-4 Model | 0.535 | 0.069 |
Erosion Protections Applied On | Erosion Location | Erosion Area (m2) | |||||
---|---|---|---|---|---|---|---|
Location A | Location B | ||||||
Geotextile | Large Woody Debris | Riprap | Geotextile | Large Woody Debris | Riprap | ||
Bank only | Bank | 0 | 0 | 0 | 0 | 0 | 0 |
Toe | 87.651 | 87.779 | 84.114 | 15.866 | 12.859 | 12.846 | |
Toe only | Bank | 0.231 | 0.231 | 0.231 | 0.525 | 0.525 | 0.525 |
Toe | 5.396 | 2.338 | 1.657 | 1.203 | 0.921 | 0.092 | |
Bank and Toe | Bank | 0 | 0 | 0 | 0 | 0 | 0 |
Toe | 4.936 | 1.879 | 1.198 | 0.127 | 0 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qian, Q.; Su, L.; Zaloom, V.; Jao, M.; Wu, X.; Wang, K.-H. Field Measurements and Modelling of Vessel-Generated Waves and Caused Bank Erosion—A Case Study at the Sabine–Neches Waterway, Texas, USA. Water 2023, 15, 35. https://doi.org/10.3390/w15010035
Qian Q, Su L, Zaloom V, Jao M, Wu X, Wang K-H. Field Measurements and Modelling of Vessel-Generated Waves and Caused Bank Erosion—A Case Study at the Sabine–Neches Waterway, Texas, USA. Water. 2023; 15(1):35. https://doi.org/10.3390/w15010035
Chicago/Turabian StyleQian, Qin, Lin Su, Victor Zaloom, Mien Jao, Xing Wu, and Keh-Han Wang. 2023. "Field Measurements and Modelling of Vessel-Generated Waves and Caused Bank Erosion—A Case Study at the Sabine–Neches Waterway, Texas, USA" Water 15, no. 1: 35. https://doi.org/10.3390/w15010035
APA StyleQian, Q., Su, L., Zaloom, V., Jao, M., Wu, X., & Wang, K. -H. (2023). Field Measurements and Modelling of Vessel-Generated Waves and Caused Bank Erosion—A Case Study at the Sabine–Neches Waterway, Texas, USA. Water, 15(1), 35. https://doi.org/10.3390/w15010035