An Evaluation Framework for Urban Pluvial Flooding Based on Open-Access Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Urban Pluvial Flooding Evaluation Tool
2.1.1. Sewer Network Generation and Design
- Pre-processing of input data.
- II.
- Definition of sewer network layout.
- III.
- Simplification of the network and correction of flow direction.
- IV.
- Determination of contributing areas.
- V.
- Allocation and estimation of dry weather inflows.
- VI.
- Hydraulic dimensioning.
2.1.2. Urban Drainage Model Implementation
2.1.3. Flood Propagation
2.2. Study Cases
3. Results
3.1. Evaluation of the Tool’s Capacity to Generate Realistic Sewer Networks
3.1.1. Layout
3.1.2. Hydraulic Properties
3.1.3. Hydrological and Hydraulic Processes
- -
- PFE is the peak flow error (-);
- -
- Max(obs) is the peak flow for observed values;
- -
- Max(sim) is the peak flow of simulated values.
3.2. Urban Pluvial Flooding Evaluation
4. Discussion
5. Summary and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Butler, D.; Digman, C.; Makropoulos, C.; Davies, J.W. Urban Drainage, 4th ed.; Spon Press: London, UK; Taylor and Francis Group: New York, NY, USA, 2018. [Google Scholar]
- Sofia, G.; Roder, G.; Dalla Fontana, G.; Tarolli, P. Flood dynamics in urbanised landscapes: 100 years of climate and humans’ interaction. Sci. Rep. 2017, 7, 40527. [Google Scholar] [CrossRef] [PubMed]
- Pagliacci, F.; Defrancesco, E.; Bettella, F.; D’Agostino, V. Mitigation of Urban Pluvial Flooding: What Drives Residents’ Willingness to Implement Green or Grey Stormwater Infrastructures on Their Property? Water 2020, 12, 3069. [Google Scholar] [CrossRef]
- Freni, G.; La Loggia, G.; Notaro, V. Uncertainty in urban flood damage assessment due to urban drainage modelling and depth-damage curve estimation. Water Sci. Technol. 2010, 61, 2979–2993. [Google Scholar] [CrossRef] [PubMed]
- Douglas, I.; Garvin, S.; Lawson, N.; Richards, J.; Tippett, J.; White, I. Uncertainty in urban flood damage assessment due to urban drainage modelling and depth-damage curve estimation. J. Flood Risk Manag. 2010, 3, 112–125. [Google Scholar] [CrossRef]
- Bhattarai, R.; Yoshimura, K.; Seto, S.; Nakamura, S.; Oki, T. Statistical model for economic damage from pluvial floods in Japan using rainfall data and socioeconomic parameters. Nat. Hazards Earth Syst. Sci. 2016, 16, 1063–1077. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Y.; Zevenbergen, C.; Ma, Y. Urban pluvial flooding and stormwater management: A contemporary review of China’s challenges and “sponge cities” strategy. Environ. Sci. Policy 2018, 80, 132–143. [Google Scholar] [CrossRef]
- Petrucci, O.; Aceto, L.; Bianchi, C.; Bigot, V.; Brázdil, R.; Pereira, S.; Kahraman, A.; Kilic, O.; Kotroni, V.; Llasat, M.C.; et al. Flood Fatalities in Europe, 1980–2018: Variability, Features, and Lessons to Learn. Water 2018, 11, 1682. [Google Scholar] [CrossRef] [Green Version]
- Rossman, L.A. Storm Water Management Model, User’s Manual, Version 5.1; U.S. EPA: Cincinnati, OH, USA, 2015.
- Ghosh, I.; Hellweger, F.L.; Fritch, T.G. Fractal Generation of Artificial Sewer Networks for Hydrologic Simulation. In Proceedings of the ESRI International User Conference, San Diego, CA, USA, 7–11 August 2006. [Google Scholar]
- Möderl, M.; Butler, D.; Rauch, W. A stochastic approach for automatic generation of urban drainage systems. Water Sci. Technol. 2009, 59, 1137–1143. [Google Scholar] [CrossRef]
- Urich, C.; Sitzenfrei, R.; Möderl, M.; Rauch, W. An agent-based approach for generating virtual sewer systems. Water Sci. Technol. 2010, 62, 1090–1097. [Google Scholar] [CrossRef]
- Blumensaat, F.; Wolfram, M.; Krebs, P. Sewer model development under minimum data requierements. Environ. Earth Sci. 2012, 65, 1427–1437. [Google Scholar] [CrossRef]
- Döring, A.; Neuweiler, I. Generation of Stormwater Drainage Networks Using Spatial Data. In New Trends in Urban Drainage Modelling—UDM 2018; Mannina, G., Ed.; Springer: Cham, Switzerland, 2018; pp. 576–581. [Google Scholar] [CrossRef]
- Mair, M.; Zischg, J.; Rauch, W.; Sitzenfrei, R. Where to find water pipes and sewers?- On the correlation of INfrastructure Networks in the Urban Ennvironment. Water 2017, 9, 146. [Google Scholar] [CrossRef] [Green Version]
- Duque, N.; Bach, P.M.; Scholten, L.; Fappiano, F.; Maurer, M. A Simplified Sanitary Sewer System Generator for Exploratory Modelling at City-Scale. Water Res. 2022, 209, 117903. [Google Scholar] [CrossRef] [PubMed]
- Butler, D.; Davis, J.W. Urban Drainage, 2nd ed.; Spon Press: London, UK, 2004. [Google Scholar]
- Maurer, M.; Wolfram, M.; Anja, H. Factors affecting economies of scale in combined sewer systems. Water Sci. Technol. 2010, 62, 36–41. [Google Scholar] [CrossRef] [PubMed]
- Duque, N.; Duque, D.; Saldarriaga, J. A new methodology for the optimal design of series of pipes in sewer systems. J. Hydroinform. 2016, 18, 757–772. [Google Scholar] [CrossRef] [Green Version]
- Cao, X.J.; Ni, G.H. Effect of storm network simplification on flooding prediction with varying rainfall conditions. IOP Conf. Ser. Earth Environ. Sci. 2019, 344, 012093. [Google Scholar] [CrossRef]
- Davidsen, S.; Löwe, R.; Thrysoe, C.; Arnbjerg-Nielsen, K. Simplification of one-dimensional hydraulic networks by automated processes evaluated on 1D/2D deterministic flood models. Hydroinformatics 2017, 19, 686–700. [Google Scholar] [CrossRef] [Green Version]
- Yang, Q.; Dai, Q.; Han, D.; Zhu, X.; Zhang, S. Impact of the Storm Sewer Network Complexity on Flood Simulations According to the Stroke Scaling Method. Water 2018, 10, 645. [Google Scholar] [CrossRef] [Green Version]
- OpenStreetMap Contributors. Planet Dump. 2015. Available online: https://planet.openstreetmap.org (accessed on 15 October 2022).
- QGIS.org. QGIS Geographic Information System. QGIS Association. Available online: http://www.qgis.org (accessed on 15 October 2022).
- Kruskal, J.B. On the shortest spanning subtree of a graph and the traveling salesman problem. Proc. Am. Math. Soc. 1956, 7, 48–50. [Google Scholar] [CrossRef]
- DWA-A118; Arbeitsblatt DWA-A 118 Hydraulische Bemessung und Nachweis Hydraulische Bemessung und Nachweis. DWA Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall e. V.: Hennef, Germany, 2006.
- Chen, W.; Huang, G.; Zhang, H. Urban stormwater inundation simulation based on SWMM and diffusive overland-flow model. Water Sci. Technol. 2017, 76, 3392–3403. [Google Scholar] [CrossRef] [Green Version]
- Federal Statistical Office. Special Evaluation Results of the Census of 9 May 2011 per Grid Cell. Online Database. 2013. Available online: https://www.zensus2011.de/DE/Home/home_node.html (accessed on 18 October 2019).
- S. G. u. V. S. [GeoSN]. Sachsen Geoportal. 2020. Available online: https://www.geodaten.sachsen.de/downloadbereich-dgm25-4162.html (accessed on 24 April 2022).
- Kolmogorv, A. Sulla determinazione empirica di una legge di distribuzione. G. Ist. Ital. Attuari 1933, 4, 83–91. [Google Scholar]
- Nash, J.E.; Sutcliffe, J.V. River flow forecasting through conceptual models part I—A discussion of principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Kim, Y.; Chung, E.-S.; Won, K.; Gil, K. Robust Parameter Estimation Framework of a Rainfall-Runoff Model Using Pareto Optimum and Minimax Regret Approach. Water 2015, 7, 1246–1263. [Google Scholar] [CrossRef]
- IPCC. Summary for Policymakers. In Climate Change 2022: Impacts, Adaptation, and Vulnerability; Pörtner, H., Roberts, D.C., Poloczanska, E.S., Minitenbeck, K., Tignor, M., Alegria, A., Craig, M., Langsdorf, S., Löschke, S., Möller, V., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2022; pp. 3–33. [Google Scholar]
- Reyes-Silva, J.; Bangura, E.; Helm, B.; Benisch, J.; Krebs, P. The Role of Sewer Network Structure on theOccurrence and Magnitude of Combined SewerOverflows (CSOs). Water 2020, 12, 2675. [Google Scholar] [CrossRef]
- Hesarkazzazi, S.; Hajibabaei, M.; Reyes-Silva, J.D.; Krebs, P.; Sitzenfrei, R. Assessing Redundancy in Stormwater Structures Under Hydraulic Design. Water 2020, 12, 1003. [Google Scholar] [CrossRef] [Green Version]
- Reyes-Silva, J.; Frauches, A.; Rojas-Gómez, K.; Helm, B.; Krebs, P. Determination of Optimal Meshness of Sewer Network Based on a Cost—Benefit Analysis. Water 2021, 13, 1090. [Google Scholar] [CrossRef]
- Reyes-Silva, J.D.; Helm, B.; Krebs, P. Meshness of sewer networks and its implications for flooding occurrence. Water Sci. Technol. 2020, 81, 40–51. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, Y.; Li, Y.; Ding, W. Vulnerability Analysis of Urban Drainage Systems: Tree vs. Loop Networks. Sustainability 2017, 9, 397. [Google Scholar] [CrossRef] [Green Version]
- Gebreegziabher, M.; Demissie, Y. Modeling Urban Flood Inundation and Recession Impacted by Manholes. Water 2020, 12, 1160. [Google Scholar] [CrossRef] [Green Version]
- Nkwunowo, U.C.; Whitworth, M.; Baily, B. A review of the current status of flood modelling for urban flood risk man-agement in the developing countries. Sci. Afr. 2020, 7, e00269. [Google Scholar]
- Schilling, J.; Tränckner, J. Estimation of Wastewater Discharges by Means of OpenStreetMap Data. Water 2020, 12, 628. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Shao, W.; Xiang, C.; Mei, C.; Li, Z. Uncertainties of urban flood modeling: Influence of parameters for different underlying surfaces. Environ. Res. 2020, 182, 108929. [Google Scholar] [CrossRef] [PubMed]
- Bulti, D.T.; Abebe, B.G. A review of flood modeling methods for urban pluvial flood application. Model. Earth Syst. Environ. 2020, 6, 1293–1302. [Google Scholar] [CrossRef]
- Arrighi, C.; Campo, L. Effects of digital terrain model uncertainties on high-resolution urban flood damage. J. Flood Risk Manag. 2019, 12, e12530. [Google Scholar] [CrossRef]
Date | NSE | PFE |
---|---|---|
16 September 2016 | 0.71 | 0.28 |
4 April 2017 | 0.59 | 0.21 |
12 July 2017 | 0.77 | −0.37 |
26 July 2017 | 0.84 | 0.06 |
1 August 2017 | 0.60 | 0.30 |
9 August 2017 | 0.81 | −0.33 |
11 August 2017 | 0.82 | −0.14 |
16 August 2017 | 0.59 | 0.36 |
3 October 2017 | 0.60 | 0.10 |
5 October /2017 | 0.69 | 0.31 |
9 October 2017 | 0.71 | −0.18 |
21 October /2017 | 0.88 | 0.13 |
27 October 2017 | 0.81 | −0.33 |
5 November 2017 | 0.88 | −0.11 |
Date | NSE | PFE |
---|---|---|
22 June 2017 | 0.78 | 0.49 |
11 July 2017 | 0.78 | 0.45 |
12 July 2017 | 0.54 | 0.51 |
26 July 2017 | 0.96 | 0.14 |
1 August 2017 | 0.52 | −0.15 |
8 August /2017 | 0.61 | 0.23 |
10 August 2017 | 0.95 | 0.15 |
11 August 2017 | 0.82 | 0.31 |
18 August 2017 | 0.73 | 0.53 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reyes-Silva, J.D.; Novoa, D.; Helm, B.; Krebs, P. An Evaluation Framework for Urban Pluvial Flooding Based on Open-Access Data. Water 2023, 15, 46. https://doi.org/10.3390/w15010046
Reyes-Silva JD, Novoa D, Helm B, Krebs P. An Evaluation Framework for Urban Pluvial Flooding Based on Open-Access Data. Water. 2023; 15(1):46. https://doi.org/10.3390/w15010046
Chicago/Turabian StyleReyes-Silva, Julian D., Diego Novoa, Björn Helm, and Peter Krebs. 2023. "An Evaluation Framework for Urban Pluvial Flooding Based on Open-Access Data" Water 15, no. 1: 46. https://doi.org/10.3390/w15010046
APA StyleReyes-Silva, J. D., Novoa, D., Helm, B., & Krebs, P. (2023). An Evaluation Framework for Urban Pluvial Flooding Based on Open-Access Data. Water, 15(1), 46. https://doi.org/10.3390/w15010046