Analysis of Surrogate Physicochemical Parameters for Studying Heavy Metal Pollution in Urban Road Runoff
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Sampling System
2.3. Laboratory Analysis
2.4. Information Analysis
3. Results and Discussion
3.1. Water Quality and TSS Content
3.2. Surrogate Parameters
3.2.1. Total Hm Concentration
3.2.2. Particulate HM Concentration
3.2.3. Dissolved HM Concentration
3.3. Road Runoff Energy Scenarios
4. Conclusions
- The results suggested that it was easier to detect surrogate parameters for total HM concentrations during higher-energy runoff events. During the lower-energy runoff events, a greater number of principal components (PCA) were observed due to lower percentages of association between the variables considered (conventional parameters and HMs).
- In this study, it was observed that the total HM concentration in road runoff was better explained by the particulate fraction rather than by the dissolved fraction. Higher-energy runoff events were associated with the particulate fraction and lower-energy runoff events were associated with the dissolved fraction.
- The results hinted that regardless of the runoff event energy, it was easier to detect conventional surrogate parameters for the particulate HM concentration compared to the dissolved HM concentration.
- The results suggested that during the higher-energy runoff events, a more comprehensive view of the study phenomenon was obtained, which allowed a better analysis of the behavior of the total HM concentrations in road runoff. In other words, during the higher-energy runoff events, both coarse particles (particulate HM fraction) and fine particles from the road sediment (dissolved HM fraction) were possibly transported. In contrast, during lower-energy runoff events, only the finest particles (dissolved HM fraction) of the road sediment were possibly transported.
- The findings indicated for total HM concentration that the best surrogate parameter during higher-energy runoff events was TSS. The best surrogate HM during these runoff events was Fe. The results also suggested that HMs with high percentages of association with the particulate fraction (>70%) of road runoff were the best surrogates for the other HMs under study. For lower-energy runoff events, the best surrogate parameter was VSS, although TSS also showed good behavior.
- The dissolved HM concentration tended to be associated with the volatile fractions of solids present in road runoff (e.g., VTS and VDS). Co and Mn were better surrogates for this fraction compared to Fe. However, Fe also showed high percentages of association in relation to the other metallic elements under study.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bhatta, B. Causes and Consequences of Urban Growth and Sprawl. In Analysis of Urban Growth and Sprawl from Remote Sensing Data; Advances in Geographic Information Science; Bhatta, B., Ed.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 17–36. ISBN 978-3-642-05299-6. [Google Scholar]
- Liu, Y.; Wang, C.; Yu, Y.; Chen, Y.; Du, L.; Qu, X.; Peng, W.; Zhang, M.; Gui, C. Effect of Urban Stormwater Road Runoff of Different Land Use Types on an Urban River in Shenzhen, China. Water 2019, 11, 2545. [Google Scholar] [CrossRef] [Green Version]
- Sellami, S.; Zeghouan, O.; Dhahri, F.; Mechi, L.; Moussaoui, Y.; Kebabi, B. Assessment of heavy metal pollution in urban and peri-urban soil of Setif city (High Plains, eastern Algeria). Environ. Monit. Assess. 2022, 194, 126. [Google Scholar] [CrossRef] [PubMed]
- Kaonga, C.; Kosamu, I.; Utembe, W. A Review of Metal Levels in Urban Dust, Their Methods of Determination, and Risk Assessment. Atmosphere 2021, 12, 891. [Google Scholar] [CrossRef]
- Kamara, A.A.; Harrison, R.M. Analysis of the air pollution climate of a central urban roadside supersite: London, Marylebone Road. Atmos. Environ. 2021, 258, 118479. [Google Scholar] [CrossRef]
- Zhao, H.; Ma, Y.; Fang, J.; Hu, L.; Li, X. Particle size distribution and total suspended solid concentrations in urban surface runoff. Sci. Total. Environ. 2022, 815, 152533. [Google Scholar] [CrossRef]
- Luo, Z.; Wan, G.; Wang, C.; Zhang, X. Urban pollution and road infrastructure: A case study of China. China Econ. Rev. 2018, 49, 171–183. [Google Scholar] [CrossRef]
- European Environment Agency Water Framework Directive (WFD) 2000/60/EC. Available online: https://www.eea.europa.eu/policy-documents/water-framework-directive-wfd-2000 (accessed on 10 March 2022).
- WSDOT Highway Runoff Manual|Manuals. Available online: https://wsdot.wa.gov/engineering-standards/all-manuals-and-standards/manuals/highway-runoff-manual (accessed on 18 November 2022).
- MASS Massachusetts Stormwater Handbook and Stormwater Standards. Available online: https://www.mass.gov/guides/massachusetts-stormwater-handbook-and-stormwater-standards (accessed on 18 November 2022).
- Othman, M.; Latif, M.T. Pollution characteristics, sources, and health risk assessments of urban road dust in Kuala Lumpur City. Environ. Sci. Pollut. Res. 2020, 27, 11227–11245. [Google Scholar] [CrossRef]
- Müller, A.; Österlund, H.; Marsalek, J.; Viklander, M. The pollution conveyed by urban runoff: A review of sources. Sci. Total. Environ. 2020, 709, 136125. [Google Scholar] [CrossRef]
- Nawrot, N.; Wojciechowska, E.; Rezania, S.; Walkusz-Miotk, J.; Pazdro, K. The effects of urban vehicle traffic on heavy metal contamination in road sweeping waste and bottom sediments of retention tanks. Sci. Total. Environ. 2020, 749, 141511. [Google Scholar] [CrossRef]
- Zafra Mejía, C.A.; González, J.T.; Monzón, I.T. Heavy metal concentration and distribution (Pb, Zn, Cu, Cd and Cr) in urban road sediments. Rev. Fac. Ing. 2011, 58, 53–62. [Google Scholar]
- Jeong, H.; Choi, J.Y.; Lee, J.; Lim, J.; Ra, K. Heavy metal pollution by road-deposited sediments and its contribution to total suspended solids in rainfall runoff from intensive industrial areas. Environ. Pollut. 2020, 265, 115028. [Google Scholar] [CrossRef] [PubMed]
- Du, X.; Zhu, Y.; Han, Q.; Yu, Z. The influence of traffic density on heavy metals distribution in urban road runoff in Beijing, China. Environ. Sci. Pollut. Res. 2019, 26, 886–895. [Google Scholar] [CrossRef] [PubMed]
- Wijeyawardana, P.; Nanayakkara, N.; Gunasekara, C.; Karunarathna, A.; Law, D.; Pramanik, B.K. Improvement of heavy metal removal from urban runoff using modified pervious concrete. Sci. Total. Environ. 2022, 815, 152936. [Google Scholar] [CrossRef]
- Charters, F.J.; Cochrane, T.A.; O’Sullivan, A.D. The influence of urban surface type and characteristics on runoff water quality. Sci. Total. Environ. 2021, 755, 142470. [Google Scholar] [CrossRef] [PubMed]
- Du, X.; Liang, H.; Fang, X.; Cui, S.; Li, J. Characteristics of colloids and their affinity for heavy metals in road runoff with different traffic in Beijing, China. Environ. Sci. Pollut. Res. 2021, 28, 20082–20092. [Google Scholar] [CrossRef]
- Ghosh, S.P.; Maiti, S.K. Evaluation of heavy metal contamination in roadside deposited sediments and road surface runoff: A case study. Environ. Earth Sci. 2018, 77, 267. [Google Scholar] [CrossRef]
- Zafra, C.; Temprano, J.; Tejero, I. The physical factors affecting heavy metals accumulated in the sediment deposited on road surfaces in dry weather: A review. Urban Water J. 2017, 14, 639–649. [Google Scholar] [CrossRef]
- Huber, M.; Welker, A.; Helmreich, B. Critical review of heavy metal pollution of traffic area runoff: Occurrence, influencing factors, and partitioning. Sci. Total. Environ. 2016, 541, 895–919. [Google Scholar] [CrossRef]
- Zafra, C.; Temprano, J.; Suárez, J. A simplified method for determining potential heavy metal loads washed-off by stormwater runoff from road-deposited sediments. Sci. Total Environ. 2017, 601–602, 260–270. [Google Scholar] [CrossRef] [Green Version]
- Bian, B.; Zhu, W. Particle size distribution and pollutants in road-deposited sediments in different areas of Zhenjiang, China. Environ. Geochem. Health 2008, 31, 511–520. [Google Scholar] [CrossRef]
- Stagge, J.H.; Davis, A.P.; Jamil, E.; Kim, H. Performance of grass swales for improving water quality from highway runoff. Water Res. 2012, 46, 6731–6742. [Google Scholar] [CrossRef] [PubMed]
- Perera, T.; McGree, J.; Egodawatta, P.; Jinadasa, K.; Goonetilleke, A. Taxonomy of influential factors for predicting pollutant first flush in urban stormwater runoff. Water Res. 2019, 166, 115075. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Li, X.; Wang, X.; Tian, D. Grain size distribution of road-deposited sediment and its contribution to heavy metal pollution in urban runoff in Beijing, China. J. Hazard. Mater. 2010, 183, 203–210. [Google Scholar] [CrossRef]
- Zhao, H.; Li, X. Understanding the relationship between heavy metals in road-deposited sediments and washoff particles in urban stormwater using simulated rainfall. J. Hazard. Mater. 2013, 246-247, 267–276. [Google Scholar] [CrossRef] [PubMed]
- Helmreich, B.; Hilliges, R.; Schriewer, A.; Horn, H. Runoff pollutants of a highly trafficked urban road – Correlation analysis and seasonal influences. Chemosphere 2010, 80, 991–997. [Google Scholar] [CrossRef] [PubMed]
- Ellis, J.B.; Revitt, D.M. Incidence of heavy metals in street surface sediments: Solubility and grain size studies. Water Air Soil Pollut. 1982, 17, 87–100. [Google Scholar] [CrossRef]
- Stone, M.; Marsalek, J. Trace metal composition and speciation in street sediment: Sault Ste. Marie, Canada. Water Air Soil Pollut. 1996, 87, 149–169. [Google Scholar] [CrossRef]
- Rijkenberg, M.J.; Depree, C.V. Heavy metal stabilization in contaminated road-derived sediments. Sci. Total Environ. 2010, 408, 1212–1220. [Google Scholar] [CrossRef]
- ISO Environment: Water Quality; International Organization for Standardization: Geneva, Switzerland, 1994; ISBN 978-92-67-10194-1.
- American Public Health Association; American Water Works Association; Water Environment Federation. Standard Methods for the Examination of Water and Wastewater, 23rd ed.; American Public Health Association: Washington, DC, USA, 2017; ISBN 9780875532875. [Google Scholar]
- Teixeira, E.K.D.C.; Policarpo, L.G.A.; da Silva, S.R.; dos Santos, E.P.C.C. Spatial-temporal variation and modeling of rainwater quality. Res. Soc. Dev. 2021, 10, e45810313598. [Google Scholar] [CrossRef]
- Kayhanian, M.; Suverkropp, C.; Ruby, A.; Tsay, K. Characterization and prediction of highway runoff constituent event mean concentration. J. Environ. Manag. 2007, 85, 279–295. [Google Scholar] [CrossRef]
- Caltrans Construction Site Best Management Practices (BMP) Manual; California Department of Transportation: Sacramento, CA, USA, 2017.
- Ellis, J.B.; Mitchell, G. Urban diffuse pollution: Key data information approaches for the Water Framework Directive. Water Environ. J. 2006, 20, 19–26. [Google Scholar] [CrossRef]
- Pitt, R.; Maestre, A.; Morquecho, R. National Stormwater Quality Database (NSQD); California Stormwater Quality Association: Alabama, CA, USA, 2004. [Google Scholar]
- LeBoutillier, D.; Kells, J.; Putz, G. Prediction of Pollutant Load in Stormwater Runoff from an Urban Residential Area. Can. Water Resour. J. 2000, 25, 343–359. [Google Scholar] [CrossRef]
- Berger, V.W.; Zhou, Y. Kolmogorov–Smirnov Test: Overview. In Wiley StatsRef: Statistics Reference Online; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2014; ISBN 978-1-118-44511-2. [Google Scholar]
- Abdi, H.; Williams, L.J. Principal component analysis. Wiley Interdiscip. Rev. Comput. Stat. 2010, 2, 433–459. [Google Scholar] [CrossRef]
- Singh, A.; Malik, A.; Kumar, A.; Kisi, O. Rainfall-runoff modeling in hilly watershed using heuristic approaches with gamma test. Arab. J. Geosci. 2018, 11, 261. [Google Scholar] [CrossRef]
- Maniquiz, M.C.; Lee, S.; Kim, L.-H. Multiple linear regression models of urban runoff pollutant load and event mean concentration considering rainfall variables. J. Environ. Sci. 2010, 22, 946–952. [Google Scholar] [CrossRef]
- Guo, J.C.Y.; Urbonas, B. Runoff Capture and Delivery Curves for Storm-Water Quality Control Designs. J. Water Resour. Plan. Manag. 2002, 128, 208–215. [Google Scholar] [CrossRef]
- Lee, J.Y.; Kim, H.; Kim, Y.; Han, M.Y. Characteristics of the event mean concentration (EMC) from rainfall runoff on an urban highway. Environ. Pollut. 2011, 159, 884–888. [Google Scholar] [CrossRef]
- Stockholm Water and Waste Company in Sweden Klassificering av Dagvatten och Recipienter Samt Riktlinjer för Reningskrav. Del 2, Dagvattenklassificering. Stockholm Vatten, 2001. VA-Guiden. Available online: https://vaguiden.se/2010/09/klassificering-av-dagvatten-och-recipienter-samt-riktlinjer-for-reningskrav-del-2-dagvattenklassificering-stockholm-vatten-2001/ (accessed on 29 November 2022).
- California Department of Transportation. A Review of the Contaminants and Toxicity Associated with Particles in Stormwater Runoff by. Available online: https://www.academia.edu/es/25820275/A_REVIEW_OF_THE_CONTAMINANTS_AND_TOXICITY_ASSOCIATED_WITH_PARTICLES_IN_STORMWATER_RUNOFF_By (accessed on 29 November 2022).
- Dupuis, T.V. Assessing the Impacts of Bridge Deck Runoff Contaminants in Receiving Waters. Volume 1: Final Report; National Cooperative Highway Research Program: Washington, DC, USA, 2002. [Google Scholar]
- Bakr, A.R.; Fu, G.Y.; Hedeen, D. Water quality impacts of bridge stormwater runoff from scupper drains on receiving waters: A review. Sci. Total Environ. 2020, 726, 138068. [Google Scholar] [CrossRef]
- Kayhanian, M.; Fruchtman, B.D.; Gulliver, J.S.; Montanaro, C.; Ranieri, E.; Wuertz, S. Review of highway runoff characteristics: Comparative analysis and universal implications. Water Res. 2012, 46, 6609–6624. [Google Scholar] [CrossRef]
- Piro, P.; Carbone, M. A modelling approach to assessing variations of total suspended solids (tss) mass fluxes during storm events. Hydrol. Process. 2014, 28, 2419–2426. [Google Scholar] [CrossRef]
- Barbosa, A.E.; Fernandes, J.N. Review of tools for road runoff quality prediction and application to European roads. Water Sci. Technol. 2021, 84, 2228–2241. [Google Scholar] [CrossRef]
- Montoya-Mayor, R.; Fernández-Espinosa, A.; Seijo-Delgado, I.; Ternero-Rodríguez, M. Determination of soluble ultra-trace metals and metalloids in rainwater and atmospheric deposition fluxes: A 2-year survey and assessment. Chemosphere 2013, 92, 882–891. [Google Scholar] [CrossRef] [PubMed]
- Herngren, L.; Goonetilleke, A.; Ayoko, G.A. Understanding heavy metal and suspended solids relationships in urban stormwater using simulated rainfall. J. Environ. Manag. 2005, 76, 149–158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muthusamy, M.; Tait, S.; Schellart, A.; Beg, N.A.; Carvalho, R.F.; de Lima, J.L. Improving understanding of the underlying physical process of sediment wash-off from urban road surfaces. J. Hydrol. 2018, 557, 426–433. [Google Scholar] [CrossRef]
- Gromaire-Mertz, M.C.; Garnaud, S.; Gonzalez, A.; Chebbo, G. Characterisation of urban runoff pollution in Paris. Water Sci. Technol. 1999, 39, 1–8. [Google Scholar] [CrossRef]
- Aryal, R.; Furumai, H.; Nakajima, F.; Beecham, S.; Lee, B.-K. Analysis of the built-up processes for volatile organics and heavy metals in suspended solids from road run-off. DESALINATION Water Treat. 2015, 54, 1254–1259. [Google Scholar] [CrossRef]
- Memon, F.A.; Butler, D. Characterisation of pollutants washed off from road surfaces during wet weather. Urban Water J. 2005, 2, 171–182. [Google Scholar] [CrossRef]
- Romero-Barreiro, M.D.P.; Pinilla-Castañeda, R.D.; Zafra-Mejía, C.A. Temporal Assessment of the Heavy Metals (Pb and Cu) Concentration Associated with the Road Sediment: Fontibón-Barrios Unidos (Bogotá D.C., Colombia). Ing. Univ. 2015, 19, 315–333. [Google Scholar] [CrossRef]
Conventional Physicochemical | HMs | ||||
---|---|---|---|---|---|
Parameter | Symbol | Unit | Parameter | Symbol | Unit |
Chemical oxygen demand | COD | mg/L | Aluminum | Al | mg/L |
Chemical oxygen demand—Soluble | CODs | mg/L | Arsenic | As | µg/L |
Biological oxygen demand (5 d) | BOD5 | mg/L | Barium | Ba | µg/L |
Total nitrogen | TN | mg/L | Boron | B | µg/L |
Total phosphorus | TP | mg/L | Cadmium | Cd | µg/L |
Total solids | TS | mg/L | Cobalt | Co | µg/L |
Suspended solids | SS | mg/L | Copper | Cu | µg/L |
Volatile suspended solids | VSS | mg/L | Chromium | Cr | µg/L |
Dissolved suspended solids | DSS | mg/L | Iron | Fe | mg/L |
Volatile dissolved suspended solids | VDSS | mg/L | Manganese | Mn | µg/L |
Total suspended solids | TSS | mg/L | Mercury | Hg | µg/L |
Volatile total suspended solids | VTSS | mg/L | Nickel | Ni | µg/L |
Turbidity | TUR | NTU | Lead | Pb | µg/L |
Conductivity | CON | µS/cm | Vanadium | V | µg/L |
pH | pH | Units | Zinc | Zn | µg/L |
Events | 01 | 02 | 03 | 04 | 05 | 06 | 07 | 08 | 09 | 10 |
---|---|---|---|---|---|---|---|---|---|---|
DTSP (days) | 0.33 | 17.2 | 0.45 | 0.88 | 5.42 | 15.1 | 11.5 | 8.02 | 14.1 | 21.6 |
Event duration (days) | 1.99 | 0.250 | 0.076 | 0.125 | 0.076 | 0.076 | 0.076 | 0.076 | 0.431 | 0.076 |
Qmax (L/s) | 61.1 | 3.22 | 31.1 | 16.2 | 4.64 | 8.63 | 7.76 | 81.0 | 132.1 | 357.9 |
Qmed (L/s) | 5.64 | 1.20 | 4.98 | 2.38 | 0.94 | 1.11 | 1.55 | 9.71 | 5.14 | 37.0 |
Vol (m3) | 97.8 | 11.5 | 54.9 | 18.4 | 10.7 | 17.1 | 18.9 | 91.0 | 432.4 | 696.4 |
Ptotal (mm) | 12.6 | 6.20 | 8.00 | 3.20 | 4.00 | 6.40 | 3.60 | 9.20 | 14.4 | 22.2 |
P5max (mm) | 1.00 | 0.60 | 2.20 | 1.00 | 0.40 | 0.40 | 0.20 | 1.80 | 1.60 | 5.80 |
I5max (mm)/h | 12.0 | 7.20 | 26.4 | 12.0 | 4.80 | 4.80 | 2.40 | 21.6 | 19.2 | 69.6 |
Imedia (mm/h) | 0.26 | 1.03 | 4.36 | 1.07 | 2.18 | 3.49 | 1.96 | 5.02 | 1.39 | 12.1 |
Parameter | Stockholm Vatten [47] | CALTRANS [48] | Ellis and Mitchell [38] | In This Study | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Low | High | Min. | Max. | Mean | 1st Quartile | 3rd Quartile | Mean | SMC1 | SMC2 | |
COD (mg/L) | 25.0 | 60.0 | 10.0 | 390 | 118 | 89.1 | 209 | 137 | 177 | 74.4 |
TDS (mg/L) | - | - | 14.0 | 470 | 109 | - | - | - | 84.9 | 76.9 |
TSS (mg/L) | <50.0 | >175 | 3.00 | 4800 | 158 | 101 | 361 | 191 | 234 | 84.0 |
TN (mg/L) | <1.25 | >5.00 | - | - | 4.80 | 1.50 | 3.70 | 2.40 | 3.90 | 2.70 |
TP (mg/L) | <0.10 | >0.20 | 0.10 | 10.0 | 0.30 | 0.10 | 0.30 | 0.20 | 0.70 | 0.40 |
Al (μg/L) | - | - | 29.0 | 12,600 | 2610 | - | - | - | 3480 | 2380 |
As (μg/L) | - | - | 1.00 | 17.0 | 2.50 | - | - | - | 5.90 | 4.40 |
Cr (µg/L) | <15.0 | >75.0 | 1.00 | 100 | 10.9 | 6.20 | 22.2 | 11.7 | 8.10 | 4.80 |
Cu (µg/L) | <9.00 | >45.0 | 1.00 | 800 | 48.5 | 43.2 | 150 | 80.3 | 55.1 | 43.9 |
Fe (µg/L) | - | - | 4100 | 24,000 | 4284 | 1370 | 7280 | 3160 | 5650 | 3860 |
Ni (µg/L) | <45.0 | >225 | 0.90 | 317 | 12.6 | 7.90 | 51.8 | 20.2 | 7.40 | 4.60 |
Pb (µg/L) | <3.00 | >15.0 | 1.00 | 2300 | 114 | 154 | 473 | 270 | 17.5 | 9.60 |
Zn (µg/L) | <60.0 | >300 | 5.00 | 2400 | 228 | 151 | 752 | 337 | 173 | 108 |
Huber et al. [22] | This Study | |||||||
---|---|---|---|---|---|---|---|---|
Total concentrations | ||||||||
HMs | Min. | Mean | Max. | Median | SMC1 | Evaluation | SMC2 | Evaluation |
Pb | 3.70 | 32.3 | 136 | 20.3 | 17.5 | Medium | 9.60 | Low |
Zn | 23.0 | 285 | 1000 | 274 | 173 | Medium | 108 | Low |
Ni | 3.80 | 16.3 | 35.0 | 17.0 | 7.40 | Low | 4.60 | Low |
Cu | 7.00 | 64.6 | 280 | 30.5 | 55.1 | Medium | 43.9 | Medium |
Cr | 2.00 | 12.0 | 24.2 | 9.90 | 8.10 | Medium | 4.80 | Low |
Dissolved concentrations | ||||||||
HMs | Min. | Mean | Max. | Median | SMC1 | Evaluation | SMC2 | Evaluation |
Pb | 0.13 | 0.90 | 2.80 | 0.40 | 0.20 | Low | 0.10 | Low |
Zn | 7.90 | 68.0 | 258 | 31.0 | 37.4 | Medium | 32.3 | Low |
Ni | 0.50 | 0.90 | 1.30 | 1.00 | 1.30 | High | 1.40 | High |
Cu | 2.70 | 16.0 | 65.0 | 11.2 | 15.9 | Medium | 12.4 | Medium |
Cr | 0.60 | 1.20 | 1.80 | 1.20 | 0.40 | Low | 0.50 | Low |
Total Concentration | Particulate Concentration | Dissolved Concentration | |||||||
---|---|---|---|---|---|---|---|---|---|
Phase 1 | All samples | TSS > Median | TSS < Median | All samples | TSS > Median | TSS < Median | All samples | TSS > Median | TSS < Median |
Significant components | 4 | 4 | 5 | 4 | 4 | 5 | 5 | 6 | 5 |
Variance (%) | 90.4 | 91.2 | 93.5 | 91.5 | 91.6 | 91.5 | 83.8 | 88.2 | 92.4 |
Variance (%)—first two components | 78.3 | 78.5 | 66.3 | 81.0 | 80.8 | 63.0 | 61.0 | 61.5 | 63.2 |
Variance (%)—first component | 68.0 | 66.3 | 39.3 | 69.3 | 67.0 | 38.0 | 45.1 | 46.4 | 41.4 |
Preliminary parameters (Variance in %) | TS (96.6) > TSS (96.3) | TS (95.8) > TSS (95.6) | VSS (92.0) > TUR (68.2) > TSS (64.3) | TSS (96.4) > TS (96.2) | TSS (95.7) > TS (95.3) | VSS (91.2) > TUR (82.6) > TSS (69.2) | TN (96.3) > TUR (96.1) > TP (94.6) > VTS (94.5) > VSS (94.1) > COD (92.5) > TS (92.2) > TSS (90.3) | TN (95.6) > TUR (95.5) > TP (93.9) > VTS (93.8) > VSS (93.0) > COD (91.2) > TS (90.4) > TSS (88.1) | CODs (86.9) > VDS (78.1) > TS (72.9) |
Preliminary HMs (variance in %) | Al (98.2) > Fe (97.2) | Al (98.0) > Fe (96.9) | Mn (96.7) > Pb (94.5) > Co (93.8) > Al (92.8) > Fe (90.0) | Al (98.8) > Fe (97.9) | Al (98.7) > Fe (97.7) | Fe (98.9) > Al (98.8) | Co (86.7) > Fe (81.4) | Co (85.7) > Fe (85.3) | Cr (92.4) > Mn (91.7) > V (89.8) > Pb (83.4) > Fe (67.4) |
Total concentration | Particulate concentration | Dissolved concentration | |||||||
Phase 2 | All samples | TSS > Median | TSS < Median | All samples | TSS > Median | TSS < Median | All samples | TSS > Median | TSS < Median |
Parameters identified | TS > TSS | TS > SST | VSS > TSS | TSS > TS | TSS > TS | VSS > TSS | VTS > TS | VTS > TS | VDS > TS |
Significant components | 2 | 1 | 3 | 1 | 1 | 3 | 4 | 4 | 4 |
Variance (%) | 93.8 | 88.9 | 85.1 | 91.3 | 89.8 | 84.5 | 81.0 | 79.2 | 79.2 |
Variance (%)—first two components | 93.8 | - | 74.6 | - | - | 73.9 | 57.9 | 58.7 | 56.3 |
Variance (%)—first component | 90.1 | 88.9 | 61.0 | 91.3 | 89.8 | 60.8 | 35.5 | 38.0 | 32.1 |
Definitive parameters (Variance in %) | TSS (91.4) > TS (90.4) | TSS (89.5) > TS (88.2) | VSS (87.1) > TSS (63.9) | TSS (91.1) > TS (89.6) | TSS (89.0) > TS (87.1) | VSS (88.2) > TSS (70.6) | VTS (84.7) > TS (82.7) | VTS (80.1) > TS (77.9) | TS (75.5) > VDS (51.1) |
Definitive HMs (variance in %) | Fe (99.1) > Al (98.5) | Fe (98.7) > Al (97.8) | Mn (94.5) > Co > Al (92.4) > Zn (90.8) > Fe (90.1) | V (99.4) > Fe (98.9) > Al (98.2) | V (99.5) > Fe (98.7) > Al (97.8) | Al (96.6) > Fe (95.3) | Co (92.3) > Mn (85.5) > Fe (78.3) | Co (92.0) > Mn (83.3) > Fe (81.3) | Co (91.7) > Mn (86.1) > Fe (72.3) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiménez-Fernández, V.; Suárez-López, J.; Zafra-Mejía, C.A. Analysis of Surrogate Physicochemical Parameters for Studying Heavy Metal Pollution in Urban Road Runoff. Water 2023, 15, 85. https://doi.org/10.3390/w15010085
Jiménez-Fernández V, Suárez-López J, Zafra-Mejía CA. Analysis of Surrogate Physicochemical Parameters for Studying Heavy Metal Pollution in Urban Road Runoff. Water. 2023; 15(1):85. https://doi.org/10.3390/w15010085
Chicago/Turabian StyleJiménez-Fernández, Vicente, Joaquín Suárez-López, and Carlos Alfonso Zafra-Mejía. 2023. "Analysis of Surrogate Physicochemical Parameters for Studying Heavy Metal Pollution in Urban Road Runoff" Water 15, no. 1: 85. https://doi.org/10.3390/w15010085
APA StyleJiménez-Fernández, V., Suárez-López, J., & Zafra-Mejía, C. A. (2023). Analysis of Surrogate Physicochemical Parameters for Studying Heavy Metal Pollution in Urban Road Runoff. Water, 15(1), 85. https://doi.org/10.3390/w15010085