Development of Flood Early Warning Frameworks for Small Streams in Korea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Determination of Measurement Sites
2.2. Selection of Rainfall Gauging Stations
2.3. Measurement of Flow Velocity and Depth
2.4. Discharge Measurements
3. Development of the Flood Early Warning Framework
3.1. Determination of the Warning Criteria
3.2. Development of the Rainfall-Discharge Nomograph
3.3. Development of the Rating Curve
4. Results of the Evaluation and Discussion
4.1. Evaluation of the FEWF
4.2. Discussion
5. Conclusions and Future Works
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pörtner, H.-O.; Roberts, D.C.; Adams, H.; Adler, C.; Aldunce, P.; Ali, E.; Begum, R.A.; Betts, R.; Kerr, R.B.; Biesbroek, R. Climate Change 2022: Impacts, Adaptation and Vulnerability; IPCC: Geneva, Switzerland, 2022. [Google Scholar]
- World Meteorological Organization. WMO Statement on the State of the Global Climate in 2019; World Meteorological Organization: Geneva, Switzerland, 2020. [Google Scholar]
- Rajeevan, M.; Bhate, J.; Jaswal, A.K. Analysis of variability and trends of extreme rainfall events over India using 104 years of gridded daily rainfall data. Geophys. Res. Lett. 2008, 35, L18707. [Google Scholar] [CrossRef]
- Goswami, B.N.; Venugopal, V.; Sengupta, D.; Madhusoodanan, M.; Xavier, P.K. Increasing trend of extreme rain events over India in a warming environment. Science 2006, 314, 1442–1445. [Google Scholar] [CrossRef] [PubMed]
- Vellore, R.K.; Krishnan, R.; Pendharkar, J.; Choudhury, A.D.; Sabin, T. On the anomalous precipitation enhancement over the Himalayan foothills during monsoon breaks. Clim. Dyn. 2014, 43, 2009–2031. [Google Scholar] [CrossRef]
- Cheong, T.S.; Joo, J.; Choi, H.; Kim, S. Development and evaluation of automatic discharges measurement technology for small stream monitoring. J. Korean Soc. Hazard Mitig. 2018, 18, 347–355. [Google Scholar] [CrossRef]
- Cheong, T.S.; Ko, T.; Choi, H.; Kim, S. Development of large scale particle image velocimetry prototype for the small stream discharge monitoring. J. Disaster Manag. 2017, 2, 19–28. [Google Scholar]
- Cheong, T.S.; Joo, J.S.; Byun, H. Advancement of Automatic Discharge Measurement Technology to Enhance Disaster-Safety Codes for Small Stream; NDMI-PR(ER)-2019-06-01; The National Disaster Management Institute: Ulsan, Republic of Korea, 2019. (In Korean) [Google Scholar]
- Lee, J.; Lee, Y.; Kim, E.; Ha, J.; Jang, D. A study on the dynamical characteristics associated with heavy rainfall case of July 14, 2009. In Proceedings of the Autumn Meeting of Korea Meteor, Jeju, Korea, 21–22 October 2010; pp. 244–245. [Google Scholar]
- Cunge, J. Practical Aspects of Computational River Hydraulics; Pitman Publishing Ltd.: London, UK, 1980; Volume 420. [Google Scholar]
- Muste, M.; Hauet, A.; Fujita, I.; Legout, C.; Ho, H.-C. Capabilities of large-scale particle image velocimetry to characterize shallow free-surface flows. Adv. Water Resour. 2014, 70, 160–171. [Google Scholar] [CrossRef]
- Bechle, A.J.; Wu, C.H. An entropy-based surface velocity method for estuarine discharge measurement. Water Resour. Res. 2014, 50, 6106–6128. [Google Scholar] [CrossRef]
- Fujita, I.; Muste, M.; Kruger, A. Large-scale particle image velocimetry for flow analysis in hydraulic engineering applications. J. Hydraul. Res. 1998, 36, 397–414. [Google Scholar] [CrossRef]
- Yang, D.; Shi, X.; Marsh, P. Variability and extreme of Mackenzie River daily discharge during 1973–2011. Quat. Int. 2015, 380, 159–168. [Google Scholar] [CrossRef]
- Perera, D.; Seidou, O.; Agnihotri, J.; Mehmood, H.; Rasmy, M. Flood Impact Mitigation and Resilience Enhancement; Challenges and Technical Advances in Flood Early Warning; Intech Open: London, UK, 2020. [Google Scholar]
- Kumar, N.; Kharkwal, N.; Kohli, R.; Choudhary, S. Ethical aspects and future of artificial intelligence. In Proceedings of the 2016 International Conference on Innovation and Challenges in Cyber Security (ICICCS-INBUSH), Greater Noida, India, 3–5 February 2016; pp. 111–114. [Google Scholar]
- Kaplan, A.; Haenlein, M. Siri, Siri, in my hand: Who’s the fairest in the land? On the interpretations, illustrations, and implications of artificial intelligence. Bus. Horiz. 2019, 62, 15–25. [Google Scholar] [CrossRef]
- Joo, J.; Byeon, H.H.; Kim, S.; Cheong, T.S. Selection of Small Stream Basins and Characteristics Analysis of Closed-circuit Television-based Automated Discharge Measurement Technology. J. Korean Soc. Hazard Mitig. 2020, 20, 259–268. [Google Scholar] [CrossRef]
- Institute, N.D.M. Establishment of the CCTV Based Automatic Discharge Measurement Technology Application System for Enhancing the Disaster Safety Codes of the Small Streams; The National Disaster Management Institute: Ulsan, Republic of Korea, 2020. [Google Scholar]
- Raffel, M.; Willert, C.E.; Kompenhans, J. Particle Image Velocimetry: A Practical Guide; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Kim, S.; Yu, K.; Yoon, B. Error analysis of image velocimetry according to the variation of the interrogation area. J. Korea Water Resour. Assoc. 2013, 46, 821–831. [Google Scholar] [CrossRef]
- Huber, P.J.; Ronchetti, E.M. Robust Statistics; Wiley: Hoboken, NJ, USA, 2011. [Google Scholar]
- Gui, Q.; Zhang, J. Robust biased estimation and its applications in geodetic adjustments. J. Geod. 1998, 72, 430–435. [Google Scholar] [CrossRef]
- Holland, P.W.; Welsch, R.E. Robust regression using iteratively reweighted least-squares. Commun. Stat.-Theory Methods 1977, 6, 813–827. [Google Scholar] [CrossRef]
- Abt, S.; Wittier, R.; Taylor, A.; Love, D. Human stability in a high flood hazard zone. JAWRA J. Am. Water Resour. Assoc. 1989, 25, 881–890. [Google Scholar] [CrossRef]
- Jonkman, S.; Penning-Rowsell, E. Human instability in flood flows. JAWRA J. Am. Water Resour. Assoc. 2008, 44, 1208–1218. [Google Scholar] [CrossRef]
- Jonkman, S.N. Global perspectives on loss of human life caused by floods. Nat. Hazards 2005, 34, 151–175. [Google Scholar] [CrossRef]
- Jonkman, S.N.; Vrijling, J.K. Loss of life due to floods. J. Flood Risk Manag. 2008, 1, 43–56. [Google Scholar] [CrossRef]
- Karvonen, R.; Hepojoki, A.; Huhta, H.; Louhio, A. The use of physical models in dam-break analysis. In RESCDAM Final Report; Helsinki University of Technology: Helsinki, Finland, 2000. [Google Scholar]
- Shand, D.; Smith, G.; Blacka, M. Appropriate criteria for the safety and stability of people in stormwater design. In Proceedings of the National Conference of the Stormwater Industry Association, Sydney, Australia, 8–12 November 2010; pp. 9–12. [Google Scholar]
- Xia, J.; Falconer, R.A.; Wang, Y.; Xiao, X. New criterion for the stability of a human body in floodwaters. J. Hydraul. Res. 2014, 52, 93–104. [Google Scholar] [CrossRef]
- Yee, M. Human Stability in Floodways; University of New South Wales: Sydney, Australia, 2003. [Google Scholar]
- Bae, D.-H.; Shim, J.B.; Yoon, S.-S. Development and assessment of flow nomograph for the real-time flood forecasting in Cheonggye stream. J. Korea Water Resour. Assoc. 2012, 45, 1107–1119. [Google Scholar] [CrossRef]
- Jang, C.H.; Kim, H.J. Development of flood runoff characteristics nomograph for small catchment using R-programming. In Proceedings of the Korea Water Resources Association Conference, Goseong, Republic of Korea, 28–29 May 2015; p. 590. [Google Scholar]
- Neely, B.L. Flood Frequency and Storm Runoff of Urban Areas of Memphis and Shelby County, Tennessee; US Geological Survey: Reston, VA, USA, 1984. [Google Scholar]
- Safety, M.O.I.A. The Integration Model of Flood Forecasting for Medium and Small Streams; Ministry of Public Safety and Security: Seoul, Republic of Korea, 2016. [Google Scholar]
- Chow, V.T.; Maidment, D.R.; Larry, W. Applied Hydrology; McGraw-Hill Education: New York, NY, USA, 1988; Volume 149. [Google Scholar]
- Straub, T.D.; Melching, C.S.; Kocher, K.E. Equations for Estimating Clark Unit-Hydrograph Parameters for Small Rural Watersheds in Illinois; US Department of the Interior, US Geological Survey: Reston, VA, USA, 2000. [Google Scholar]
- Clark, C.O. Storage and the unit hydrograph. Trans. Am. Soc. Civ. Eng. 1945, 110, 1419–1446. [Google Scholar] [CrossRef]
- Gray, D.M. Handbook on the Principles of Hydrology; Water Information Center, Incorporated: New York, NY, USA, 1970. [Google Scholar]
- Ponce, V.M.; Hawkins, R.H. Runoff curve number: Has it reached maturity? J. Hydrol. Eng. 1996, 1, 11–19. [Google Scholar] [CrossRef]
- Jeong, J.; Yoon, H. Water Resources Design Practice; Goomibook: Seoul, Republic of Korea, 2020. [Google Scholar]
- Lamb, R.; Zaidman, M.; Archer, D.; Marsh, T.; Lees, M. River Gauging Station Data Quality Classification (GSDQ); R&D Technical Report W6-058/TR; Environment Agency: Bristol, UK, 2003. [Google Scholar]
- Chow, V.T. Open Channel Hydraulics; McGraw-Hill Education: New York, NY, USA, 1959. [Google Scholar]
- Li, Z.; Zhang, H.; Singh, V.P.; Yu, R.; Zhang, S. A simple early warning system for flash floods in an ungauged catchment and application in the Loess Plateau, China. Water 2019, 11, 426. [Google Scholar] [CrossRef]
- Song, S.; Schmalz, B.; Zhang, J.; Li, G.; Fohrer, N. Application of modified Manning formula in the determination of vertical profile velocity in natural rivers. Hydrol. Res. 2016, 48, 133–146. [Google Scholar] [CrossRef]
- White, W.; Mill, H.; Crabbe, A. Sediment Transport: An Appraisal of Available Methods; Hydraulics Research Station Wallingford: Oxford, UK, 1972. [Google Scholar]
Small Streams | Latitude | Longitude | ||||||
---|---|---|---|---|---|---|---|---|
Jungsunpil | 35°65′17″ | 129°13′17″ | 5.09 | 1.60 | 0.50 | 0.096 | 3.18 | 14.0 |
Sunjang | 35°24′04″ | 128°55′49″ | 13.6 | 2.17 | 0.34 | 0.093 | 2.14 | 33.5 |
Unchon | 37°33′15″ | 127°70′96″ | 6.98 | 2.01 | 0.58 | 0.054 | 2.88 | 21.5 |
Neungmac | 37°24′31″ | 127°16′81″ | 2.41 | 0.78 | 0.25 | 0.054 | 3.09 | 9.45 |
Insu | 37°40′20″ | 127°00′20″ | 3.66 | 1.17 | 0.38 | 0.025 | 3.12 | 17.1 |
Small Streams | Rainfall Gauging Station | Latitude | Longitude | Elevation (EL.m) | Started Observation Year | ||
---|---|---|---|---|---|---|---|
Jungsunpil | Dooseo | 35°62′03″ | 129°14′35″ | 4.23 | 1274 | 123 | 1991 |
Sunjang | Yangsan | 35°30′74″ | 129°02′01″ | 9.86 | 1588 | 6.20 | 2008 |
Unchon | Yeoju | 37°17′43″ | 127°38′53″ | 6.58 | 1180 | 51.5 | 1962 |
Neungmac | Yongin | 37°27′01″ | 127°22′18″ | 5.83 | 1294 | 83.0 | 2005 |
Insu | Uijungbu | 37°73′50″ | 127°07′50″ | 10.4 | 1545 | 72.0 | 2001 |
Division | Small Streams | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Min. | Mean | Max. | Min. | Mean | Max. | Min. | Mean | Max. | ||
Development (2016~2020) | Jungsunpil | 0.00 | 0.16 | 80.0 | 0.10 | 0.29 | 1.98 | 0.06 | 1.53 | 28.8 |
Sunjang | 0.00 | 0.19 | 95.8 | 0.13 | 0.36 | 2.45 | 0.20 | 1.32 | 210 | |
Unchon | 0.00 | 0.14 | 50.5 | 0.10 | 0.19 | 1.01 | 0.01 | 0.25 | 6.86 | |
Neungmac | 0.00 | 0.17 | 55.5 | 0.12 | 0.20 | 1.65 | 0.00 | 0.23 | 14.1 | |
Insu | 0.00 | 0.20 | 51.5 | 0.01 | 0.21 | 1.39 | 0.00 | 0.14 | 21.4 | |
Evaluation (2021) | Jungsunpil | 0.00 | 0.15 | 61.0 | 0.15 | 0.19 | 1.29 | 0.00 | 1.43 | 26.0 |
Sunjang | 0.00 | 0.19 | 65.8 | 0.29 | 0.44 | 2.20 | 0.00 | 1.33 | 165 | |
Unchon | 0.00 | 0.11 | 32.0 | 0.01 | 0.28 | 0.82 | 0.00 | 0.13 | 2.69 | |
Neungmac | 0.00 | 0.12 | 40.0 | 0.00 | 0.16 | 1.11 | 0.00 | 0.07 | 4.74 | |
Insu | 0.00 | 0.13 | 28.5 | 0.16 | 0.25 | 0.60 | 0.00 | 0.04 | 1.20 |
AMC Class | 5-Day Antecedent Rainfall (mm) | Soil Moisture (%) | |
---|---|---|---|
Dormant Season | Growing Season | ||
AMC I (dry) | P5 < 12.70 | P5 < 35.56 | 10 |
AMC II (medium) | 12.70 ≤ P5 ≤ 27.94 | 35.56 ≤ P5 ≤ 53.34 | 50 |
AMC III (wet) | P5 > 27.94 | P5 > 53.34 | 90 |
AMC Class | Small Streams | |||||
---|---|---|---|---|---|---|
Jungsunpil | Sunjang | Unchon | Neungmac | Insu | ||
AMC I | 0.179 | 1.788 | 0.362 | 0.458 | 0.246 | |
0.063 | 0.051 | 0.039 | 0.057 | 0.067 | ||
0.899 | 0.929 | 0.966 | 0.949 | 0.939 | ||
AMC II | 0.394 | 4.983 | 0.713 | 0.987 | 0.632 | |
0.081 | 0.066 | 0.035 | 0.058 | 0.124 | ||
0.899 | 0.756 | 0.850 | 0.962 | 0.974 | ||
AMC III | 0.756 | 13.84 | 1.262 | 1.723 | 1.471 | |
0.090 | 0.053 | 0.037 | 0.059 | 0.191 | ||
0.933 | 0.929 | 0.865 | 0.894 | 0.815 | ||
Whole Data | 0.290 | 3.506 | 0.385 | 0.579 | 0.213 | |
0.088 | 0.068 | 0.076 | 0.098 | 0.223 | ||
0.412 | 0.523 | 0.407 | 0.523 | 0.286 |
AMC Class | Small Streams | |||||
---|---|---|---|---|---|---|
Jungsunpil | Sunjang | Unchon | Neungmac | Insu | ||
AMC I | Events | 21 | 12 | 19 | 19 | 27 |
range | 0.16–22.9 | 1.50–164 | 0.30–2.97 | 0.40–5.52 | 0.18–3.09 | |
range | 0.10–80.0 | 0.10–95.8 | 0.10–50.5 | 0.10–55.5 | 0.10–51.5 | |
AMC II | Events | 23 | 10 | 19 | 26 | 15 |
range | 0.35–28.8 | 12.85–207 | 0.60–3.14 | 1.00–13.6 | 0.50–16.0 | |
range | 0.10–58.5 | 0.10–56.0 | 0.10–36.1 | 0.10–48.5 | 0.10–21.4 | |
AMC III | Events | 23 | 21 | 21 | 20 | 18 |
range | 0.60–23.5 | 4.83–210 | 1.20–6.86 | 0.81–14.1 | 1.30–9.50 | |
range | 0.10–38.6 | 0.10–45.8 | 0.10–36.0 | 0.10–30.1 | 0.20–10.0 |
Small Streams | Discharges by the Rainfall-Discharge Nomograph | Depths by the Rating Curve | ||||
---|---|---|---|---|---|---|
AMC I | AMC II | AMC III | AMC I | AMC II | AMC III | |
Jungsunpil | 0.969 | 0.856 | 0.910 | 0.954 | 0.928 | 0.822 |
Sunjang | 0.928 | 0.932 | 0.966 | 0.974 | 0.822 | 0.978 |
Unchon | 0.964 | 0.706 | 0.969 | 0.977 | 0.958 | 0.928 |
Neungmac | 0.896 | 0.918 | 0.778 | 0.890 | 0.973 | 0.802 |
Insu | 0.521 | 0.859 | 0.967 | 0.517 | 0.889 | 0.991 |
Small Streams | Discharges by the Rainfall-Discharge Nomograph | Depths by the Rating Curve | ||||
---|---|---|---|---|---|---|
AMC I | AMC II | AMC III | AMC I | AMC II | AMC III | |
Jungsunpil | 90.3 | 59.3 | 27.1 | 100 | 100 | 100 |
Sunjang | 28.1 | 66.2 | 50.0 | 94.4 | 100 | 100 |
Unchon | 93.3 | 63.6 | 44.8 | 100 | 100 | 100 |
Neungmac | 44.7 | 69.2 | 54.7 | 100 | 100 | 100 |
Insu | 33.6 | 78.6 | 21.1 | 100 | 100 | 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheong, T.-S.; Choi, C.; Ye, S.-J.; Shin, J.; Kim, S.; Koo, K.-M. Development of Flood Early Warning Frameworks for Small Streams in Korea. Water 2023, 15, 1808. https://doi.org/10.3390/w15101808
Cheong T-S, Choi C, Ye S-J, Shin J, Kim S, Koo K-M. Development of Flood Early Warning Frameworks for Small Streams in Korea. Water. 2023; 15(10):1808. https://doi.org/10.3390/w15101808
Chicago/Turabian StyleCheong, Tae-Sung, Changwon Choi, Sung-Je Ye, Jihye Shin, Seojun Kim, and Kang-Min Koo. 2023. "Development of Flood Early Warning Frameworks for Small Streams in Korea" Water 15, no. 10: 1808. https://doi.org/10.3390/w15101808
APA StyleCheong, T. -S., Choi, C., Ye, S. -J., Shin, J., Kim, S., & Koo, K. -M. (2023). Development of Flood Early Warning Frameworks for Small Streams in Korea. Water, 15(10), 1808. https://doi.org/10.3390/w15101808