Numerical Modelling of a Dam-Regulated River Network for Balancing Water Supply and Ecological Flow Downstream
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Description
2.3. Model Description
3. Model Configuration and Calibration
4. Results and Discussion
4.1. Model Calibration
4.2. Dry Hydrologic Scenario
4.3. Emergency Contamination Scenario
4.4. Limitations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nakhli, S.A.A.; Delkash, M.; Bakhshayesh, B.E.; Kazemian, H. Application of Zeolites for Sustainable Agriculture: A Review on Water and Nutrient Retention. Water Air Soil Poll. 2017, 228, 464. [Google Scholar] [CrossRef]
- Cheng, B.; Li, H.; Yue, S.; Huang, K. A Conceptual Decision-Making for the Ecological Base Flow of Rivers Considering the Economic Value of Ecosystem Services of Rivers in Water Shortage Area of Northwest China. J. Hydrol. 2019, 578, 124126. [Google Scholar] [CrossRef]
- Grill, G.; Lehner, B.; Thieme, M.; Geenen, B.; Tickner, D.; Antonelli, F.; Babu, S.; Borrelli, P.; Cheng, L.; Crochetiere, H.; et al. Mapping the World’s Free-Flowing Rivers. Nature 2019, 569, 215–221. [Google Scholar] [CrossRef] [PubMed]
- Zscheischler, J.; Westra, S.; van den Hurk, B.J.J.M.; Seneviratne, S.I.; Ward, P.J.; Pitman, A.; AghaKouchak, A.; Bresch, D.N.; Leonard, M.; Wahl, T.; et al. Future Climate Risk from Compound Events. Nat. Clim. Chang. 2018, 8, 469–477. [Google Scholar] [CrossRef]
- Liu, J.; Yang, H.; Gosling, S.N.; Kummu, M.; Flörke, M.; Pfister, S.; Hanasaki, N.; Wada, Y.; Zhang, X.; Zheng, C.; et al. Water Scarcity Assessments in the Past, Present, and Future. Earth’s Future 2017, 5, 545–559. [Google Scholar] [CrossRef] [PubMed]
- Arthington, A.H.; Bhaduri, A.; Bunn, S.E.; Jackson, S.E.; Tharme, R.E.; Tickner, D.; Young, B.; Acreman, M.; Baker, N.; Capon, S.; et al. The Brisbane Declaration and Global Action Agenda on Environmental Flows. Front. Environ. Sci. 2018, 6, 45. [Google Scholar] [CrossRef]
- Grill, G.; Lehner, B.; Lumsdon, A.E.; MacDonald, G.K.; Zarfl, C.; Liermann, C.R. An Index-Based Framework for Assessing Patterns and Trends in River Fragmentation and Flow Regulation by Global Dams at Multiple Scales. Environ. Res. Lett. 2015, 10, 015001. [Google Scholar] [CrossRef]
- Gierszewski, P.J.; Habel, M.; Szmańda, J.; Luc, M. Evaluating Effects of Dam Operation on Flow Regimes and Riverbed Adaptation to Those Changes. Sci. Total Environ. 2020, 710, 136202. [Google Scholar] [CrossRef]
- Lehner, B.; Liermann, C.R.; Revenga, C.; Vörösmarty, C.; Fekete, B.; Crouzet, P.; Döll, P.; Endejan, M.; Frenken, K.; Magome, J.; et al. High-Resolution Mapping of the World’s Reservoirs and Dams for Sustainable River-Flow Management. Front. Ecol. Environ. 2011, 9, 494–502. [Google Scholar] [CrossRef]
- Dalcin, A.P.; Marques, G.F.; Galego de Oliveira, A.; Tilmant, A. Identifying Functional Flow Regimes and Fish Response for Multiple Reservoir Operating Solutions. J. Water Res. Plan Man. 2022, 148, 04022026. [Google Scholar] [CrossRef]
- Palmer, M.; Ruhi, A. Linkages between Flow Regime, Biota, and Ecosystem Processes: Implications for River Restoration. Science 2019, 365, eaaw2087. [Google Scholar] [CrossRef] [PubMed]
- Yarnell, S.M.; Stein, E.D.; Webb, J.A.; Grantham, T.; Lusardi, R.A.; Zimmerman, J.; Peek, R.A.; Lane, B.A.; Howard, J.; Sandoval-Solis, S. A Functional Flows Approach to Selecting Ecologically Relevant Flow Metrics for Environmental Flow Applications. River Res. Appl. 2020, 36, 318–324. [Google Scholar] [CrossRef]
- Wang, D.; Chen, Y.; Jarin, M.; Xie, X. Increasingly Frequent Extreme Weather Events Urge the Development of Point-of-Use Water Treatment Systems. NPJ Clean Water 2022, 5, 36. [Google Scholar] [CrossRef]
- Wang, Y.; Jiang, Y.; Liao, W.; Gao, P.; Huang, X.; Wang, H.; Song, X.; Lei, X. 3-D Hydro-Environmental Simulation of Miyun Reservoir, Beijin. J. Hydro-Environ. Res. 2014, 8, 383–395. [Google Scholar] [CrossRef]
- Kim, D.; Shin, C. Algal Boom Characteristics of Yeongsan River Based on Weir and Estuary Dam Operating Conditions Using EFDC-NIER Model. Water 2021, 13, 2295. [Google Scholar] [CrossRef]
- Chen, L.; Yang, Z.; Liu, H. Assessing the Eutrophication Risk of the Danjiangkou Reservoir Based on the EFDC Model. Ecol. Eng. 2016, 96, 117–127. [Google Scholar] [CrossRef]
- Hua, R.; Zhang, Y. Assessment of Water Quality Improvements Using the Hydrodynamic Simulation Approach in Regulated Cascade Reservoirs: A Case Study of Drinking Water Sources of Shenzhen, China. Water 2017, 9, 825. [Google Scholar] [CrossRef]
- Yoshioka, H. Mathematical Modeling and Computation of a Dam–Reservoir System Balancing Environmental Management and Hydropower Generation. Energy Rep. 2020, 6, 51–54. [Google Scholar] [CrossRef]
- Némery, J.; Garnier, J. The Fate of Phosphorus. Nat. Geosci. 2016, 9, 343–344. [Google Scholar] [CrossRef]
- Ministry of Ecology and Environment of the Peoples Republic of China (MEEPRC). Environmental Quality Standards for Surface Water (GB 3838-2002); China Standards Press: Beijing, China, 2002. (In Chinese)
- National Environmental Protection Bureau (NEPB). Standard Methods for the Examination of Water and Wastewater (Version 4); China Environmental Science Publish Press: Beijing, China, 2002. (In Chinese)
- Sichuan Provincial Water Resources Department (SPWRD). Ecological Flow Guarantee of Key Rivers in Chengdu; SPWRD: Chengdu, China, 2021. (In Chinese)
- Zheng, L.; Wang, H.; Liu, C.; Zhang, S.; Ding, A.; Xie, E.; Li, J.; Wang, S. Prediction of Harmful Algal Blooms in Large Water Bodies Using the Combined EFDC and LSTM Models. J. Environ. Manag. 2021, 295, 113060. [Google Scholar] [CrossRef]
- Liu, Y.; Zhong, R.; Bao, A.; Liu, T. Diagnostic Simulation of Water Age in Small Lake of Bosten Lake. Water 2021, 13, 1996. [Google Scholar] [CrossRef]
- Qin, Z.; He, Z.; Wu, G.; Tang, G.; Wang, Q. Developing Water-Quality Model for Jingpo Lake Based on EFDC. Water 2022, 14, 2596. [Google Scholar] [CrossRef]
- Xu, S.; He, G.; Fang, H.; Bai, S.; Wu, X. Parameter Uncertainty and Sensitivity Analysis of the Three Gorges Reservoir and Xiangxi River EFDC Model. J. Hydrol. 2022, 610, 127881. [Google Scholar] [CrossRef]
- Hamrick, J.M. A Three-Dimensional Environmental Fluid Dynamics Computer Code: Theoretical and Computational Aspects; Special Report No. 317 in Applied Marine Science and Ocean Engineering; Virginia Institute of Marine Science: Williamsburg, VA, USA, 1992. [Google Scholar]
- Park, K.; Jung, H.-S.; Kim, H.-S.; Ahn, S.-M. Three-Dimensional Hydrodynamic-Eutrophication Model (HEM-3D): Application to Kwang-Yang Bay, Korea. Mar. Environ. Res. 2005, 60, 171–193. [Google Scholar] [CrossRef] [PubMed]
- Gong, R.; Xu, L.; Wang, D.; Li, H.; Xu, J. Water Quality Modeling for a Typical Urban Lake Based on the EFDC Model. Environ. Model Assess. 2016, 21, 643–655. [Google Scholar] [CrossRef]
- Tetra Tech. The Environmental Fluid Dynamics Code Theory and Computation Volume 3: Water Quality Module Technical Report to US EPA; Tetra Tech: Fairfax, VA, USA, 2007. [Google Scholar]
- Gao, Q.; He, G.; Fang, H.; Bai, S.; Huang, L. Numerical Simulation of Water Age and Its Potential Effects on the Water Quality in Xiangxi Bay of Three Gorges Reservoir. J. Hydrol. 2018, 566, 484–499. [Google Scholar] [CrossRef]
- Ji, Z.-G.; Hu, G.; Shen, J.; Wan, Y. Three-Dimensional Modeling of Hydrodynamic Processes in the St. Lucie Estuary. Estuar. Coast. Shelf Sci. 2007, 73, 188–200. [Google Scholar] [CrossRef]
- Jin, K.-R.; Hamrick, J.H.; Tisdale, T.S. Application of Three-Dimensional Hydrodynamic Model for Lake Okeechobee. J. Hydraul. Eng. 2000, 126, 758–771. [Google Scholar] [CrossRef]
- Gao, K.; Liu, Q. National economic evaluation of reclaimed water project. Environ. Sci. Technol. 2019, 42, 229–236. [Google Scholar] [CrossRef]
- Stein, E.D.; Zimmerman, J.; Yarnell, S.M.; Stanford, B.; Lane, B.; Taniguchi-Quan, K.T.; Obester, A.; Grantham, T.E.; Lusardi, R.A.; Sandoval-Solis, S. The California Environmental Flows Framework: Meeting the Challenges of Developing a Large-Scale Environmental Flows Program. Front. Environ. Sci. 2021, 9, 769943. [Google Scholar] [CrossRef]
Name | Abbreviation | Longitude | Latitude | River |
---|---|---|---|---|
Wanfuqiao rubber dam | WFQ | 104°4′10″ E | 30°40′51″ N | Fuhe River |
Erhaoqiao rubber dam | EHQ | 104°5′24″ E | 30°39′49″ N | Fuhe River |
Baihuatan rubber dam | BHT | 104°2′22″ E | 30°39′35″ N | Nanhe River |
Laonanmen rubber dam | LNM | 104°3′29″ E | 30°38′58″ N | Nanhe River |
Longzhuayan rubber dam | LZY | 104°1′20″ E | 30°39′21″ N | Nanhe River |
Jiuyanqiao rubber dam | JYQ | 104°5′12″ E | 30°38′33″ N | Fuhe River |
Xiahexincun rubber dam | XHXC | 104°5′8″ E | 30°36′30″ N | Fuhe River |
Parameter | Definition | Value | Unit |
---|---|---|---|
ITERM | Maximum number of iterations | 1000 | - |
ΔT | Time step | 0.3–10 | s |
HDRY | Depth at which cell becomes dry | 0.1 | m |
HWET | Depth at which cell becomes wet | 0.15 | m |
ZROUGH | Bottom roughness | 0.035 | - |
AHO | Constant horizontal diffusion | 1.0 | m2/s |
AHD | Dimensionless horizontal momentum diffusivity | 0.2 | - |
AVO | Background molecular eddy (kinematic) viscosity | 0.001 | m2/s |
ABO | Background molecular diffusivity | 1 × 10−8 | m2/s |
KCOD | COD concentration decay rate | 0.0020 | 1/day |
MAKN | Maximum nitrification rate | 0.007 | 1/day |
OHSCNH4 | NH4 Half-Saturation Constant for Nitrification | 0.3 | gN/m3 |
OHSCNO3 | NO3 Half-Saturation Constant for Denitrification | 0.1 | gN/m3 |
RTN | Reference temperature for Nitrification | 27 | °C |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, Y.; Xiong, W.; Wang, C. Numerical Modelling of a Dam-Regulated River Network for Balancing Water Supply and Ecological Flow Downstream. Water 2023, 15, 1962. https://doi.org/10.3390/w15101962
Gao Y, Xiong W, Wang C. Numerical Modelling of a Dam-Regulated River Network for Balancing Water Supply and Ecological Flow Downstream. Water. 2023; 15(10):1962. https://doi.org/10.3390/w15101962
Chicago/Turabian StyleGao, Yuxuan, Wei Xiong, and Chenhao Wang. 2023. "Numerical Modelling of a Dam-Regulated River Network for Balancing Water Supply and Ecological Flow Downstream" Water 15, no. 10: 1962. https://doi.org/10.3390/w15101962
APA StyleGao, Y., Xiong, W., & Wang, C. (2023). Numerical Modelling of a Dam-Regulated River Network for Balancing Water Supply and Ecological Flow Downstream. Water, 15(10), 1962. https://doi.org/10.3390/w15101962