Drivers of the Structure of Mollusc Communities in the Natural Aquatic Habitats along the Valley of a Lowland River: Implications for Their Conservation through the Buffer Zones
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Field and Laboratory Methods
2.3. Statistical and Zoocenological Analyses
3. Results
3.1. Environmental Variables
3.2. Mollusc Communities
3.3. Mollusc Communities in Relation to the Landscape Metrics and the Physical and Chemical Parameters of the Water
4. Discussion
4.1. Natural Aquatic Habitats along the River Valley as Refuges for Molluscs
4.2. Mollusc Species of the Natural Aquatic Habitats along the River Valley: The Threat and the Conservation Status
4.3. Landscape Metrics as Drivers of Mollusc Community Changes
4.4. Implications for Management and Conservation of Freshwater Molluscs through the Buffer Zones
4.5. A Roadmap for the Conservation and Management Plans for the River, NAHs and the Adjacent Habitats through the Buffer Zones
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lewin, I. Mollusc communities of lowland rivers and oxbow lakes in agricultural areas with anthropogenically elevated nutrient concentration. Folia Malacol. 2014, 22, 87–159. [Google Scholar] [CrossRef]
- Grizzetti, B.; Pistocchi, A.; Liquete, C.; Udias, A.; Bouraoui, F.; van de Bund, W. Human pressures and ecological status of European rivers. Sci. Rep. 2017, 7, 205. [Google Scholar] [CrossRef] [PubMed]
- Lemm, J.U.; Feld, C.K. Identification and interaction of multiple stressors in central European lowland rivers. Sci. Total Environ. 2017, 603–604, 148–154. [Google Scholar] [CrossRef] [PubMed]
- Sousa, J.C.G.; Ribeiro, A.R.; Barbosa, M.O.; Pereira, M.F.R.; Silva, A.M.T. A review on environmental monitoring of water organic pollutants identified by EU guidelines. J. Hazard. Mater. 2017, 344, 146–162. [Google Scholar] [CrossRef] [PubMed]
- Woodward, G.; Gessner, M.O.; Giller, P.S.; Gulis, V.; Hladyz, S.; Lecerf, A.; Malmqvist, B.; McKie, B.G.; Tiegs, S.D.; Cariss, H.; et al. Continental-scale effects of nutrient pollution on stream ecosystem functioning. Science 2012, 336, 1438–1440. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, J.; Shi, W.; Wang, M.; Chen, K.; Wang, L. Priority Pollutants in Water and Sediments of a River for Control Basing on Benthic Macroinvertebrate Community Structure. Water 2019, 11, 1267. [Google Scholar] [CrossRef]
- Doaemo, W.; Betasolo, M.; Montenegro, J.F.; Pizzigoni, S.; Kvashuk, A.; Femeena, P.V.; Mohan, M. Evaluating the Impacts of Environmental and Anthropogenic Factors on Water Quality in the Bumbu River Watershed, Papua New Guinea. Water 2023, 15, 489. [Google Scholar] [CrossRef]
- Davidson, N.C. How much wetland has the world lost? Long-term and recent trends in global wetland area. Mar. Freshwater Res. 2014, 65, 934–941. [Google Scholar] [CrossRef]
- Biggs, J.; von Fumetti, S.; Kelly-Quinn, M. The importance of small waterbodies for biodiversity and ecosystem services: Implications for policy makers. Hydrobiologia 2017, 793, 3–39. [Google Scholar] [CrossRef]
- Wood, P.J.; Greenwood, M.T.; Agnew, M.D. Pond biodiversity and habitat loss in the UK. Area 2003, 35, 206–216. [Google Scholar] [CrossRef]
- Gallardo, B.; Cabezas, Á.; González, E.; Comín, F.A. Effectiveness of a newly created oxbow lake to mitigate habitat loss and increase biodiversity in regulated floodplain. Restor. Ecol. 2012, 20, 387–394. [Google Scholar] [CrossRef]
- Obolewski, K.; Glińska-Lewczuk, K.; Bąkowska, M. From isolation to connectivity: The effect of floodplain lake restoration on sediments as habitats for macroinvertebrate communities. Aquat. Sci. 2018, 80, 4. [Google Scholar] [CrossRef]
- Pander, J.; Mueller, M.; Geist, J. Habitat diversity and connectivity govern the conservation value of restored aquatic floodplain habitats. Biol. Conserv. 2018, 217, 1–10. [Google Scholar] [CrossRef]
- Petsch, D.K.; de Mello Cionek, V.; Thomaz, S.M.; dos Santos, N.C.L. Ecosystem services provided by river-floodplain ecosystems. Hydrobiologia 2022. [Google Scholar] [CrossRef]
- Coccia, C.; Vanschoenwinkel, B.; Brendonck, L.; Boyero, L.; Green, A.J. Newly created ponds complement natural waterbodies for restoration of macroinvertebrate assemblages. Freshwater Biol. 2016, 61, 1640–1654. [Google Scholar] [CrossRef]
- Jurkiewicz-Karnkowska, E. Diversity of aquatic malacofauna within a floodplain of a large lowland river (lower Bug River, Eastern Poland). J. Mollus Stud. 2009, 75, 223–234. [Google Scholar] [CrossRef]
- Hill, M.J.; Ryves, D.B.; White, J.C.; Wood, P.J. Macroinvertebrate diversity in urban and rural ponds: Implications for freshwater biodiversity conservation. Biol. Conserv. 2016, 201, 50–59. [Google Scholar] [CrossRef]
- Cuttelod, A.; Seddon, M.; Neubert, E. European Red List of Non-Marine Molluscs; Publications Office of the European Union: Luxembourg, 2011. [Google Scholar]
- Böhm, M.; Dewhurst-Richman, N.I.; Seddon, M.; Ledger, S.E.H.; Albrecht, C.; Allen, D.; Bogan, A.E.; Cordeiri, J.; Cummings, K.S.; Cuttelod, A.; et al. The conservation status of the world’s freshwater molluscs. Hydrobiologia 2021, 848, 3231–3254. [Google Scholar] [CrossRef]
- Heino, J. Lentic macroinvertebrate assemblage structure along gradients in spatial heterogeneity, habitat size and water chemistry. Hydrobiologia 2000, 418, 229–242. [Google Scholar] [CrossRef]
- Hill, M.J.; Death, R.G.; Mathers, K.L.; Ryves, D.B.; White, J.C.; Wood, P.J. Macroinvertebrate community composition and diversity in ephemeral and perennial ponds on unregulated floodplain meadows in the UK. Hydrobiologia 2017, 793, 95–108. [Google Scholar] [CrossRef]
- Zawal, A.; Lewin, I.; Stępień, E.; Szlauer-Łukaszewska, A.; Buczyńska, E.; Buczyński, P.; Stryjecki, R. The influence of the landscape structure within buffer zones, catchment land use and instream environmental variables on mollusc communities in a medium-sized lowland river. Ecol. Res. 2016, 31, 853–867. [Google Scholar] [CrossRef]
- Pakulnicka, J.; Buczyński, P.; Dąbkowski, P.; Buczyńska, E.; Stępień, E.; Szlauer-Łukaszewska, A.; Zawal, A. Development of fauna of water beetles (Coleoptera) in waters bodies of a river valley habitat factors, landscape and geomorphology. Knowl. Manag. Aquat. Ecosyst. 2016, 417, 40. [Google Scholar] [CrossRef]
- Stryjecki, R.; Zawal, A.; Stępień, E.; Buczyńska, E.; Buczyński, P.; Czachorowski, S.; Szenejko, M.; Śmietana, P. Water mites (Acari, Hydrachnidia) of water bodies of the Krąpiel River valley: Interactions in the spatial arrangement of a river valley. Limnology 2016, 17, 24–261. [Google Scholar] [CrossRef]
- Stryjecki, R.; Zawal, A.; Krepski, T.; Stępień, E.; Buczyńska, E.; Buczyński, P.; Czachorowski, S.; Jankowiak, Ł.; Pakulnicka, J.; Sulikowska-Drozd, A.; et al. Anthropogenic transformations of river ecosystems are not always bad for the environment: Multi-taxa analyses of changes in aquatic and terrestrial environments after dredging of a small lowland river. PeerJ 2021, 9, e12224. [Google Scholar] [CrossRef] [PubMed]
- Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 Establishing a Framework for Community Action in the Field of Water Policy; Official Journal of the European Communities (L327); Publications Office of the European Union: Luxembourg, 2000; pp. 1–72.
- Directive 2009/147/EC of the European Parliament and of the Council of 30 November 2009 on the Conservation of Wild Birds (Codified Version); Official Journal of the European Union (L20/7); Publications Office of the European Union: Luxembourg, 2009; pp. 1–19.
- Council Directive 92/43/EEC of 21 May 1992 on the Conservation of Natural Habitats and Wild Fauna and Flora; Council of the European Communities: Brussels, Belgium, 1992.
- Piechocki, A. Mięczaki (Mollusca). Ślimaki (Gastropoda). Fauna Słodkowodna Polski. Zeszyt 7; Państwowe Wydawnictwo Naukowe: Warszawa, Poland, 1979. [Google Scholar]
- Piechocki, A.; Dyduch-Falniowska, A. Mięczaki (Mollusca). Małże (Bivalvia). Fauna Słodkowodna Polski 7A; Wydawnictwo Naukowe PWN: Warszawa, Poland, 1993. [Google Scholar]
- Glöer, P.; Meier-Brook, C. Süsswassermollusken. Ein Bestimmungsschlüssel für die Bundesrepublik Deutschland; Deutscher Jugendbund für Naturbeobachtung DJN: Hamburg, Germany, 1998; ISBN 9783923376025. [Google Scholar]
- Glöer, P. Süsswassergastropoden. Nord-und Mitteleuropas Bestimmungsschlüssel, Lebensweise, Verbreitung, 2nd ed.; ConchBooks: Hackenheim, Germany, 2002; ISBN 13: 9783925919602. [Google Scholar]
- Piechocki, A.; Wawrzyniak-Wydrowska, B. Guide to Freshwater and Marine Mollusca of Poland; Bogucki Wydawnictwo Naukowe: Poznań, Poland, 2016. [Google Scholar]
- Górny, M.; Grüm, L. Metody Stosowane w Zoologii Gleby; Państwowe Wydawnictwo Naukowe: Warszawa, Poland, 1981. [Google Scholar]
- McCune, B.; Grace, J.B. Analysis of Ecological Communities; MjM Software Design: Gleneden Beach, OR, USA, 2002; ISBN 0-9721290-0-6. [Google Scholar]
- Shannon, C.E. A Mathematical Theory of Communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef]
- Ter Braak, C.J.F.; Šmilauer, P. CANOCO Reference Manual and CanoDraw for Windows User’s Guide: Software for Canonical Community Ordination (Version 4.5), 2nd ed.; Microcomputer Power: Ithaca, NY, USA, 2002. [Google Scholar]
- Jurkiewicz-Karnkowska, E.; Karnkowski, P. GIS analysis reveals the high diversity and conservation value of mollusc assemblages in the floodplain wetlands of the lower Bug River (East Poland). Aquat. Conserv. 2013, 23, 952–963. [Google Scholar] [CrossRef]
- Reckendorfer, W.; Baranyi, C.; Funk, A.; Schiemer, F. Floodplain restoration by reinforcing hydrological connectivity: Expected effects on aquatic mollusc communities. J. Appl. Ecol. 2006, 43, 474–484. [Google Scholar] [CrossRef]
- Obolewski, K.; Glińska-Lewczuk, K.; Kobus, S. Effect of hydrological connectivity on the molluscan community structure in oxbow lakes of the Łyna River. Oceanol. Hydrobiol. Stud. 2009, 38, 75–88. [Google Scholar] [CrossRef]
- Lewin, I.; Smoliński, A. Rare, threatened and alien species in the gastropod communities in the clay pit ponds in relation to the environmental factors (The Ciechanowska Upland, Central Poland). Biodivers. Conserv. 2006, 15, 3617–3635. [Google Scholar] [CrossRef]
- Pérez-Quintero, J.C. Freshwater mollusc biodiversity and conservation in two stressed Mediterranean basins. Limnologica 2011, 41, 201–212. [Google Scholar] [CrossRef]
- Vadadi-Fülöp, C.; Mészáros, G.; Jablonszky, G.; Hufnagel, L. Ecology of the Ráckeve-Soroksár Danube—A review. Appl. Ecol. Environ. Res. 2007, 5, 133–163. [Google Scholar] [CrossRef]
- Skowrońska-Ochmann, K.; Cuber, P.; Lewin, I. The first record and occurrence of Stagnicola turricula (Held, 1836) (Gastropoda: Pulmonata: Lymnaeidae) in Upper Silesia (Southern Poland) in relation to different environmental factors. Zool. Anz. 2012, 251, 357–363. [Google Scholar] [CrossRef]
- Bargues, M.D.; Vigo, M.; Horak, P.; Dvorak, J.; Patzner, R.A.; Pointier, J.P.; Jackiewicz, M.; Meier-Brook, C.; Mas-Coma, S. European Lymnaeidae (Mollusca: Gastropoda), intermediate hosts of trematodiases, based on nuclear ribosomal DNA ITS-2 sequences. Infect. Genet. Evol. 2001, 1, 85–107. [Google Scholar] [CrossRef]
- Pieńkowska, J.R.; Rybska, E.; Banasiak, J.; Wesołowska, M.; Lesicki, A. Taxonomic status of Stagnicola palustris (O. F. Müller, 1774) and S. turricula (Held, 1836) (Gastropoda: Pulmonata: Lymnaeidae) in view of new molecular and chorological data. Folia Malacol. 2015, 23, 3–18. [Google Scholar] [CrossRef]
- Lopes-Lima, M.; Sousa, R.; Geist, J.; Aldridge, D.C.; Araujo, R.; Bergengren, J.; Bespalaya, Y.; Bódis, E.; Burlakova, L.; Van Damme, D.; et al. Conservation status of freshwater mussels in Europe: State of the art and future challenges. Biol. Rev. 2017, 92, 572–607. [Google Scholar] [CrossRef]
- Watson, A.M.; Ormerod, S.J. The distribution and conservation of threatened Sphaeriidae on British grazing marshland. Biodivers. Conserv. 2005, 14, 2207–2220. [Google Scholar] [CrossRef]
- Watson, A.M.; Ormerod, S.J. The distribution of three uncommon freshwater gastropods in the drainage ditches of British grazing marshes. Biol. Conserv. 2004, 118, 455–466. [Google Scholar] [CrossRef]
- IUCN Red List. Poland’s Biodiversity at Risk. A Call for Action. Available online: https://www.cbd.int/countries/profile/?country=pl (accessed on 22 January 2018).
- Thornhill, I.; Batty, L.; Death, R.G.; Friberg, N.R.; Ledger, M.E. Local and landscape scale determinants of macroinvertebrate assemblages and their conservation value in ponds across an urban land-use gradient. Biodivers. Conserv. 2017, 26, 1065–1086. [Google Scholar] [CrossRef]
- Sayer, C.; Andrews, K.; Shilland, E.; Edmonds, N.; Edmonds-Brown, R.; Patmore, J.; Emson, D.; Axmacher, J. The role of pond management for biodiversity conservation in an agricultural landscape. Aquat. Conserv. 2012, 22, 626–638. [Google Scholar] [CrossRef]
- Fail, J.L.; Haines, B.L.; Todd, R.L. Riparian forest communities and their role in nutrient conservation in an agricultural watershed. Am. J. Altern. Agric. 2009, 2, 114–121. [Google Scholar] [CrossRef]
- González-Bergonzoni, I.; Kristensen, P.B.; Baattrup-Pedersen, A.; Kristensen, E.A.; Alnoee, A.B.; Riis, T. Riparian forest modifies fuelling sources for stream food webs but not food-chain length in lowland streams of Denmark. Hydrobiologia 2018, 805, 291–310. [Google Scholar] [CrossRef]
- Palt, M.; Le Gall, M.; Piffady, J.; Hering, D.; Kail, J. A metric-based analysis on the effects of riparian and catchment landuse on macroinvertebrates. Sci. Total Environ. 2022, 816, 151590. [Google Scholar] [CrossRef] [PubMed]
- Stone, M.L.; Whiles, M.R.; Webber, J.A.; Williard, K.W.J.; Reeve, J.D. Macroinvertebrate communities in agriculturally impacted Southern Illinois streams: Patterns with riparian vegetation, water quality, and in-stream habitat quality. J. Environ. Qual. 2005, 34, 907–917. [Google Scholar] [CrossRef] [PubMed]
- Spyra, A. Acidic, neutral and alkaline forest ponds as a landscape element affecting the biodiversity of freshwater snails. Sci. Nat. 2017, 104, 73. [Google Scholar] [CrossRef]
- Lacoul, P.; Freedman, B.; Clair, T. Effects of acidification on aquatic biota in Atlantic Canada. Environ. Rev. 2011, 19, 429–460. [Google Scholar] [CrossRef]
- Hasler, C.T.; Jeffrey, J.D.; Schneider, E.V.C.; Hannan, K.D.; Tix, J.A.; Suski, C.D. Biological consequences of weak acidification caused by elevated carbon dioxide in freshwater ecosystems. Hydrobiologia 2018, 806, 1–12. [Google Scholar] [CrossRef]
- Økland, J. Factors regulating the distribution of fresh-water snails (Gastropoda) in Norway. Malacologia 1983, 24, 277–288. [Google Scholar]
- Økland, J. Lakes and Snails. Environment and Gastropoda in 1500 Norwegian Lakes, Ponds and Rivers; Universal Book Services/Dr. W. Backhuys: Oegstgeest, The Netherlands, 1990; ISBN 13: 9789073348028. [Google Scholar]
- Kearns, F.R.; Kelly, N.M.; Carter, J.L.; Resh, V.H. A method for the use of landscape metrics in freshwater research and management. Landsc. Ecol. 2005, 20, 113–125. [Google Scholar] [CrossRef]
- Joniak, T.; Kuczyńska-Kippen, N.; Gąbka, M. Effect of agricultural landscape characteristics on the hydrobiota structure in small water bodies. Hydrobiologia 2017, 793, 121–133. [Google Scholar] [CrossRef]
- Nieto, C.; Ovando, X.M.C.; Loyola, R.; Izquierdo, A.; Romero, F.; Molineri, C.; Rodríguez, J.; Rueda Martín, P.; Fernández, H.; Manzo, V.; et al. The role of macroinvertebrates for conservation of freshwater systems. Ecol. Evol. 2017, 7, 5502–5513. [Google Scholar] [CrossRef]
- Maskell, L.; Botham, C.M.; Henrys, P.; Jarvis, S.; Maxwell, D.; Robinson, D.A.; Rowland, C.S.; Siriwardena, G.; Smart, S.; Skates, J.; et al. Exploring relationships between land use intensity, habitat heterogeneity and biodiversity to identify and monitor areas of High Nature Value farming. Biol. Conserv. 2019, 231, 30–38. [Google Scholar] [CrossRef]
- Grimstead, J.P.; Krynak, E.M.; Yates, A.G. Scale-specific land cover thresholds for conservation of stream invertebrate communities in agricultural landscapes. Landsc. Ecol. 2018, 33, 2239–2252. [Google Scholar] [CrossRef]
- Nobis, A.; Rola, K.; Węgrzyn, M. Detailed study of a river corridor plant distribution pattern provides implications for river valley conservation. Ecol. Indic. 2017, 8, 314–322. [Google Scholar] [CrossRef]
- Oertli, B. Freshwater biodiversity conservation: The role of artificial ponds in the 21st century. Aquat. Conserv. 2018, 28, 264–269. [Google Scholar] [CrossRef]
- Douda, K. Effects of nitrate nitrogen pollution on Central European unionid bivalves revealed by distributional data and acute toxicity testing. Aquat. Conserv. 2010, 20, 189–197. [Google Scholar] [CrossRef]
- Kupiec, J.M.; Staniszewski, R.; Kayzer, D. Assessment of Water Quality Indicators in the Orla River Nitrate Vulnerable Zone in the Context of New Threats in Poland. Water 2022, 14, 2287. [Google Scholar] [CrossRef]
- Severini, E.; Bartoli, M.; Pinardi, M.; Celico, F. Short-Term Effects of the EU Nitrate Directive Reintroduction: Reduced N Loads to River from an Alluvial Aquifer in Northern Italy. Hydrology 2022, 9, 44. [Google Scholar] [CrossRef]
- Council Directive of 12 December 1991 Concerning the Protection of Waters against Pollution Caused by Nitrates from Agricultural Sources (91/676/EEC); Directive 91/676/EEC; Council of the European Communities: Brussels, Belgium, 1991.
- Report from the Commission to the Council and the European Parliament on the Implementation of Council Directive 91/676/EEC Concerning the Protection of Waters against Pollution Caused by Nitrates from Agricultural Sources Based on Member State Reports for the Period 2016–2019; European Commission: Brussels, Belgium, 2021.
- Commission Decision (EU) 2018/813 of 14 May 2018 on the Sectoral Reference Document on Best Environmental Management Practices, Sector Environmental Performance Indicators and Benchmarks of Excellence for the Agriculture Sector under Regulation (EC) No 1221/2009 of the European Parliament and of the Council on the Voluntary Participation by Organisations in a Community Eco-Management and Audit Scheme (EMAS); European Commission: Brussels, Belgium, 2018.
- Drizo, A.; Johnston, C.; Guðmundsson, J. An Inventory of Good Management Practices for Nutrient Reduction, Recycling and Recovery from Agricultural Runoff in Europe’s Northern Periphery and Arctic Region. Water 2022, 14, 2132. [Google Scholar] [CrossRef]
- Alonso, Á.; Gómez-de-Prado, G.; Romero-Blanco, A. Behavioral Variables to Assess the Toxicity of Unionized Ammonia in Aquatic Snails: Integrating Movement and Feeding Parameters. Arch. Environ. Contam. Toxicol. 2022, 82, 429–438. [Google Scholar] [CrossRef]
- Zając, K.; Florek, J.; Zając, T.; Adamski, P.; Bielański, W.; Ćmiel, A.M.; Klich, M.; Lipińska, A.M. On the reintroduction of the endangered thick-shelled river mussel Unio crassus: The importance of the river’s longitudinal profile. Sci. Total Environ. 2018, 624, 273–282. [Google Scholar] [CrossRef]
- Soroka, M.; Wasowicz, B.; Zając, K. Conservation status and a novel restoration of the endangered freshwater mussel Unio crassus Philipsson, 1788: Poland case. Knowl. Manag. Aquat. Ecosyst. 2021, 422, 3. [Google Scholar] [CrossRef]
- Graziano, M.P.; Deguire, A.K.; Surasinghe, T.D. Riparian Buffers as a Critical Landscape Feature: Insights for Riverscape Conservation and Policy Renovations. Diversity 2022, 14, 172. [Google Scholar] [CrossRef]
- Le Gall, M.; Palt, M.; Kail, J.; Hering, D.; Piffady, J. Woody riparian buffers have indirect effects on macroinvertebrate assemblages of French rivers, but land use effects are much stronger. J. Appl. Ecol. 2022, 59, 526–536. [Google Scholar] [CrossRef]
- Forio, M.A.E.; Burdon, F.J.; De Troyer, N.; Lock, K.; Witing, F.; Baert, L.; De Saeyer, N.; Rîșnoveanu, G.; Popescu, C.; Kupilas, B.A. Bayesian Belief Network learning tool integrates multi-scale effects of riparian buffers on stream invertebrates. Sci. Total Environ. 2022, 810, 152146. [Google Scholar] [CrossRef]
- Ruiz, M.; Velasco, J. Nutrient Bioaccumulation in Phragmites australis: Management Tool for Reduction of Pollution in the Mar Menor. Water Air Soil Pollut. 2010, 205, 173–185. [Google Scholar] [CrossRef]
- Kalengo, L.; Ge, H.; Liu, N.; Wang, Z. The Efficiency of Aquatic Macrophytes on the Nitrogen and Phosphorous Uptake from Pond Effluents in Different Seasons. J. Ecol. Eng. 2021, 22, 75–85. [Google Scholar] [CrossRef]
** Variable | * Abbreviation | Values (Mean ± SD) |
---|---|---|
1. Metrics of buffer zones | ||
mean patch size | MPS | 0.95–3.57 (1.81 ± 0.77) |
patch size standard deviation | PSSD | 1.45–5.37 (3.28 ± 1.39) |
the median of patch sizes | MEDPS | 0.21–0.74 (0.51 ± 0.16) |
number of patches | NUMP | 22–83 (50.8 ± 18.8) |
total edge length | TE | 25,342–43,174 (33,856.9 ± 5821.4) |
mean edge length | MTE | 520–1152 (726.7 ± 186,5) |
sum of patch shape indices | SUM | 48.35–138.32 (97.17 ± 27.47) |
mean shape index | MSI | 1.67–2.27 (1.98 ± 0.20) |
Shannon patch diversity index | SDI | 1.54–2.20 (2.05 ± 0.15) |
Shannon evenness index | SEI | 0.83–0.92 (0.87 ± 0.03) |
contagion | Cr | 1.20–4.55 (2.30 ± 0.98) |
edge density | ED | 322.88–549.15 (431.04 ± 73.96) |
patch density | PD | 28.03–105.57 (64.72 ± 23.87) |
2. Characteristics of patches in buffer zones: CA—the area of particular patches, L—a distance of particular patches from the centre of the buffer zone | ||
built-up areas | CA(a) | 0.00–8.15 (1.54 ± 2.84) |
L(a) | 0.00–461.60 (113.88 ± 180.78) | |
peat bogs | CA(b) | 0.00–4.32 (1.76 ± 1.44) |
L(b) | 0.00–456.25 (271.93 ± 195.17) | |
fields | CA(c) | 3.83–44.80 (22.43 ± 12.24) |
L(c) | 2.07–452.92 (361.88 ± 135.21) | |
meadows and pastures | CA(d) | 1.04–37.30 (17.20 ± 12.37) |
L(d) | 2.25–433.90 (319.02 ± 122.56) | |
broadleaf forests | CA(e) | 5.17–25.67 (13.64 ± 6.45) |
L(e) | 2.68–372.89 (278.02 ± 110.48) | |
mixed forests | CA(f) | 0.00–16.30 (4.88 ± 6.96) |
L(f) | 0.00–378.65 (96.11 ± 137.16) | |
osiers | CA(g) | 0.00–9.79 (1.97 ± 1.82) |
L(g) | 0.00–486.03 (262.63 ± 145.90) | |
rivers | CA(h) | 0.19–2.87 (1.34 ± 0.87) |
L(h) | 7.36–390.79 (230.22 ± 129.19) | |
water bodies | CA(i) | 0.00–19.88 (2.51 ± 5.02) |
L(i) | 0.00–464.64 (217.74 ± 201.59) | |
3. Characteristics of catchments—a—area, d—distance from the river | ||
catchment | a cat | 469.4–11,065.1 (3621.1 ± 3745.4) |
catchmentarea from the sources | a cat cu | 459.4–60,568.3 (20,928.9 ± 22,428.7) |
forests | a forest | 37.72–4067.95 (912.83 ± 1415.31) |
meadows and pastures | a mead | 50.86–1787.2 (622.0 ± 610.6) |
fields | a field | 111.54–4813.03(1957.50 ± 610.63) |
built-up | a build | 6.96–14.14 (69.64 ± 48.61) |
water bodies | a st wat | 1.63–78.82 (22.18 ± 25.97) |
marshland | a marsh | 0.00–31.16 (8.47 ± 11.01) |
rivers | a river | 0.00–5.35 (1.91 ± 1.92) |
shrubs | a shrub | 0.00–31.98 (6.89 ± 11.36) |
wasteland | a wast | 0.00–111.30 (19.64 ± 41.02) |
length of catchment boundaries | l bord | 12,405.64–83,599.36 (38,625.98 ± 24,031.11) |
roughness | Ra | 9.17–19.84 (12.72 ± 3.21) |
river gradient | river gr | 0.1–4.8 (1.9 ± 1.7) |
distance from source | d source | 2073–64,380 (25,875 ± 18,695) |
forests | d fores | 278.05–1166.76 (516.60 ± 259.72) |
fields | d field | 406.41–912.15 (627.47 ± 181.91) |
marshland | d marsh | 0.00–1186.32 (489.62 ± 466.32) |
meadows and pastures | d mead | 206.70–1196.86 (537.88 ± 296.13) |
shrubs | d shrub | 0.00–1073.18 (372.09 ± 350.28) |
wasteland | d wast | 0.00–909.1 (323.04 ± 432.17) |
water bodies | d st water | 246.97–1553.53 (246.97 ± 375.19) |
built-up | d build | 213.25–910.61 (534.05 ± 260.05) |
Parameter | Pools | Oxbow Lakes | Sedge Marshes | Flooded Alder Woods | Ponds | Springs |
---|---|---|---|---|---|---|
Temperature (°C) | 6.4–22.9 | 9.3–20.3 | 7.9–18.9 | 14.0–20.1 | 7.6–16.9 | 9.5–19.0 |
Conductivity (µS cm−1) | 159–287 | 137–524 | 68–272 | 99–243 | 65–278 | 121–307 |
Turbidity (mg dm−3) | 0.0–119.5 | 0.0–304.0 | 2.6–96.0 | 5.1–58.0 | 6.8–95.0 | 4.2–21.2 |
pH | 5.3–7.6 | 2.1–7.8 | 5.5–7.0 | 5.3–7.7 | 2.8–7.6 | 6.2–7.9 |
Dissolved oxygen (mg O2 dm−3) | 0.5–9.3 | 0.2–9.8 | 0.9–16.1 | 2.6–15.6 | 1.3–9.2 | 0.5–10.3 |
BOD (mg O2 dm−3) | 4.3–5.7 | 0.0–10.3 | 0.4–3.6 | 3.2–4.9 | 0.0–4.8 | 1.9–4.1 |
Ammonium nitrogen (mg N–NH4+ dm−3) | 0.3–2.2 | 0.1–4.8 | 0.3–1.6 | 0.8–3.5 | 0.2–3.0 | 0.2–1.2 |
Nitrates (mg NO3− dm−3) | 0.4–2.0 | 0.1–8.2 | 0.4–2.0 | 0.4–1.4 | 0.1–1.1 | 0.4–8.2 |
Phosphates (mg PO43− dm−3) | 0.1–1.5 | 0.1–1.0 | 0.1–2.7 | 0.1–1.2 | 0.01–0.7 | 0.2–0.8 |
Total hardness (mg CaCO3 dm−3) | 44–274 | 103–412 | 134–226 | 91–312 | 3–148 | 126–168 |
Iron (mg Fe dm−3) | 0.0–0.60 | 0.0–0.20 | 0.0–0.24 | 0.0–0.08 | 0.0–0.36 | 0.05–0.13 |
Organic matter (%) | 11–53 | 3–60 | 52–87 | 69–76 | 6–91 | 3–37 |
Insolation (%) | 87–100 | 0–100 | 57–100 | 2–35 | 3–100 | 8–71 |
Species | Pools | Oxbow Lakes | Sedge Marshes | Flooded Alder Woods | Ponds | Springs | Total | IUCN Red List (EU 27) a | Red List Poland |
---|---|---|---|---|---|---|---|---|---|
Theodoxus fluviatilis (Linnaeus, 1758) | 0.22 | 0.06 | LC | ||||||
Viviparus contectus (Millet, 1813) | 0.14 | 0.05 | LC | ||||||
Bithynia tentaculata (Linnaeus, 1758) | 0.05 | 4.08 | 31.03 | 1.52 | LC | ||||
Bithynia leachii (Sheppard, 1823) | 0.05 | 0.04 | 0.02 | LC | NT | ||||
Potamopyrgus antipodarum (Gray, 1843) | 0.04 | 0.01 | NA | ||||||
Valvata cristata O.F. Müller, 1774 | 0.14 | 8.20 | 0.59 | LC | |||||
Valvata piscinalis (O.F. Müller, 1774) | 0.09 | 0.04 | 0.04 | LC | |||||
Galba truncatula (O.F. Müller, 1774) | 1.67 | 0.75 | 9.47 | 1.87 | 2.32 | 3.99 | LC | ||
Stagnicola palustris (O.F. Müller, 1774) | 2.64 | 3.95 | 6.03 | 1.71 | LC | DD | |||
Stagnicola sp. | 2.05 | 2.85 | 4.92 | 5.81 | 1.25 | 3.54 | |||
Stagnicola turricula (Held, 1836) | 0.61 | 0.20 | LC | DD | |||||
Ladislavella terebra (Westerlund, 1885) | 0.90 | 4.88 | 0.84 | NT | NT | ||||
Stagnicola corvus (Gmelin, 1778) | 0.22 | 0.09 | 0.07 | LC | DD | ||||
Radix auricularia (Linnaeus, 1758) | 22.41 | 0.30 | LC | ||||||
Radix balthica (Linnaeus, 1758) | 1.03 | 0.31 | 0.30 | LC | |||||
Lymnaea stagnalis (Linnaeus, 1758) | 0.54 | 0.18 | 4.31 | 0.22 | LC | ||||
Physa fontinalis (Linnaeus, 1758) | 0.38 | 0.04 | 4.31 | 0.15 | LC | ||||
Aplexa hypnorum (Linnaeus, 1758) | 1.19 | 11.94 | 0.40 | 0.86 | 4.36 | 0.89 | 4.13 | LC | NT |
Planorbarius corneus (Linnaeus, 1758) | 6.42 | 2.98 | 9.07 | 27.59 | 1.35 | 5.66 | LC | ||
Planorbis planorbis (Linnaeus, 1758) | 34.65 | 25.98 | 50.72 | 0.86 | 15.98 | 32.70 | LC | ||
Planorbis carinatus O.F. Müller, 1774 | 0.05 | 0.01 | LC | NT | |||||
Anisus leucostoma (Millet, 1813) | 0.70 | 12.07 | 2.18 | 1.25 | 3.70 | LC | |||
Anisus vortex (Linnaeus, 1758) | 23.53 | 11.06 | 8.06 | LC | |||||
Bathyomphalus contortus (Linnaeus, 1758) | 1.19 | 9.17 | 23.43 | 1.04 | 36.19 | 12.79 | LC | ||
Gyraulus rossmaessleri (Auerswald, 1852) | 0.21 | 0.02 | LC | NT | |||||
Hippeutis complanatus (Linnaeus, 1758) | 0.32 | 1.58 | 0.49 | LC | |||||
Segmentina nitida (O.F. Müller, 1774) | 22.29 | 4.96 | 0.04 | 6.17 | LC | ||||
Sphaerium corneum (Linnaeus, 1758) | 0.05 | 1.14 | 0.11 | 1.72 | 0.37 | LC | |||
Pisidium milium Held, 1836 | 2.02 | 0.54 | LC | ||||||
Pisidium subtruncatum Malm, 1855 | 0.16 | 0.31 | 0.18 | 0.13 | LC | ||||
Pisidium nitidum (Jenyns, 1832) | 0.27 | 0.97 | 0.71 | 0.36 | LC | ||||
Pisidium hibernicum Westerlund, 1894 | 0.04 | 0.01 | LC | VU | |||||
Pisidium obtusale (Lamarck, 1818) | 0.48 | 0.18 | 0.14 | LC | VU | ||||
Pisidium personatum Malm, 1855 | 14.21 | 35.47 | 3.93 | LC | |||||
Pisidium sp. | 0.54 | 0.48 | 0.25 | ||||||
Pisidium casertanum (Poli, 1791) | 13.37 | 0.88 | LC | ||||||
Pisidium globulare Clessin, 1873 | 2.19 | 48.13 | 6.02 | LC | |||||
Dreissena polymorpha (Pallas, 1771) | 0.86 | 0.01 | NA | ||||||
No of samples taken from particular types of NAHs | 105 | 231 | 84 | 126 | 189 | 63 | 798 | ||
No of specimens | 1853 | 2279 | 2766 | 116 | 964 | 561 | 8539 | ||
No of species | 20 | 26 | 12 | 10 | 10 | 10 | 36 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lewin, I.; Stępień, E.; Szlauer-Łukaszewska, A.; Pakulnicka, J.; Stryjecki, R.; Pešić, V.; Bańkowska, A.; Szućko-Kociuba, I.; Michoński, G.; Krzynówek, Z.; et al. Drivers of the Structure of Mollusc Communities in the Natural Aquatic Habitats along the Valley of a Lowland River: Implications for Their Conservation through the Buffer Zones. Water 2023, 15, 2059. https://doi.org/10.3390/w15112059
Lewin I, Stępień E, Szlauer-Łukaszewska A, Pakulnicka J, Stryjecki R, Pešić V, Bańkowska A, Szućko-Kociuba I, Michoński G, Krzynówek Z, et al. Drivers of the Structure of Mollusc Communities in the Natural Aquatic Habitats along the Valley of a Lowland River: Implications for Their Conservation through the Buffer Zones. Water. 2023; 15(11):2059. https://doi.org/10.3390/w15112059
Chicago/Turabian StyleLewin, Iga, Edyta Stępień, Agnieszka Szlauer-Łukaszewska, Joanna Pakulnicka, Robert Stryjecki, Vladimir Pešić, Aleksandra Bańkowska, Izabela Szućko-Kociuba, Grzegorz Michoński, Zuzanna Krzynówek, and et al. 2023. "Drivers of the Structure of Mollusc Communities in the Natural Aquatic Habitats along the Valley of a Lowland River: Implications for Their Conservation through the Buffer Zones" Water 15, no. 11: 2059. https://doi.org/10.3390/w15112059
APA StyleLewin, I., Stępień, E., Szlauer-Łukaszewska, A., Pakulnicka, J., Stryjecki, R., Pešić, V., Bańkowska, A., Szućko-Kociuba, I., Michoński, G., Krzynówek, Z., Krakowiak, M., Chatterjee, T., & Zawal, A. (2023). Drivers of the Structure of Mollusc Communities in the Natural Aquatic Habitats along the Valley of a Lowland River: Implications for Their Conservation through the Buffer Zones. Water, 15(11), 2059. https://doi.org/10.3390/w15112059