Contents of Metals in Sediments and Macrophytes Differed between the Locations in an Alpine Lake Revealing Human Impacts—A Case Study of Lake Bohinj (Slovenia)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling
2.3. Preparation of the Samples and Chemical Analyses
2.4. Data Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brucet, S.; Poikane, S.; Lyche-Solheim, A.; Birk, S. Biological Assessment of European Lakes: Ecological Rationale and Human Impacts. Freshw. Biol. 2013, 58, 1106–1115. [Google Scholar] [CrossRef]
- Wang, F.; Wang, B.; Qu, H.; Zhao, W.; Duan, L.; Zhang, Y.; Zhou, Y.; Yu, G. The Influence of Nanoplastics on the Toxic Effects, Bioaccumulation, Biodegradation and Enantioselectivity of Ibuprofen in Freshwater Algae Chlorella Pyrenoidosa. Environ. Pollut. 2020, 263, 114593. [Google Scholar] [CrossRef] [PubMed]
- Tornimbeni, O.; Rogora, M. An Evaluation of Trace Metals in High-Altitude Lakes of the Central Alps. Water Air Soil Pollut. 2012, 223, 1895–1909. [Google Scholar] [CrossRef]
- Voica, C.; Iordache, A.M.; Ionote, R.E.; Ștefănescu, R.E.I. Aspects on the Accumulation of Trace Metals in Various Environmental Matrices (Water, Soil, Plant and Sediments): Case Study on Catchment Area of the Somes River, Romania. In Water Quality; IntechOpen: London, UK, 2017. [Google Scholar] [CrossRef] [Green Version]
- Féraud, G.; Potot, C.; Fabretti, J.F.; Guglielmi, Y.; Fiquet, M.; Barci, V.; Maria, P.C. Trace Elements as Geochemical Markers for Surface Waters and Groundwaters of the Var River Catchment (Alpes Maritimes, France). Comptes Rendus Chim. 2009, 12, 922–932. [Google Scholar] [CrossRef]
- Moiseenko, T.I.; Gashkina, N.A. The Distribution of Trace Elements in Surface Continental Waters and the Character of Their Migration in Water. Water Resour. 2007, 34, 423–437. [Google Scholar] [CrossRef]
- Evenset, A.; Christensen, G.N.; Carroll, J.; Zaborska, A.; Berger, U.; Herzke, D.; Gregor, D. Historical Trends in Persistent Organic Pollutants and Metals Recorded in Sediment from Lake Ellasjøen, Bjørnøya, Norwegian Arctic. Environ. Pollut. 2007, 146, 196–205. [Google Scholar] [CrossRef]
- Dawson, E.J.; Macklin, M.G. Speciation of Heavy Metals in Floodplain and Flood Sediments: A Reconnaissance Survey of the Aire Valley, West Yorkshire, Great Britain. Environ. Geochem. Health 1998, 20, 67–76. [Google Scholar] [CrossRef]
- Da Silva, L.J.; Figueredo, C.C. Algae as Biosorption Agents for Recovering Environments Contaminated by Trace Metals: An Overview of a Potentially Useful Tool for Mine Disasters in Brazil. Biologia 2022, 78, 1–14. [Google Scholar] [CrossRef]
- Li, L.; Ni, W.; Li, T.; Zhou, B.; Qu, Y.; Yuan, K. Influences of Anthropogenic Factors on Lakes Area in the Golmud Basin, China, from 1980 to 2015. Environ. Earth Sci. 2020, 79, 20. [Google Scholar] [CrossRef]
- Ugulu, I.; Dogan, Y.; Baslar, S.; Varol, O. Biomonitoring of Trace Element Accumulation in Plants Growing at Murat Mountain. Int. J. Environ. Sci. Technol. 2012, 3, 527–534. [Google Scholar] [CrossRef] [Green Version]
- Ustaoğlu, F.; Kükrer, S.; Taş, B.; Topaldemir, H. Evaluation of Metal Accumulation in Terme River Sediments Using Ecological Indices and a Bioindicator Species. Environ. Sci. Pollut. Res. 2022, 29, 47399–47415. [Google Scholar] [CrossRef] [PubMed]
- Topaldemir, H.; Taş, B.; Yüksel, B.; Ustaoğlu, F. Potentially Hazardous Elements in Sediments and Ceratophyllum Demersum: An Ecotoxicological Risk Assessment in Miliç Wetland, Samsun, Türkiye. Environ. Sci. Pollut. Res. 2022, 30, 26397–26416. [Google Scholar] [CrossRef] [PubMed]
- Sojka, M.; Jaskuła, J.; Barabach, J.; Ptak, M.; Zhu, S. Heavy Metals in Lake Surface Sediments in Protected Areas in Poland: Concentration, Pollution, Ecological Risk, Sources and Spatial Distribution. Sci. Rep. 2022, 12, 15006. [Google Scholar] [CrossRef] [PubMed]
- Long, E.R.; Robertson, A.; Wolfe, D.A.; Hameedi, J.; Sloane, G.M. Estimates of the Spatial Extent of Sediment Toxicity in Major U.S. Estuaries. Environ. Sci. Technol. 1996, 30, 3585–3592. [Google Scholar] [CrossRef]
- Liu, J.J.; Diao, Z.H.; Xu, X.R.; Xie, Q. Effects of Dissolved Oxygen, Salinity, Nitrogen and Phosphorus on the Release of Heavy Metals from Coastal Sediments. Sci. Total Environ. 2019, 666, 894–901. [Google Scholar] [CrossRef]
- Polechońska, L.; Klink, A.; Dambiec, M.; Rudecki, A. Evaluation of Ceratophyllum Demersum as the Accumulative Bioindicator for Trace Metals. Ecol. Indic. 2018, 93, 274–281. [Google Scholar] [CrossRef]
- Shah, A.B.; Rai, U.N.; Singh, R.P. Correlations between Some Hazardous Inorganic Pollutants in the Gomti River and Their Accumulation in Selected Macrophytes under Aquatic Ecosystem. Bull. Environ. Contam. Toxicol. 2015, 94, 783–790. [Google Scholar] [CrossRef]
- Vukosav, P.; Mlakar, M.; Cukrov, N.; Kwokal, Ž.; Pižeta, I.; Pavlus, N.; Špoljarić, I.; Vurnek, M.; Brozinčević, A.; Omanović, D. Heavy Metal Contents in Water, Sediment and Fish in a Karst Aquatic Ecosystem of the Plitvice Lakes National Park (Croatia); Springer: Berlin/Heidelberg, Germany, 2014; Volume 21. [Google Scholar]
- EU Directive 2000/60; Water Framework Directive (WFD) 2000/60/EC. European Environment Agency: Copenhagen, Denmark, 2022.
- ARSO. Rezultati Monitoringa Ekološkega Stanja Jezer v Letu. 2020. Available online: https://www.arso.gov.si/vode/jezera/Ekolosko_stanje_jezera_2020 (accessed on 15 July 2022).
- ARSO. Jezera—Ocena Kemijskega Stanja Jezer Od Leta 2006 Do. 2021. Available online: https://www.arso.gov.si/vode/jezera/ (accessed on 20 July 2022).
- Sandeep, G.; Vijayalatha, K.; Anitha, T. Heavy Metals and Its Impact in Vegetable Crops. Int. J. Chem. Stud. 2019, 7, 1612–1621. [Google Scholar]
- Simčič, T.; Germ, M. Organic Matter Degradation through Respiration in Littoral and Pelagial Including Profundal Zones of an Oligotrophic Lake Assessed by Electron Transport System Activity. Hydrobiologia 2009, 635, 137–146. [Google Scholar] [CrossRef]
- Polechońska, L.; Klink, A.; Golob, A.; Germ, M. Evaluation of Nuphar Lutea as Bioindicator of Metal Pollution in Freshwater Ecosystems. Ecol. Indic. 2022, 136, 108633. [Google Scholar] [CrossRef]
- Benton Jones, J.J. Laboratory Guide for Conducting Soil Tests and Plant Analysis, 1st ed.; CRC Press: Boca Raton, FL, USA, 2001. [Google Scholar]
- Tabatabai, M.A. Handbook of Reference Methods for Plant Analysis; CRC Press: Boca Raton, FL, USA, 1998; Volume 38, ISBN 9781574441246. [Google Scholar]
- Stamatis, N.; Kamidis, N.; Pigada, P.; Sylaios, G.; Koutrakis, E. Quality Indicators and Possible Ecological Risks of Heavy Metals in the Sediments of Three Semi-Closed East Mediterranean Gulfs. Toxics 2019, 7, 30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gałuszka, A.; Migaszewski, Z. Geochemical Background-an Environmental Perspective. Mineralogia 2011, 42, 7–17. [Google Scholar] [CrossRef]
- Camarero, L.; Botev, I.; Muri, G.; Psenner, R.; Rose, N.; Stuchlik, E. Trace Elements in Alpine and Arctic Lake Sediments as a Record of Diffuse Atmospheric Contamination across Europe. Freshw. Biol. 2009, 54, 2518–2532. [Google Scholar] [CrossRef]
- Von Gunten, H.R.; Sturm, M.; Moser, R.N. 200-Year Record of Metals in Lake Sediments and Natural Background Concentrations. Environ. Sci. Technol. 1997, 31, 2193–2197. [Google Scholar] [CrossRef]
- Kabata-Pendias, A.; Pendias, H. Biogeochemistry of Trace Elements; Wydawnictwo Naukowe PWN: Warsaw, Poland, 1999. [Google Scholar]
- Brooks, R.R.; Robinson, B. Plants That Hyperaccumulate Heavy Metals: Their Role in Phytoremediation, Microbiology, Archaeology, Mineral Exploration and Phytomining. In Aquatic Phytoremediation by Accumulator Plants; Brooks, R.R., Ed.; Cab International: Wallingford, UK, 1998; pp. 203–226. [Google Scholar]
- Fontanella, M.C.; Ravera, O.; Beone, G.M.; RiccardiI, N.; Cattani, I. Mercury Distribution in the Main Compartments of the Eutrophic Lake Candia (Northern Italy). J. Limnol. 2009, 68, 352–358. [Google Scholar] [CrossRef] [Green Version]
- Pastorino, P.; Prearo, M.; Pizzul, E.; Elia, A.C.; Renzi, M.; Ginebreda, A.; Barceló, D. High-Mountain Lakes as Indicators of Microplastic Pollution: Current and Future Perspectives. Water Emerg. Contam. Nanoplastics 2022, 1, 3. [Google Scholar] [CrossRef]
- Mazej, Z.; Germ, M. Trace Element Accumulation and Distribution in Four Aquatic Macrophytes. Chemosphere 2009, 74, 642–647. [Google Scholar] [CrossRef]
- Baldantoni, D.; Bellino, A.; Lofrano, G.; Libralato, G.; Pucci, L.; Carotenuto, M. Biomonitoring of Nutrient and Toxic Element Concentrations in the Sarno River through Aquatic Plants. Ecotoxicol. Environ. Saf. 2018, 148, 520–527. [Google Scholar] [CrossRef]
- Amin, B.; Ismail, A.; Arshad, A.; Yap, C.K.; Kamarudin, M.S. Anthropogenic Impacts on Heavy Metal Concentrations in the Coastal Sediments of Dumai, Indonesia. Environ. Monit. Assess. 2009, 148, 291–305. [Google Scholar] [CrossRef]
- Zahra, A.; Hashmi, M.Z.; Malik, R.N.; Ahmed, Z. Enrichment and Geo-Accumulation of Heavy Metals and Risk Assessment of Sediments of the Kurang Nallah—Feeding Tributary of the Rawal Lake Reservoir, Pakistan. Sci. Total Environ. 2014, 470–471, 925–933. [Google Scholar] [CrossRef]
- Zheng, N.; Wang, Q.; Liang, Z.; Zheng, D. Characterization of Heavy Metal Concentrations in the Sediments of Three Freshwater Rivers in Huludao City, Northeast China. Environ. Pollut. 2008, 154, 135–142. [Google Scholar] [CrossRef] [PubMed]
- Hou, D.; He, J.; Lü, C.; Ren, L.; Fan, Q.; Wang, J.; Xie, Z. Distribution Characteristics and Potential Ecological Risk Assessment of Heavy Metals (Cu, Pb, Zn, Cd) in Water and Sediments from Lake Dalinouer, China. Ecotoxicol. Environ. Saf. 2013, 93, 135–144. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Yu, Z.; Zeng, G.; Jiang, M.; Yang, Z.; Cui, F.; Zhu, M.; Shen, L.; Hu, L. Effects of Sediment Geochemical Properties on Heavy Metal Bioavailability. Environ. Int. 2014, 73, 270–281. [Google Scholar] [CrossRef] [PubMed]
- ARSO. Podatki o Kakovosti Voda—2021, Jezera in Zadrževalniki—Izpisi Podatkov Po Jezerih Za Leto 2021. Available online: https://www.arso.gov.si/vode/podatki/arhiv/kakovost_arhiv2021.html (accessed on 15 July 2022).
- Mezga, K.; Dolenec, M.; Šram, D.; Vrhovnik, P. Potentially Toxic Elements in the Dravinja River Sediments (Eastern Slovenia). Geol. Maced. 2021, 35, 141–150. [Google Scholar] [CrossRef]
- Kastratovic, V.; Jacimovic, Z.; Bigovic, M.; Djurovic, D.; Krivokapic, S. The Distribution and Accumulation of Chromium in the Water, Sediment and Macrophytes of Skadar Lake. Kragujev. J. Sci. 2016, 38, 125–134. [Google Scholar] [CrossRef] [Green Version]
- Yabanli, M.; Yozukmaz, A.; Sel, F. Heavy Metal Accumulation in the Leaves, Stem and Root of the Invasive Submerged Macrophyte Myriophyllum spicatum L. (Haloragaceae): An Example of Kadin Creek (Mugla, Turkey). Braz. Arch. Biol. Technol. 2014, 57, 434–440. [Google Scholar] [CrossRef] [Green Version]
- Pajević, S.; Borišev, M.; Rončević, S.; Vukov, D.; Igić, R. Heavy Metal Accumulation of Danube River Aquatic Plants—Indication of Chemical Contamination. Cent. Eur. J. Biol. 2008, 3, 285–294. [Google Scholar] [CrossRef]
- Peng, K.; Luo, C.; Lou, L.; Li, X.; Shen, Z. Bioaccumulation of Heavy Metals by the Aquatic Plants Potamogeton pectinatus L. and Potamogeton Malaianus Miq. and Their Potential Use for Contamination Indicators and in Wastewater Treatment. Sci. Total Environ. 2008, 392, 22–29. [Google Scholar] [CrossRef]
- Hayat, M.T.; Nauman, M.; Nazir, N.; Ali, S.; Bangash, N. Environmental Hazards of Cadmium: Past, Present, and Future. In Cadmium Toxicity and Tolerance in Plants: From Physiology to Remediation; Hasanuzzaman, M., Prasad, M.N.V., Fujita, M., Eds.; Elsevier: London, UK, 2019; pp. 163–183. [Google Scholar] [CrossRef]
- Kabata-Pendias, A. Trace Elements in Soils and Plants, 4th ed.; CRC Press: Boca Raton, FL, USA, 2011. [Google Scholar]
- Zhao, Y.; Deng, Q.; Lin, Q.; Zeng, C.; Zhong, C. Cadmium Source Identification in Soils and High-Risk Regions Predicted by Geographical Detector Method. Environ. Pollut. 2020, 263, 114338. [Google Scholar] [CrossRef]
- Yuan, Z.; Luo, T.; Liu, X.; Hua, H.; Zhuang, Y.; Zhang, X.; Zhang, L.; Zhang, Y.; Xu, W.; Ren, J. Tracing Anthropogenic Cadmium Emissions: From Sources to Pollution. Sci. Total Environ. 2019, 676, 87–96. [Google Scholar] [CrossRef]
- Wang, J.; Jiang, Y.; Sun, J.; She, J.; Yin, M.; Fang, F.; Xiao, T.; Song, G.; Liu, J. Geochemical Transfer of Cadmium in River Sediments near a Lead-Zinc Smelter. Ecotoxicol. Environ. Saf. 2020, 196, 110529. [Google Scholar] [CrossRef] [PubMed]
- Milačič, R.; Ščančar, J.; Murko, S.; Kocman, D.; Horvat, M. A Complex Investigation of the Extent of Pollution in Sediments of the Sava River. Part 1: Selected Elements. Environ. Monit. Assess. 2010, 163, 263–275. [Google Scholar] [CrossRef] [PubMed]
- Gosar, M.; Šajn, R.; Bavec, Š.; Gaberšek, M.; Pezdir, V.; Miler, M. Geochemical Background and Threshold for 47 Chemical Elements in Slovenian Topsoil. Geologija 2019, 62, 7–59. [Google Scholar] [CrossRef]
- Irfan, M.; Liu, X.; Hussain, K.; Mushtaq, S.; Cabrera, J.; Zhang, P. The Global Research Trend on Cadmium in Freshwater: A Bibliometric Review. Environ. Sci. Pollut. Res. 2021, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Pintar, N. Po Poteh Železne Poti v Bohinju Za Učence 4. in 5. Razreda : Diplomsko Delo, [N. Pintar]. 2012. Available online: https://repozitorij.uni-lj.si/IzpisGradiva.php?id=27014&lang=slv (accessed on 15 July 2022).
- Gallini, L.; Ajmone-Marsan, F.; Scalenghe, R. The Contamination Legacy of a Decommissioned Iron Smelter in the Italian Alps. J. Geochemical Explor. 2018, 186, 121–128. [Google Scholar] [CrossRef]
- Galinha, C.; Sánchez-Martínez, M.; Pacheco, A.M.G.; Freitas, M.d.C.; Coutinho, J.; Maçãs, B.; Almeida, A.S.; Pérez-Corona, M.T.; Madrid, Y.; Wolterbeek, H.T. Characterization of Selenium-Enriched Wheat by Agronomic Biofortification. J. Food Sci. Technol. 2014, 52, 4236–4245. [Google Scholar] [CrossRef] [Green Version]
- Frančišković-Bilinski, S.; Scholger, R.; Bilinski, H.; Tibljaš, D. Magnetic, Geochemical and Mineralogical Properties of Sediments from Karstic and Flysch Rivers of Croatia and Slovenia. Environ. Earth Sci. 2014, 72, 3939–3953. [Google Scholar] [CrossRef]
- Kuntarič, B. Iz Bohinjskega jezera odstranili nevarne ostanke iz prve svetovne vojne. Hazardous Remains from the First World War Removed from Lake Bohinj. Available online: https://www.gov.si/assets/organi-v-sestavi/URSZR/Publikacija/Ujma/2011/251-254-vsebina-za-tisk.pdf (accessed on 15 July 2022).
- Llagostera, I.; Pérez, M.; Romero, J. Trace Metal Content in the Seagrass Cymodocea Nodosa: Differential Accumulation in Plant Organs. Aquat. Bot. 2011, 95, 124–128. [Google Scholar] [CrossRef]
- Kolarova, N.; Napiórkowski, P. Trace Elements in Aquatic Environment. Origin, Distribution, Assessment and Toxicity Effect for the Aquatic Biota. Ecohydrol. Hydrobiol. 2021, 21, 655–668. [Google Scholar] [CrossRef]
- Guilizzoni, P. The Role of Heavy Metals and Toxic Amterials in the Physiological Ecology of Submersed Macrophytes. Aquat. Bot. 1991, 41, 87–109. [Google Scholar] [CrossRef]
- Ustaoğlu, F. Ecotoxicological Risk Assessment and Source Identification of Heavy Metals in the Surface Sediments of Çömlekci Stream, Giresun, Turkey. Environ. Forensics 2021, 22, 130–142. [Google Scholar] [CrossRef]
- Kowalska, J.; Mazurek, R.; Gąsiorek, M.; Setlak, M.; Zaleski, T.; Waroszewski, J. Soil Pollution Indices Conditioned by Medieval Metallurgical Activity—A Case Study from Krakow (Poland). Environ. Pollut. 2016, 218, 1023–1036. [Google Scholar] [CrossRef] [PubMed]
- Druzhinina, O.; Gedminienė, L.; van den Berghe, K. Metals in Lake Sediments as Indicators of Human Activities in Prehistory: Case Study of the Southeastern Baltic, Kamyshovoe Lake. Minerals 2022, 12, 1216. [Google Scholar] [CrossRef]
Plot | Species Collected |
---|---|
1 | C. delicatula, C. aspera, M. spicatum, P. perfoliatus |
2 | C. delicatula, C. aspera, M. spicatum |
3 | C. delicatula, M. spicatum |
4 | P. crispus, P. filiformis, P. lucens, M. spicatum |
5 | M. spicatum |
Elements | Water (µg L−1) | Sediments (mg kg−1DW) | Macrophytes (mg kg−1DW) | ||||
---|---|---|---|---|---|---|---|
Lake Bohinj | Vukosav et al. £ | EQS * (WFD) | Lake Bohinj | Literature Values | Lake Bohinj | Natural Content of Macrophytes | |
Cu | 3.96 ± 1.09 | 0.012 £ | 1.1 | 4.88 ± 2.04 | 20–23 ● | 3.91 ± 1.30 | 7.9 $ |
Pb | 0.68 ± 0.29 | 0.012 £ | 7.2 | 5.46 ± 2.67 | 10–19 ● | 2.17 ± 1.88 | 6.1 $ |
Cr | 0.40 ± 0.14 | 14.73 ± 8.06 | 50 # | 5.88 ± 1.03 | 4.0 $ | ||
Cd | 0.09 ± 0.03 | 0.011 £ | 0.08 | 0.52 ± 0.20 | 0.2 ● | 0.73 ± 0.47 | 1.0 $ |
Co | 0.10 ± 0.20 | 0.96 ± 0.66 | 13 # | 0.71 ± 0.60 | 0.32 $ | ||
Mn | 2.42 ± 0.92 | 91.32 ± 44.05 | 770 # | 96.24 ± 37.23 | 370.0 $ | ||
Fe | 76.52 ± 36.10 | 2207± 1100 | 18,000 # | 771.3 ± 360.2 | 1000 $ | ||
Zn | 2.92 ± 1.32 | 0.26 £ | ≤7.8 | 21.55 ± 9.82 | 50–84 ● | 33.99 ± 19.51 | 52.0 $ |
Ni | 3.44 ± 3.03 | 4.96 ± 4.55 | 6 # | 2.15 ± 0.62 | 4.2 $ | ||
Hg | 0.03 ± 0.02 | 0.025 ®–0.4 ● | 0.02 ± 0.02 | 0.029 ® |
Plot | Cd | Cu | Hg | Pb | Zn |
---|---|---|---|---|---|
1 | 1.95 | 0.23 | 0.11 | 0.16 | 0.25 |
2 | 3.09 | 0.34 | 0.15 | 0.14 | 0.33 |
3 | 1.75 | 0.12 | 0.09 | 0.06 | 0.11 |
4 | 1.97 | 0.18 | 0.16 | 0.07 | 0.21 |
5 | 4.15 | 0.35 | 0.47 | 0.20 | 0.43 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Germ, M.; Golob, A.; Zelnik, I.; Klink, A.; Polechońska, L. Contents of Metals in Sediments and Macrophytes Differed between the Locations in an Alpine Lake Revealing Human Impacts—A Case Study of Lake Bohinj (Slovenia). Water 2023, 15, 1254. https://doi.org/10.3390/w15071254
Germ M, Golob A, Zelnik I, Klink A, Polechońska L. Contents of Metals in Sediments and Macrophytes Differed between the Locations in an Alpine Lake Revealing Human Impacts—A Case Study of Lake Bohinj (Slovenia). Water. 2023; 15(7):1254. https://doi.org/10.3390/w15071254
Chicago/Turabian StyleGerm, Mateja, Aleksandra Golob, Igor Zelnik, Agnieszka Klink, and Ludmiła Polechońska. 2023. "Contents of Metals in Sediments and Macrophytes Differed between the Locations in an Alpine Lake Revealing Human Impacts—A Case Study of Lake Bohinj (Slovenia)" Water 15, no. 7: 1254. https://doi.org/10.3390/w15071254
APA StyleGerm, M., Golob, A., Zelnik, I., Klink, A., & Polechońska, L. (2023). Contents of Metals in Sediments and Macrophytes Differed between the Locations in an Alpine Lake Revealing Human Impacts—A Case Study of Lake Bohinj (Slovenia). Water, 15(7), 1254. https://doi.org/10.3390/w15071254