Applicability of Zeolite from the Daubabinsk and Chankanai Deposits as a Sorbent for Natural Waters
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
3. Results
3.1. Initial Data of the Object of Study
3.2. Qualitative Indicators of Water Used to Assess the Effectiveness of Modified Zeolite Application
3.3. Preparation of a Zeolite-Based Filter from the Chankanai and Daubabinsk Deposits (Modification)
4. Discussion
5. Conclusions
- High sorption capacity: Zeolites have a large surface area and a microporous structure, which provides a high sorption capacity. They are capable of trapping various pollutants, including organic compounds, metals and other harmful substances.
- Selectivity: Zeolites can be selective in the sorption of certain substances. Their structure and chemical properties can promote preferential sorption of certain pollutants, making them effective in removing specific types of pollutants from water.
- Inertness and stability: Zeolites are chemically inert materials, which means that they are inert and do not degrade when in contact with water or other media. They are chemically and thermally stable, which allows them to retain their sorption properties over a wide range of conditions.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Herrmann, H.; Bucksch, H. Dictionary Geotechnical Engineering/Wörterbuch GeoTechnik; Springer: Berlin/Heidelberg, Germany, 2014; Available online: https://link.springer.com/referenceworkentry/10.1007/978-3-642-41714-6_140257 (accessed on 14 April 2023).
- Nasr, M.; Negm, A.M. (Eds.) Introduction to “Cost-Efficient Wastewater Treatment Technologies: Engineered Systems”. In Cost-Efficient Wastewater Treatment Technologies. The Handbook of Environmental Chemistry; Springer: Cham, Switzerland, 2022; Volume 118. [Google Scholar] [CrossRef]
- Al Khoury, I.; Boithias, L.; Labat, D. A Review of the Application of the Soil and Water Assessment Tool (SWAT) in Karst Watersheds. Water 2023, 15, 954. [Google Scholar] [CrossRef]
- Ferrentino, R.; Langone, M.; Fiori, L.; Andreottola, G. Full-Scale Sewage Sludge Reduction Technologies: A Review with a Focus on Energy Consumption. Water 2023, 15, 615. [Google Scholar] [CrossRef]
- Licciardello, F.; Mahjoub, O.; Ventura, D.; Kallali, H.; Mohamed, A.; Barbagallo, S.; Cirelli, G.L. Nature-Based Treatment Systems for Reclaimed Water Use in Agriculture in Mediterranean Countries. In Cost-Efficient Wastewater Treatment Technologies. The Handbook of Environmental Chemistry; Nasr, M., Negm, A.M., Eds.; Springer: Cham, Switzerland, 2021; Volume 117. [Google Scholar] [CrossRef]
- Pugliese, L.; Heckrath, G.J.; Iversen, B.V.; Straface, S. Treatment Systems for Agricultural Drainage Water and Farmyard Runoff in Denmark: Case Studies. In Cost-Efficient Wastewater Treatment Technologies. The Handbook of Environmental Chemistry; Nasr, M., Negm, A.M., Eds.; Springer: Cham, Switzerland, 2021; Volume 117. [Google Scholar] [CrossRef]
- Kadri, S.U.T.; Tavanappanavar, A.N.; Babu, R.N.; Bilal, M.; Singh, B.; Gupta, S.K.; Bharagava, R.N.; Govarthanan, M.; Savanur, M.A.; Mulla, S.I. Overview of Waste Stabilization Ponds in Developing Countries. In Cost-Efficient Wastewater Treatment Technologies. The Handbook of Environmental Chemistry; Nasr, M., Negm, A.M., Eds.; Springer: Cham, Switzerland, 2021; Volume 117. [Google Scholar] [CrossRef]
- Water Resources Management in Kazakhstan: Analysis, Current Status, Comparisons, Recommendations. Informational and Analytical Review by Independent Experts. Almaty, 2007, Kazakhstan. 208p. Available online: https://ingeo.kz/?p=5127 (accessed on 6 April 2023).
- Patra, S.; Swain, S.K. Water Pollution Issues and Monitoring the Problems. In Nanohybrid Materials for Water Purification. Composites Science and Technology; Swain, S.K., Ed.; Springer: Singapore, 2022. [Google Scholar] [CrossRef]
- Martínez-Vargas, B.L.; De la Cruz-Marquez, G.I.; Peralta-Hernández, J.M.; Durón-Torres, S.M.; Picos-Benítez, A.R. Nanocomposites for Water Treatment. In Nanohybrid Materials for Water Purification. Composites Science and Technology; Swain, S.K., Ed.; Springer: Singapore, 2022. [Google Scholar] [CrossRef]
- Mulay, M.R.; Martsinocivh, N. Water Purification. In The Palgrave Encyclopedia of Urban and Regional Futures; Brears, R.C., Ed.; Palgrave Macmillan: Cham, Switzerland, 2022. [Google Scholar] [CrossRef]
- Mattia, D. Water Purification. In Encyclopedia of Membranes; Drioli, E., Giorno, L., Eds.; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar] [CrossRef]
- Barbanti, A. Water Quality Control. In Sustainable Development and Environmental Management; Clini, C., Musu, I., Gullino, M.L., Eds.; Springer: Dordrecht, The Netherlands, 2008. [Google Scholar] [CrossRef]
- Saab, C.; Farah, E.; Shahrour, I.; Chehade, F.H.; Ounaies, S. Use of the smart technology for water quality control: Feedback from large-scale experimentation. Analog. Integr. Circuits Signal Process. 2018, 96, 327–335. [Google Scholar] [CrossRef]
- Kwach, B.O.; Oriaro, M.A.; Kowenje, C. Traditional Water Purification Methods Among the Luo and Luhya Communities of Kenya. In From Traditional to Modern African Water Management; Springer: Cham, Switzerland, 2022. [Google Scholar] [CrossRef]
- Li, M.; Liu, J.; Xu, Y.; Qian, G. Phosphate adsorption on metal oxides and metal hydroxides: A comparative review. Environ. Rev. 2016, 24, 319–332. [Google Scholar] [CrossRef]
- Zhu, R.; Wang, X.; Panther, J.G.; Wang, Q.; Chakir, S.; Ding, Y.; Huang, Y.; Wang, H. Micro/nanostructured MgO hollow spheres with selective adsorption performance and their application for fluoride monitoring in water. Sep. Purif. Technol. 2022, 299, 121703. [Google Scholar] [CrossRef]
- Devre, P.V.; Patil, C.S.; Gore, A.H. Graphene Oxide Based Nanofiltration Membrane for Wastewater Treatment. In Nanofiltration Membrane for Water Purification. Sustainable Materials and Technology; Ahmad, A., Alshammari, M.B., Eds.; Springer: Singapore, 2023. [Google Scholar] [CrossRef]
- Distanova, U.G.; Mikhailova, A.S. Natural Sorbents of the USSR. M; Nedra: Moscow, Russia, 1990; Available online: https://www.geokniga.org/bookfiles/geokniga-prirodnyesorbentysssr.pdf (accessed on 14 April 2023).
- Ayupov, D.A.; Fakhrutdinova, V.H.; Makarov, D.B. Physical and chemical research methods for building materials. In Instrumental Analysis: Textbook; State Architectural and Construction University: Kazansk, Russia, 2018; 166p, Available online: chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://www.kgasu.ru/upload/iblock/0ab/UMP-FKHOOSON-2-chast.pdf (accessed on 14 April 2023).
- GOST 4151-72; Drinking Water. Method for Determination of Total Hardness. Publishing House of Standards: Moscow, Russia, 1994. Available online: https://files.stroyinf.ru/Data/462/46251.pdf (accessed on 14 April 2023).
- GOST 4011-72; Drinking Water. Methods of Measurement of Mass Concentration of Total Iron. IPK Publishing House of Standards: Moscow, Russia, 1974. Available online: https://files.stroyinf.ru/Data/266/26620.pdf (accessed on 14 April 2023).
- GOST 4245-72; Drinking Water. Methods for Determination of Chloride Content. IPK Publishing House of Standards: Moscow, Russia, 1974. Available online: https://files.stroyinf.ru/Data/371/37105.pdf (accessed on 14 April 2023).
- GOST 2874-82; Drinking Water. Hygiene Requirements and Quality Control. IPK Publishing House of Standards: Moscow, Russia, 1985. Available online: https://files.stroyinf.ru/Data/460/46089.pdf (accessed on 14 April 2023).
- GOST 33045-2014; Water. (ISO 6777:1984, NEQ) Methods of Determination of Nitrogenous Substances. Standartinform: Moscow, Russia, 2019. Available online: https://files.stroyinf.ru/Data2/1/4293766/4293766954.pdf (accessed on 14 April 2023).
- GOST 18164-72; Drinking Water. Method for Determination of Dry Residue Content. IPK Publishing House of Standards: Moscow, Russia, 2003. Available online: https://files.stroyinf.ru/Data/176/17629.pdf (accessed on 14 April 2023).
- GOST 4389-72; Drinking Water. Methods of Determination of Sulphate Content. IPK Publishing House of Standards: Moscow, Russia, 2003. Available online: https://files.stroyinf.ru/Data/422/42209.pdf (accessed on 14 April 2023).
- Bobylev, A.E. Synthesis, Structure and Functional Properties of Composite Sorbents. “Cationic KU-2X8-MeS (Me-Cu(II), Zn, Pb)”. Ph.D. Thesis, Ural Federal University (UrFU), Yekaterinburg, Russia, 2016. Available online: https://www.dissercat.com/content/sintez-struktura-i-funktsionalnye-svoistva-kompozitsionnykh-sorbentov-kationit-ku-28mes-me (accessed on 9 June 2023).
Spectrum | O | Na | Mg | Al | Si | K | Ca | Ti | Fe |
---|---|---|---|---|---|---|---|---|---|
Max. | 45.36 | 1.89 | 2.12 | 9.11 | 31.10 | 1.86 | 4.54 | 0.63 | 5.81 |
Min. | 43.39 | 1.74 | 1.81 | 8.90 | 30.80 | 1.71 | 4.45 | 0.26 | 4.74 |
Spectrum | Na2O | MgO | Al2O3 | SiO2 | K2O | CaO | TiO2 | FeO |
---|---|---|---|---|---|---|---|---|
Max. | 2.44 | 3.35 | 16.68 | 63.72 | 2.10 | 6.00 | 0.99 | 7.03 |
Min. | 2.25 | 2.93 | 15.99 | 62.15 | 1.99 | 5.91 | 0.42 | 5.89 |
Spectrum | O | Na | Mg | Al | Si | P | K | Ca | Ti | Fe |
---|---|---|---|---|---|---|---|---|---|---|
Max. | 44.15 | 0.77 | 3.10 | 9.17 | 24.17 | 0.39 | 5.51 | 9.87 | 0.73 | 6.35 |
Min. | 43.21 | 0.53 | 2.65 | 8.85 | 22.62 | 0.31 | 5.02 | 6.89 | 0.62 | 5.66 |
Spectrum | Na2O | MgO | Al2O3 | SiO2 | P2O5 | K2O | CaO | TiO2 | FeO |
---|---|---|---|---|---|---|---|---|---|
Max. | 1.04 | 5.09 | 17.12 | 51.21 | 0.87 | 6.53 | 13.87 | 1.22 | 8.05 |
Min. | 0.70 | 4.41 | 16.77 | 48.58 | 0.72 | 6.07 | 9.50 | 1.04 | 7.31 |
Water Sample | Total Hardness (µg-eq/L) | Alkalinity (µg-eq/L) | Chlorides Cl (µg-eq/L) | (µg/L) | Dry Residue (µg/L) | Fe+ (µg/L) |
---|---|---|---|---|---|---|
No.1 drinking water | 4.8 | 2.0 | 14.9 | 14.6 | 28 | 400 |
No.2 natural water | 1.4 | 0.6 | 2.1 | 15 | 82.8 | 1200 |
Zeolite from Chankanai Deposit | Zeolite from Daubabinsk Deposit | ||
---|---|---|---|
Fraction | Fraction | ||
(1) 7.5–5 mm | (3) 2.5–1.25 mm | (1) 7.5–5 mm | (3) 2.5–1.25 mm |
(2) 5–2.5 mm | (4) 1.25–0.63 mm | (2) 5–2.5 mm | (4) 1.25–0.63 mm |
Number of Sample. Fraction, (Sorbent Mk) | Total Hardness (µg-eq/L) | Alkalinity (µg-eq/L) | Chlorides Cl (µg-eq/L) | (µg/L) | Dry Residue (µg/L) | Fe+ (µg/L) |
---|---|---|---|---|---|---|
No. 1 drinking water (baseline water data) | 4.8 | 2.0 | 14.9 | 14.6 | 28 | 400 |
Results of experiments | ||||||
Mk 7.5–5 mm | 3.0 | 1.2 | 3.68 | - | - | 0.02–50 |
Mk 5–2.5 mm | 3.0 | 0.9 | 6.1 | - | - | 0.02–50 |
Mk 2.5–1.25 mm | 3.5 | 2.0 | 2.17 | - | - | 0.04–100 |
Mk 1.25–0.63 mm | 2.9 | 1.6 | 2.1 | - | - | 0.03–75 |
Number of Sample. Fraction, (Sorbent Mk) | Total Hardness (µg-eq/L) | Alkalinity (µg-eq/L) | Chlorides Cl (µg-eq/L) | (µg/L) | Dry Residue (µg/L) | Fe+ (µg/L) |
---|---|---|---|---|---|---|
No. 1 drinking water (baseline water data) | 4.8 | 2.0 | 14.9 | 14.6 | 28 | 400 |
Results of experiments | ||||||
Mk 7.5–5 mm | 1.4 | 0.4 | 1.0 | - | - | 0.34–850 |
Mk 5–2.5 mm | 1.2 | 0.5 | 1.9 | - | - | 0.21–522 |
Mk 2.5–1.25 mm | 1.9 | 0.7 | 1.7 | - | - | 0.075–185 |
Mk 1.25–0.63 mm | 1.5 | 0.01 | 5.5 | - | - | 0.03–75 |
Number of Sample. Fraction, (Sorbent Mk) | Total Hardness (µg-eq/L) | Alkalinity (µg-eq/L) | Chlorides Cl (µg-eq/L) | (µg/L) | Dry Residue (µg/L) | Fe+ (µg/L) |
---|---|---|---|---|---|---|
No. 2 natural water (baseline water data) | 1.4 | 0.6 | 2.1 | 15 | 82.8 | 1200 |
Results of experiments | ||||||
Mk 7.5–5 mm | 0.7 | 0.6 | 1.12 | - | - | 0.2–50 |
Mk 5–2.5 mm | 1.0 | 0.55 | 1.76 | - | - | 0.02–50 |
Mk 2.5–1.25 mm | 0.9 | 0.6 | 1.57 | - | - | 0.3–7.5 |
Mk 1.25–0.63 mm | 1.38 | 0.57 | 1.11 | - | - | 0.02–50 |
Number of Sample. Fraction, (Sorbent Mk) | Total Hardness (µg-eq/L) | Alkalinity (µg-eq/L) | Chlorides Cl (µg-eq/L) | (µg/L) | Dry Residue (µg/L) | Fe+ (µg/L) |
---|---|---|---|---|---|---|
No. 2 natural water (baseline water data) | 1.4 | 0.6 | 2.1 | 15 | 82.8 | 1200 |
Results of experiments | ||||||
Mk 7.5–5 mm | 1.3 | 0.01 | 1.42 | - | - | 0.21–522 |
Mk 5–2.5 mm | 1.0 | 0.01 | 1.9 | - | - | 0.34–850 |
Mk 2.5–1.25 mm | 1.1 | 0.3 | 1.34 | - | - | 0.04–100 |
Mk 1.25–0.63 mm | 1.24 | 0.01 | 1.55 | - | - | 0.03–75 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuldeyev, E.I.; Orynbekov, Y.S.; Mansurov, Z.A.; Nurlybayev, R.E.; Zhumadilova, Z.O.; Murzagulova, A.A. Applicability of Zeolite from the Daubabinsk and Chankanai Deposits as a Sorbent for Natural Waters. Water 2023, 15, 2231. https://doi.org/10.3390/w15122231
Kuldeyev EI, Orynbekov YS, Mansurov ZA, Nurlybayev RE, Zhumadilova ZO, Murzagulova AA. Applicability of Zeolite from the Daubabinsk and Chankanai Deposits as a Sorbent for Natural Waters. Water. 2023; 15(12):2231. https://doi.org/10.3390/w15122231
Chicago/Turabian StyleKuldeyev, Erzhan I., Yelzhan S. Orynbekov, Zulkhair A. Mansurov, Ruslan E. Nurlybayev, Zhanar O. Zhumadilova, and Aktota A. Murzagulova. 2023. "Applicability of Zeolite from the Daubabinsk and Chankanai Deposits as a Sorbent for Natural Waters" Water 15, no. 12: 2231. https://doi.org/10.3390/w15122231
APA StyleKuldeyev, E. I., Orynbekov, Y. S., Mansurov, Z. A., Nurlybayev, R. E., Zhumadilova, Z. O., & Murzagulova, A. A. (2023). Applicability of Zeolite from the Daubabinsk and Chankanai Deposits as a Sorbent for Natural Waters. Water, 15(12), 2231. https://doi.org/10.3390/w15122231