Evaluation of Groundwater Quality for Drinking and Irrigation Purposes Using GIS-Based IWQI, EWQI and HHR Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Methodology
2.2.1. Sampling and Analysis Methods
2.2.2. Principal Component Analysis (PCA)
2.2.3. Nitrate Pollution Index (NPI)
2.2.4. Evaluation of Irrigation Water Quality Based on Hydrogeochemical Indexes
2.2.5. Irrigation Water Quality Assessment Based on the IWQI
2.2.6. Entropy-Weighted Water Quality Index (EWQI)
2.2.7. Human Health Risk Assessment
3. Results
3.1. General Hydrogeochemical Characteristics
3.2. Principal Component Analysis (PCA)
3.3. Ion Source Analysis
3.4. Nitrate Pollution Analysis
3.5. Evaluation of Irrigation Water Quality by Basic Hydrogeochemical Indexes
3.5.1. Salinity Hazard
3.5.2. Sodium Hazard
3.5.3. Residual Sodium Carbonate (RSC)
3.5.4. Permeability Index (PI)
3.5.5. Percentage of Sodium (%Na)
3.5.6. Wilcox Diagram
3.5.7. USSL Diagram
4. Discussion
4.1. Irrigation Water Quality Index (IWQI)
4.2. Irrigation Water Quality Assessment and Comments
4.3. Entropy-Weighted Water Quality Index (EWQI)
4.4. Potential Health Risk Assessment
5. Conclusions
- The groundwater samples have a weakly alkaline nature with low to moderate mineralization and are categorized as HCO3-Ca type. On average, the cation content is in the order of Ca2+ > Na+ > Mg2+ > K+, while the anion content is in the order of HCO3− > SO42− > Cl− > NO3− > F−. With the exception of NO3−, the ion concentrations in almost all samples were within the permissible limits for drinking purposes.
- The groundwater’s major ion sources were found to be primarily from the dissolution of carbonate and silicate rocks, as indicated by principal component analysis, major ion ratios, and mineral saturation index. This process is related to cation exchange. The elevated levels of nitrate in the area are mainly attributed to agricultural activities and urban sewage.
- Based on the analysis of single irrigation indicators, such as the SAR, Na%, RSC, and PI, it can be concluded that most of the groundwater in the study area is suitable for irrigation purposes. The results of the IWQI study indicate that almost 50% of the groundwater in the area is classified as low to unrestricted when used for irrigation. The EWQI results suggest that except for one groundwater sample, all samples are suitable for drinking water. Additionally, the study found that the groundwater quality for both drinking and irrigation purposes follows a similar trend, decreasing from the northwest to the southeast of the study area. The utilization of groundwater resources should be noticed in the southeastern part.
- According to the health risk analysis, the risk level for infants is higher than that for children, adult males, and females. To reduce health risks for different groups of people, it is recommended to implement differentiated water supply and targeted water treatment, especially giving more attention to infants.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abbasnia, A.; Yousefi, N.; Mahvi, A.H.; Nabizadeh, R.; Radfard, M.; Yousefi, M.; Alimohammadi, M. Evaluation of Groundwater Quality Using Water Quality Index and Its Suitability for Assessing Water for Drinking and Irrigation Purposes: Case Study of Sistan and Baluchistan Province (Iran). Hum. Ecol. Risk Assess. Int. J. 2018, 25, 988–1005. [Google Scholar] [CrossRef]
- Nyakundi, R.; Nyadawa, M.; Mwangi, J. Effect of Recharge and Abstraction on Groundwater Levels. Civ. Eng. J. 2022, 8, 910–925. [Google Scholar] [CrossRef]
- Chomba, I.C.; Banda, K.E.; Winsemius, H.C.; Eunice, M.; Sichingabula, H.M.; Nyambe, I.A. Integrated Hydrologic-Hydrodynamic Inundation Modeling in a Groundwater Dependent Tropical Floodplain. J. Hum. Earth Future 2022, 3, 237–246. [Google Scholar] [CrossRef]
- Basack, S.; Goswami, G.; Khabbaz, H.; Karakouzian, M. Flow Characteristics through Granular Soil Influenced by Saline Water Intrusion: A Laboratory Investigation. Civ. Eng. J. 2022, 8, 863–878. [Google Scholar] [CrossRef]
- Mukherjee, I.; Singh, U.K. Groundwater Fluoride Contamination, Probable Release, and Containment Mechanisms: A Review on Indian Context. Environ. Geochem. Health 2018, 40, 2259–2301. [Google Scholar] [CrossRef]
- Al-Mussawi, W. Assessment of Groundwater Quality in UMM ER Radhuma Aquifer (Iraqi Western Desert) by Integration Between Irrigation Water Quality Index and GIS. J. Babylon Univ. Eng. Sci. 2014, 22, 201–217. [Google Scholar]
- Pandey, K.; Kumar, S.; Malik, A.; Kuriqi, A. Artificial Neural Network Optimized with a Genetic Algorithm for Seasonal Groundwater Table Depth Prediction in Uttar Pradesh, India. Sustainability 2020, 12, 8932. [Google Scholar] [CrossRef]
- Ahmed, I.; Tariq, N.; Al Muhery, A. Hydrochemical Characterization of Groundwater to Align with Sustainable Development Goals in the Emirate of Dubai, UAE. Environ. Earth Sci. 2019, 78, 44. [Google Scholar] [CrossRef]
- Jwa, B.; Yza, B.; Hui, Z. Groundwater Chemistry and Groundwater Quality Index Incorporating Health Risk Weighting in Dingbian County, Ordos Basin of Northwest China. Geochemistry 2020, 80, 125607. [Google Scholar] [CrossRef]
- Mohammadi, A.; Ebrahimi, A.A.; Ghanbari, R.; Faraji, M.; Nemati, S.; Abdolahnejad, A. Data on THMs Concentration and Spatial Trend in Water Distribution Network (a Preliminary Study in Center of Iran). MethodsX 2019, 6, 760–763. [Google Scholar] [CrossRef]
- Siddiqi, S.A.; Al-Mamun, A.; Baawain, M.S.; Sana, A. Groundwater Contamination in the Gulf Cooperation Council (GCC) Countries: A Review. Environ. Sci. Pollut. Res. 2021, 28, 21023–21044. [Google Scholar] [CrossRef]
- Alexakis, D.E.; Kiskira, K.; Gamvroula, D.; Emmanouil, C.; Psomopoulos, C.S. Evaluating Toxic Element Contamination Sources in Groundwater Bodies of Two Mediterranean Sites. Environ. Sci. Pollut. Res. 2021, 28, 34400–34409. [Google Scholar] [CrossRef]
- Kafilat Adebola, B.-A.; Joseph Kayode, S.; Adebayo Akeem, O. Integrated Assessment of the Heavy Metal Pollution Status and Potential Ecological Risk in the Lagos Lagoon, South West, Nigeria. Hum. Ecol. Risk Assess. Int. J. 2018, 24, 377–397. [Google Scholar] [CrossRef]
- Mukherjee, I.; Singh, U.K. Assessment of Fluoride Contaminated Groundwater on Food Crops and Vegetables in Birbhum District of West Bengal, India. In Advance Technologies in Agriculture for Doubling Farmer’s Income; New Delhi Publishers: New Delhi, India, 2018; pp. 225–235. ISBN 978-93-86453-61-7. [Google Scholar]
- Adimalla, N.; Qian, H. Groundwater Quality Evaluation Using Water Quality Index (WQI) for Drinking Purposes and Human Health Risk (HHR) Assessment in an Agricultural Region of Nanganur, South India. Ecotoxicol. Environ. Saf. 2019, 176, 153–161. [Google Scholar] [CrossRef]
- Yousefi, M.; Ghoochani, M.; Hossein Mahvi, A. Health Risk Assessment to Fluoride in Drinking Water of Rural Residents Living in the Poldasht City, Northwest of Iran. Ecotoxicol. Environ. Saf. 2018, 148, 426–430. [Google Scholar] [CrossRef]
- Liu, Y.; Hu, G.; Cao, L.; Wang, X.; Chen, M.-H. A Comparison of Monte Carlo Methods for Computing Marginal Likelihoods of Item Response Theory Models. J. Korean Stat. Soc. 2019, 48, 503–512. [Google Scholar] [CrossRef]
- Rahmati, O.; Pourghasemi, H.R.; Melesse, A.M. Application of GIS-Based Data Driven Random Forest and Maximum Entropy Models for Groundwater Potential Mapping: A Case Study at Mehran Region, Iran. Catena 2016, 137, 360–372. [Google Scholar] [CrossRef]
- Arumugam, K.; Elangovan, K. Hydrochemical Characteristics and Groundwater Quality Assessment in Tirupur Region, Coimbatore District, Tamil Nadu, India. Environ. Geol. 2009, 58, 1509–1520. [Google Scholar] [CrossRef]
- Kopittke, P.M.; So, H.B.; Menzies, N.W. Effect of Ionic Strength and Clay Mineralogy on Na–Ca Exchange and the SAR–ESP Relationship. Eur. J. Soil Sci. 2006, 57, 626–633. [Google Scholar] [CrossRef]
- Saleh, A.; Al-Ruwaih, F.; Shehata, M. Hydrogeochemical Processes Operating within the Main Aquifers of Kuwait. J. Arid Environ. 1999, 42, 195–209. [Google Scholar] [CrossRef]
- Wang, L.; Long, F.; Liao, W.; Liu, H. Prediction of Anaerobic Digestion Performance and Identification of Critical Operational Parameters Using Machine Learning Algorithms. Bioresour. Technol. 2020, 298, 122495. [Google Scholar] [CrossRef]
- Paliwal, K.V.; Heine, R.W. Irrigation with Saline Water. Q. Rev. Biol. 1972, 4, 198. [Google Scholar] [CrossRef]
- Spandana, M.P.; Suresh, K.R.; Prathima, B. Developing an irrigation water quality index for vrishabavathi command area. Int. J. Eng. Res. Technol. 2013, 2, 821–830. [Google Scholar]
- Meireles, A.C.M.; de Andrade, E.M.; Chaves, L.C.G.; Frischkorn, H.; Crisostomo, L.A. A New Proposal of the Classification of Irrigation Water. Rev. Ciênc. Agron. 2010, 41, 349–357. [Google Scholar] [CrossRef] [Green Version]
- Xiao, Y.; Xiao, D.; Hao, Q.; Liu, K.; Wang, R.; Huang, X.; Liao, X.; Zhang, Y. Accessible Phreatic Groundwater Resources in the Central Shijiazhuang of North China Plain: Perspective From the Hydrogeochemical Constraints. Front. Environ. Sci. 2021, 9, 475. [Google Scholar] [CrossRef]
- Zhang, Y.; Dai, Y.; Wang, Y.; Huang, X.; Xiao, Y.; Pei, Q. Hydrochemistry, Quality and Potential Health Risk Appraisal of Nitrate Enriched Groundwater in the Nanchong Area, Southwestern China. Sci. Total Environ. 2021, 784, 147186. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Wang, H.; Wang, L. Tracing Nitrate Pollution Sources and Transformations in the Over-Exploited Groundwater Region of North China Using Stable Isotopes. J. Contam. Hydrol. 2018, 218, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Yao, R.; Yan, Y.; Wei, C.; Luo, M.; Xiao, Y.; Zhang, Y. Hydrochemical Characteristics and Groundwater Quality Assessment Using an Integrated Approach of the PCA, SOM, and Fuzzy c-Means Clustering: A Case Study in the Northern Sichuan Basin. Front. Environ. Sci. 2022, 10, 907872. [Google Scholar] [CrossRef]
- Zhang, Y.; He, Z.; Tian, H.; Huang, X.; Zhang, Z.; Liu, Y.; Xiao, Y.; Li, R. Hydrochemistry Appraisal, Quality Assessment and Health Risk Evaluation of Shallow Groundwater in the Mianyang Area of Sichuan Basin, Southwestern China. Environ. Earth Sci. 2021, 80, 576. [Google Scholar] [CrossRef]
- Zhang, T.; Chen, X.; Jiang, Z.; Lan, G. Characteristics and influencing factors of groundwater in the red layer area of Sichuan basin—A case study of Nanchong city. Acta Geol. Sichuan 2005, 2, 97–100. (In Chinese) [Google Scholar]
- Feng, W.; Fang, H.; Li, Y.; Bai, H. Hydrochemical Characteristics and Water Quality Evaluation of Shallow Groundwater in Red-Layer Area. Water Power 2020, 46, 12–16+84. (In Chinese) [Google Scholar]
- Shi, Z. Environmental Problems of Water Resources and Sustainable Development Management in Sichuan. Guangdong Sci. Technol. 2014, 23, 90–91. (In Chinese) [Google Scholar]
- He, X.; Long, X. Current Situation and Countermeasures of Agricultural Non-point Source Pollution in Suining City. Sichuan Agric. Sci. Technol. 2021, 4, 81–83. (In Chinese) [Google Scholar]
- Luo, S.; Ceng, F.; Yang, H. Analysis and reflection on the current situation of the construction of comprehensive agricultural development projects in Shehong County. Sichuan Agric. Sci. Technol. 2014, 7, 52–53. (In Chinese) [Google Scholar]
- Ceng, S.; Xu, M.; Luo, M.; Yang, Y.; Huang, S. Analysis of hydrochemical characteristics and main ion sources of red-bed groundwater in Suining area, central Sichuan. Resour. Environ. Yangtze Basin 2020, 29, 220–231. (In Chinese) [Google Scholar]
- Ni, J.; Yang, C.; Wu, Y. Evaluation Research on the Forestland Quality Rank of Shehong County Based on GIS. J. Sichuan For. Sci. Technol. 2014, 35, 57–61. (In Chinese) [Google Scholar] [CrossRef]
- Zhou, S.; Tang, F. Practice and Research on Water Pollution Control of Mingyue River in Suining City, Sichuan Province. China Flood Drought Manag. 2017, 27, 88–89+96. (In Chinese) [Google Scholar] [CrossRef]
- Deutsch, W.J. Groundwater Geochemistry: Fundamentals and Applications to Contamination; Lewis Publishers: Boca Raton, FL, USA, 1997. [Google Scholar]
- Li, P.; Tian, R.; Liu, R. Solute Geochemistry and Multivariate Analysis of Water Quality in the Guohua Phosphorite Mine, Guizhou Province, China. Expo. Health 2019, 11, 81–94. [Google Scholar] [CrossRef]
- Wu, J.; Li, P.; Qian, H.; Duan, Z.; Zhang, X. Using Correlation and Multivariate Statistical Analysis to Identify Hydrogeochemical Processes Affecting the Major Ion Chemistry of Waters: A Case Study in Laoheba Phosphorite Mine in Sichuan, China. Arab. J. Geosci 2014, 7, 3973–3982. [Google Scholar] [CrossRef]
- Wu, J.; Li, P.; Wang, D.; Ren, X.; Wei, M. Statistical and Multivariate Statistical Techniques to Trace the Sources and Affecting Factors of Groundwater Pollution in a Rapidly Growing City on the Chinese Loess Plateau. Hum. Ecol. Risk Assess. Int. J. 2020, 26, 1603–1621. [Google Scholar] [CrossRef]
- Sudheer Kumar, M.; Dhakate, R.; Yadagiri, G.; Srinivasa Reddy, K. Principal Component and Multivariate Statistical Approach for Evaluation of Hydrochemical Characterization of Fluoride-Rich Groundwater of Shaslar Vagu Watershed, Nalgonda District, India. Arab. J. Geosci. 2017, 10, 83. [Google Scholar] [CrossRef]
- Zhang, X.; Guo, Q.; Liu, M.; Luo, J.; Yin, Z.; Zhang, C.; Zhu, M.; Guo, W.; Li, J.; Zhou, C. Hydrogeochemical Processes Occurring in the Hydrothermal Systems of the Gonghe–Guide Basin, Northwestern China: Critical Insights from a Principal Components Analysis (PCA). Environ. Earth Sci. 2016, 75, 1187. [Google Scholar] [CrossRef]
- Kaiser, H.F. The Varimax Criterion for Analytic Rotation in Factor Analysis. Educ. Psychol. Meas. 1958, 23, 770–773. [Google Scholar] [CrossRef]
- Bahrami, M.; Zarei, A.R.; Rostami, F. Temporal and Spatial Assessment of Groundwater Contamination with Nitrate by Nitrate Pollution Index (NPI) and GIS (Case Study: Fasarud Plain, Southern Iran). Environ. Geochem. Health 2020, 42, 3119–3130. [Google Scholar] [CrossRef]
- Spalding, R.F.; Exner, M.E. Occurrence of Nitrate in Groundwater—A Review. J. Environ. Qual. 1993, 22, 392–402. [Google Scholar] [CrossRef]
- El Mountassir, O.; Bahir, M.; Ouazar, D.; Chehbouni, A.; Carreira, P.M. Temporal and Spatial Assessment of Groundwater Contamination with Nitrate Using Nitrate Pollution Index (NPI), Groundwater Pollution Index (GPI), and GIS (Case Study: Essaouira Basin, Morocco). Environ. Sci. Pollut. Res. 2022, 29, 17132–17149. [Google Scholar] [CrossRef]
- Todd, D.K.; Mays, L.W. Groundwater Hydrology, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 1980. [Google Scholar]
- Eaton; Frank, M. Significance of Carbonates in Irrigation Waters. Soil Sci. 1950, 69, 123–134. [Google Scholar] [CrossRef]
- Osta, M.E.; Masoud, M.; Alqarawy, A.; Elsayed, S.; Gad, M. Groundwater Suitability for Drinking and Irrigation Using Water Quality Indices and Multivariate Modeling in Makkah Al-Mukarramah Province, Saudi Arabia. Water 2022, 14, 483. [Google Scholar] [CrossRef]
- Ayers, R.S.; Westcot, D.W. The Water Quality in Agriculture, 2nd ed.; Campina Grande: UFPB. (Studies FAO Irrigation and drainage, 29); Food and Agriculture Organization: Rome, Italy, 1999. [Google Scholar]
- Luo, Y.; Xiao, Y.; Hao, Q.; Zhang, Y.; Dong, G. Groundwater Geochemical Signatures and Implication for Sustainable Development in a Typical Endorheic Watershed on Tibetan Plateau. Environ. Sci. Pollut. Res. 2021, 28, 48312–48329. [Google Scholar] [CrossRef] [PubMed]
- Means, B. Risk-Assessment Guidance for Superfund. Volume 1. Human Health Evaluation Manual. Part A. Interim Report (Final); Environmental Protection Agency: Washington, DC, USA, 1989.
- He, X.; Wu, J.; He, S. Hydrochemical Characteristics and Quality Evaluation of Groundwater in Terms of Health Risks in Luohe Aquifer in Wuqi County of the Chinese Loess Plateau, Northwest China. Hum. Ecol. Risk Assess. Int. J. 2019, 25, 32–51. [Google Scholar] [CrossRef]
- Bawa-Allah, K.A. Assessment of Heavy Metal Pollution in Nigerian Surface Freshwaters and Sediment: A Meta-Analysis Using Ecological and Human Health Risk Indices. J. Contam. Hydrol. 2023, 256, 104199. [Google Scholar] [CrossRef] [PubMed]
- Alexakis, D. Human Health Risk Assessment Associated with Co, Cr, Mn, Ni and V Contents in Agricultural Soils from a Mediterranean Site. Arch. Agron. Soil Sci. 2016, 62, 359–373. [Google Scholar] [CrossRef]
- World Health Organization. Guidelines for Drinking-Water Quality, 4th ed.; World Health Organisation: Geneva, Switzerland, 2011. [Google Scholar]
- GB/T 14848–2017; Gaqs. Standards for Groundwater Quality. General Administration of Quality Supervision: Beijing, China, 2017. (In Chinese)
- Piper, A. A Graphic Procedure in the Geochemical Interpretation of Water-Analyses. Eos Trans. Am. Geophys. Union 1944, 25, 914–923. [Google Scholar] [CrossRef]
- Mukherjee, I.; Singh, U.K.; Chakma, S. Evaluation of Groundwater Quality for Irrigation Water Supply Using Multi-Criteria Decision-Making Techniques and GIS in an Agroeconomic Tract of Lower Ganga Basin, India. J. Environ. Manage. 2022, 309, 114691. [Google Scholar] [CrossRef]
- Abbasnia, A.; Radfard, M.; Mahvi, A.H.; Nabizadeh, R.; Yousefi, M.; Soleimani, H.; Alimohammadi, M. Groundwater Quality Assessment for Irrigation Purposes Based on Irrigation Water Quality Index and Its Zoning with GIS in the Villages of Chabahar, Sistan and Baluchistan, Iran. Data Brief 2018, 19, 623–631. [Google Scholar] [CrossRef]
- Feth, J.H.; Gibbs, R.J. Mechanisms Controlling World Water Chemistry: Evaporation-Crystallization Process. Science 1971, 172, 870–872. [Google Scholar] [CrossRef] [Green Version]
- Ren, X.; Li, P.; He, X.; Su, F.; Elumalai, V. Hydrogeochemical Processes Affecting Groundwater Chemistry in the Central Part of the Guanzhong Basin, China. Arch. Environ. Contam. Toxicol. 2021, 80, 74–91. [Google Scholar] [CrossRef]
- Nesco, U. Groundwater studies. An international guide for research and practice. In Geochemistry of Groundwater; UNESCO: Paris, France, 1977. [Google Scholar]
- Adimalla, N. Application of the Entropy Weighted Water Quality Index (EWQI) and the Pollution Index of Groundwater (PIG) to Assess Groundwater Quality for Drinking Purposes: A Case Study in a Rural Area of Telangana State, India. Arch. Environ. Contam. Toxicol. 2021, 80, 31–40. [Google Scholar] [CrossRef]
- Adimalla, N.; Qian, H. Groundwater Chemistry, Distribution and Potential Health Risk Appraisal of Nitrate Enriched Groundwater: A Case Study from the Semi-Urban Region of South India. Ecotoxicol. Environ. Saf. 2021, 207, 111277. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, P.; Xue, L.; Dong, Z.; Li, D. Solute Geochemistry and Groundwater Quality for Drinking and Irrigation Purposes: A Case Study in Xinle City, North China. Geochemistry 2020, 80, 125609. [Google Scholar] [CrossRef]
- Reeve, R.C.; Pillsbury, A.F.; Wilcox, L.V. Reclamation of a Saline and High Boron Soil in the Coachella Valley of California. Hilgardia 1955, 24, 4. [Google Scholar] [CrossRef] [Green Version]
- Richards, L.A. Diagnosis and Improvement of Saline and Alkali Soils. Soil Sci. 1954, 64, 290. [Google Scholar] [CrossRef]
- Bastiaanssen, W.; Loehr, R.A.; Ayers, C.R.; Westcot, D.W.; Barriuso, E.; Calvet, R.; Schiavon, M.; Soulas, G.; Gates, D.; Carvalho, D. Methods of Chemical Analysis of Water and Wastes; CRC Press: Boca Raton, FL, USA, 1999. [Google Scholar]
- Shu, L.; Zhang, Z.; Lv, J. Ecological environment monitoring and water quality pollution status evaluation of Suining section of Fujiang River Basin. Sichuan Environ. 2013, 32, 49–53. (In Chinese) [Google Scholar] [CrossRef]
- Amiri, V.; Rezaei, M.; Sohrabi, N. Groundwater Quality Assessment Using Entropy Weighted Water Quality Index (EWQI) in Lenjanat, Iran. Environ. Earth Sci. 2014, 72, 3479–3490. [Google Scholar] [CrossRef]
- Xiao, Y.; Liu, K.; Hao, Q.; Xiao, D.; Zhu, Y.; Yin, S.; Zhang, Y. Hydrogeochemical Insights into the Signatures, Genesis and Sustainable Perspective of Nitrate Enriched Groundwater in the Piedmont of Hutuo Watershed, China. Catena 2022, 212, 106020. [Google Scholar] [CrossRef]
- Ravindra, K.; Mor, S. Distribution and Health Risk Assessment of Arsenic and Selected Heavy Metals in Groundwater of Chandigarh, India. Environ. Pollut. 2019, 250, 820–830. [Google Scholar] [CrossRef] [PubMed]
- Naa, B.; Hui, Q.; Pla, B. Entropy Water Quality Index and Probabilistic Health Risk Assessment from Geochemistry of Groundwaters in Hard Rock Terrain of Nanganur County, South India. Geochemistry 2019, 80, 125544. [Google Scholar] [CrossRef]
Indices | Range | Classification | Distribution% |
---|---|---|---|
Electrical conductivity (EC) | <250 | Excellent | 0.00% |
250–750 | Good | 36.58% | |
750–2000 | Doubtful | 58.54% | |
>2000 | Unsuitable | 4.88% | |
Sodium adsorption ratio (SAR) | <10 | Excellent | 100.00% |
10–18 | Good | 0.00% | |
18–26 | Doubtful | 0.00% | |
>26 | Unsuitable | 0.00% | |
Residual sodium carbonate (RSC) | <1.25 | Good | 97.56% |
1.25–2.5 | Doubtful | 2.44% | |
>2.5 | Unsuitable | 0.00% | |
Permeability index (PI) | Class I (>75%) | Excellent | 7.32% |
Class II (25–75%) | Good | 92.68% | |
Class III (<25%) | Poor | 0.00% | |
Irrigation water quality index (IWQI) | [85, 100] | No restriction | 2.44% |
[70, 85] | Low restriction | 39.02% | |
[55, 70] | Moderate restriction | 53.66% | |
[40, 55] | High restriction | 2.44% | |
[0, 40] | Severe restriction | 2.44% | |
Nitrate Pollution Index (NPI) | <0 | No pollution | 68.30% |
[0, 1] | Light pollution | 21.95% | |
[1, 2] | Moderate pollution | 7.32% | |
[2, 3] | Significant pollution | 0.00% | |
>3 | Very significant pollution | 2.44% | |
Entropy-weighted Water Quality index (EWQI) | <50 | Excellent | 87.80% |
50–100 | Good | 9.76% | |
100–150 | Medium | 2.44% | |
150–200 | Poor | 0.00% | |
>200 | Extremely poor | 0.00% |
qi | EC (μS/m) | SAR (meq/L)0.5 | rNa+ | rCl− | rHCO3− |
---|---|---|---|---|---|
85–100 | [200, 750) | [0, 3) | [2, 3) | [0, 4) | [1.0, 1.5) |
60–85 | [750, 1500) | [3, 6) | [3, 6) | [4, 7) | [1.5, 4.5) |
35–60 | [1500, 3000) | [6, 12) | [6, 9) | [7, 10) | [4.5, 8.5) |
0–35 | EC < 200 or EC > 3000 | SAR ≥ 12 | rNa+ < 2 or rNa+ ≥ 9 | rCl− ≥ 10 | rHCO3− < 1 or rHCO3− ≥ 8.5 |
Parameters | Max | Min | Mean | SD | CV | Limit | % of SEL |
---|---|---|---|---|---|---|---|
pH | 8.10 | 7.20 | 7.64 | 0.22 | 3.00% | 6.5–8.5 * | 0.00 |
TDS | 1636.00 | 316.00 | 617.47 | 272.80 | 44.00% | 1000.00 * | 4.88 |
TH | 887.63 | 208.94 | 435.96 | 134.29 | 31.00% | 450.00 * | 29.27 |
K+ | 44.47 | 0.62 | 5.09 | 8.64 | 170% | - | - |
Na+ | 219.34 | 7.31 | 41.38 | 44.88 | 108% | 200.00 * | 7.32 |
Ca2+ | 272.83 | 40.28 | 132.08 | 46.57 | 35% | 200.00 * | 9.76 |
Mg2+ | 50.10 | 9.75 | 24.59 | 8.84 | 36% | 150.00 * | 0.00 |
Cl− | 351.50 | 3.05 | 54.69 | 72.50 | 133% | 250.00 * | 4.88 |
SO42− | 449.40 | 23.83 | 96.52 | 89.66 | 93% | 250.00 * | 7.32 |
HCO3− | 644.86 | 144.29 | 400.68 | 87.87 | 22% | - | - |
NO3− | 49.70 | 0.02 | 8.57 | 8.90 | 104% | 10.00 ** | 31.71 |
F− | 0.80 | 0.12 | 0.35 | 0.14 | 40% | 1.00 * | 0.00 |
Parameters | PC1 | PC2 | PC3 | PC4 | Communality | Wi |
---|---|---|---|---|---|---|
EC | 0.921 | 0.021 | −0.099 | −0.205 | 0.900 | 0.204 |
pH | −0.372 | 0.181 | −0.449 | 0.651 | 0.796 | - |
Ca2+ | 0.833 | −0.136 | 0.281 | −0.223 | 0.842 | - |
Mg2+ | 0.481 | 0.456 | 0.317 | 0.297 | 0.628 | - |
Na+ | 0.907 | 0.109 | −0.289 | 0.191 | 0.954 | 0.215 |
K+ | 0.305 | −0.324 | 0.338 | 0.325 | 0.418 | - |
HCO3− | 0.629 | −0.112 | 0.577 | 0.321 | 0.843 | 0.178 |
SO42− | 0.856 | −0.162 | −0.187 | −0.260 | 0.861 | - |
Cl− | 0.932 | 0.065 | −0.176 | 0.024 | 0.904 | 0.205 |
NO3− | 0.047 | 0.745 | −0.098 | −0.415 | 0.740 | - |
F− | −0.062 | 0.749 | 0.389 | 0.091 | 0.725 | - |
SAR | 0.766 | 0.133 | −0.409 | 0.294 | 0.858 | 0.198 |
Eigenvalue | 5.417 | 1.554 | 1.315 | 1.184 | - | - |
Cumulative | 45.144 | 58.092 | 69.046 | 78.911 | - | 1 |
Classification | Population | Max | Min | Mean | SD |
---|---|---|---|---|---|
HQNitrate | Infants | 2.91 | 0.00 | 0.42 | 0.49 |
Children | 1.80 | 0.00 | 0.26 | 0.31 | |
Females | 1.29 | 0.00 | 0.18 | 0.22 | |
Males | 1.54 | 0.00 | 0.22 | 0.26 | |
HITotal | Infants | 3.80 | 0.30 | 0.94 | 0.60 |
Children | 2.35 | 0.18 | 0.58 | 0.37 | |
Females | 1.69 | 0.13 | 0.42 | 0.27 | |
Males | 2.01 | 0.16 | 0.50 | 0.32 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Li, R.; Wu, X.; Yan, Y.; Wei, C.; Luo, M.; Xiao, Y.; Zhang, Y. Evaluation of Groundwater Quality for Drinking and Irrigation Purposes Using GIS-Based IWQI, EWQI and HHR Model. Water 2023, 15, 2233. https://doi.org/10.3390/w15122233
Wang Y, Li R, Wu X, Yan Y, Wei C, Luo M, Xiao Y, Zhang Y. Evaluation of Groundwater Quality for Drinking and Irrigation Purposes Using GIS-Based IWQI, EWQI and HHR Model. Water. 2023; 15(12):2233. https://doi.org/10.3390/w15122233
Chicago/Turabian StyleWang, Ying, Rui Li, Xiangchuan Wu, Yuting Yan, Changli Wei, Ming Luo, Yong Xiao, and Yunhui Zhang. 2023. "Evaluation of Groundwater Quality for Drinking and Irrigation Purposes Using GIS-Based IWQI, EWQI and HHR Model" Water 15, no. 12: 2233. https://doi.org/10.3390/w15122233
APA StyleWang, Y., Li, R., Wu, X., Yan, Y., Wei, C., Luo, M., Xiao, Y., & Zhang, Y. (2023). Evaluation of Groundwater Quality for Drinking and Irrigation Purposes Using GIS-Based IWQI, EWQI and HHR Model. Water, 15(12), 2233. https://doi.org/10.3390/w15122233