Multi-Tier Validation of a Macroscale Nitrogen Model for Groundwater Management in Watersheds Using Data from Different Monitoring Networks
Abstract
:1. Introduction and Objective
- Do the runoff components simulated with the mGROWA model correspond to the discharge values from the Hessian network of gauging stations, so that it can be assumed that the modeled runoff adequately represents the regional discharge, and thus, the transport pathways for nitrogen?
- Is the nitrate concentration in the leachate modeled with the DENUZ model confirmed by the measured nitrate concentrations from the Hessian groundwater monitoring wells used for controlling the chemical status of groundwater, so that the related model result can be regarded as a reliable indicator for the regional nitrate pollution potential of groundwater?
- Is the nitrate degradation in the groundwater simulated in the WEKU model confirmed by the N2/Ar measurements in the groundwater from a special monitoring network of groundwater monitoring wells that included the N2/Ar measurements, confirming both the hydrochemical milieu characterization for the regional designation of denitrification conditions in the groundwater and the assumed denitrification kinetics in the groundwater?
- Do the modeled total N inputs to the surface waters correspond to the measured N loads at the Hessian Surface Water Quality Monitoring Network stations, confirming the overall performance of the model system regarding the modeled total N inputs to the surface waters from diffuse sources and point sources?
2. Methodology
Data Type | Data Source |
---|---|
Land use types | HLNUG 1:
|
Agricultural data | Thünen-Institute:
|
Atmospheric N deposition | German Environment Agency (UBA):
|
Imperviousness | Copernicus Land Monitoring Service:
|
Digital elevation model | Federal Agency for Cartography and Geodesy (BKG):
|
River system | Federal Agency for Cartography and Geodesy (BKG):
|
Soil | HLNUG 1:
|
Drainage areas | Newly derived
|
Erosion data | HLNUG 1:
|
Climate data | Climate Data Center (CDC) of the German Weather Service (DWD):
|
Hydrogeology | From various studies: |
Contents of total phosphorous in topsoil | From study [55] |
Groundwater quality data | HLNUG 1:
|
Runoff and river water quality data | HLNUG 1:
|
2.1. The mGROWA Model
2.2. The DENUZ Model
N(t) | N output from soil after residence time t | (kg N/(ha·a)) |
t | Residence time of leachate in soil | (a) |
Dmax | Maximum denitrification rate | (kg N/(ha·a)) |
k | Michaelis constant | (kg N/(ha·a)) |
t | Residence time of leachate in soil | (a) |
qsw | Leachate rate | (mm/a) |
nFK | Effective field capacity | (mm/dm) |
We | Effective rooting depth | (dm) |
2.3. The WEKU Model
N(t) | Nitrate content in groundwater after travel time in aquifer | (kg N/(ha·a)) |
t | Travel time of groundwater | (a) |
kn | Denitrification constant | (a−1) |
3. Validation of Modeled Runoff Components
4. Validation of Modeled Nitrate Concentration in the Leachate
5. Validation of Modeled Denitrification Rates in Groundwater
6. Validation of Modeled Total N Inputs to Surface Waters
7. Discussion of Multi-Tier Validation
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Rawat, M.; Sen, R.; Onyekwelu, I.; Wiederstein, T.; Sharda, V. Modeling of Groundwater Nitrate Contamination Due to Agricultural Activities—A Systematic Review. Water 2022, 14, 4008. [Google Scholar] [CrossRef]
- Singh, B.; Craswell, E. Fertilizers and nitrate pollution of surface and ground water: An increasingly pervasive global problem. SN Appl. Sci. 2021, 3, 518. [Google Scholar] [CrossRef]
- Højberg, A.L.; Hansen, A.L.; Wachniew, P.; Żurek, A.J.; Virtanen, S.; Arustiene, J.; Strömqvist, J.; Rankinen, K.; Refsgaard, J.C. Review and assessment of nitrate reduction in groundwater in the Baltic Sea Basin. J. Hydrol. Reg. Stud. 2017, 12, 50–68. [Google Scholar] [CrossRef]
- Van Drecht, G.; Bouwman, A.F.; Knoop, J.M.; Beusen, A.H.W.; Meinardi, C.R. Global modeling of the fate of nitrogen from point and nonpoint sources in soils, groundwater, and surface water. Glob. Biogeochem. Cycles 2003, 17, 1115. [Google Scholar] [CrossRef]
- Šimůnek, J.; Genuchten, M.T.; Šejna, M. Development and Applications of the HYDRUS and STANMOD Software Packages and Related Codes. Vadose Zone J. 2008, 7, 587–600. [Google Scholar] [CrossRef] [Green Version]
- Manevski, K.; Børgesen, C.D.; Li, X.; Andersen, M.N.; Abrahamsen, P.; Hu, C.; Hansen, S. Integrated modelling of crop production and nitrate leaching with the Daisy model. Methodsx 2016, 3, 350–363. [Google Scholar] [CrossRef]
- Colombani, N.; Mastrocicco, M.; Vincenzi, F.; Castaldelli, G. Modeling Soil Nitrate Accumulation and Leaching in Conventional and Conservation Agriculture Cropping Systems. Water 2020, 12, 1571. [Google Scholar] [CrossRef]
- De Filippis, G.; Ercoli, L.; Rossetto, R. A Spatially Distributed, Physically-Based Modeling Approach for Estimating Agricultural Nitrate Leaching to Groundwater. Hydrology 2021, 8, 8. [Google Scholar] [CrossRef]
- Hajati, M.-C.; White, S.; Moosdorf, N.; Santos, I.R. Modeling Catchment-Scale Nitrogen Losses Across a Land-Use Gradient in the Subtropics. Front. Earth Sci. 2020, 8, 347. [Google Scholar] [CrossRef]
- Kourakos, G.; Klein, F.; Cortis, A.; Harter, T. A groundwater nonpoint source pollution modeling framework to evaluate long-term dynamics of pollutant exceedance probabilities in wells and other discharge locations. Water Resour. Res. 2012, 48, W00L 13. [Google Scholar] [CrossRef]
- Zhao, W.; Zhou, Z.; Zhao, Z.; Li, W.; Li, Q. Risk assessment of non-point source pollution in karst reservoirs based on ‘source–sink’ landscape theory. Water Supply 2022, 22, 6094–6110. [Google Scholar] [CrossRef]
- Ye, H.; Yuan, X.; Han, L.; Marip, J.B.; Qin, J. Risk Assessment of Nitrogen and Phosphorus Loss in a Hilly-Plain Watershed Based on the Different Hydrological Period: A Case Study in Tiaoxi Watershed. Sustainability 2017, 9, 1493. [Google Scholar] [CrossRef] [Green Version]
- Orellana-Macías, J.M.; Roselló, M.J.P. Assessment of Risk and Social Impact on Groundwater Pollution by Nitrates. Implementation in the Gallocanta Groundwater Body (NE Spain). Water 2022, 14, 202. [Google Scholar] [CrossRef]
- Arauzo, M. Vulnerability of groundwater resources to nitrate pollution: A simple and effective procedure for delimiting Nitrate Vulnerable Zones. Sci. Total Environ. 2017, 575, 799–812. [Google Scholar] [CrossRef] [PubMed]
- Wendland, F.; Bergmann, S.; Eisele, M.; Gömann, H.; Herrmann, F.; Kreins, P.; Kunkel, R. Model-Based Analysis of Nitrate Concentration in the Leachate—The North Rhine-Westfalia Case Study, Germany. Water 2020, 12, 550. [Google Scholar] [CrossRef] [Green Version]
- Vinod, P.; Chandramouli, P.; Koch, M. Estimation of Nitrate Leaching in Groundwater in an Agriculturally Used Area in the State Karnataka, India, Using Existing Model and GIS. Aquat. Procedia 2015, 4, 1047–1053. [Google Scholar] [CrossRef]
- Gupta, P.K.; Kumari, B.; Gupta, S.K.; Kumar, D. Nitrate-leaching and groundwater vulnerability mapping in North Bihar, India. Sustain. Water Resour. Manag. 2020, 6, 48. [Google Scholar] [CrossRef]
- Missaoui, R.; Abdelkarim, B.; Ncibi, K.; Hamed, Y.; Choura, A.; Essalami, L. Assessment of Groundwater Vulnerability to Nitrate Contamination Using an Improved Model in the Regueb Basin, Central Tunisia. Water Air Soil Pollut. 2022, 233, 320. [Google Scholar] [CrossRef]
- Awais, M.; Aslam, B.; Maqsoom, A.; Khalil, U.; Ullah, F.; Azam, S.; Imran, M. Assessing Nitrate Contamination Risks in Groundwater: A Machine Learning Approach. Appl. Sci. 2021, 11, 10034. [Google Scholar] [CrossRef]
- Garcia, V.; Cooter, E.; Crooks, J.; Hinckley, B.; Murphy, M.; Xing, X. Examining the impacts of increased corn production on groundwater quality using a coupled modeling system. Sci. Total Environ. 2017, 586, 16–24. [Google Scholar] [CrossRef]
- Raij-Hoffman, I.; Miller, K.; Paul, G.; Yimam, Y.; Mehan, S.; Dickey, J.; Harter, T.; Kisekka, I. Modeling water and nitrogen dynamics from processing tomatoes under different management scenarios in the San Joaquin Valley of California. J. Hydrol. Reg. Stud. 2022, 43, 101195. [Google Scholar] [CrossRef]
- Ransom, K.; Nolan, B.; Stackelberg, P.; Belitz, K.; Fram, M. Machine learning predictions of nitrate in groundwater used for drinking supply in the conterminous United States. Sci. Total Environ. 2021, 807, 151065. [Google Scholar] [CrossRef] [PubMed]
- Paradis, D.; Vigneault, H.; Lefebvre, R.; Savard, M.M.; Ballard, J.-M.; Qian, B. Groundwater nitrate concentration evolution under climate change and agricultural adaptation scenarios: Prince Edward Island, Canada. Earth Syst. Dyn. 2016, 7, 183–202. [Google Scholar] [CrossRef] [Green Version]
- European Parliament and Council of the European Union. Council Directive 91/676/EEC of 12 December 1991 Concerning the Protection of Waters against Pollution Caused by Nitrates from Agricultural Sources. Off. J. Eur. Communities 1991, L 375, 1–8. [Google Scholar]
- EU-WFD. Directive 2000/60/EC of the European Parliament and the Council of 23 October 2000 Establishing a Framework for Community Action in the Field of Water Policy. Off. J. Eur. Communities 2000, L 327, 1–73.
- EU-MSFD. Directive 2008/56/EC of the European Parliament and the Council of 17 June 2008 Establishing a Framework for Community Action in the Field of Marine Environmental Policy. Off. J. Eur. Communities 2008, L 164, 1–40.
- Børgesen, C.D.; Pullens, J.W.; Zhao, J.; Blicher-Mathiesen, G.; Sørensen, P.; Olesen, J.E. NLES5—An empirical model for estimating nitrate leaching from the root zone of agricultural land. Eur. J. Agron. 2022, 134, 126465. [Google Scholar] [CrossRef]
- Wolf, J.; Beusen, A.; Groenendijk, P.; Kroon, T.; Rötter, R.; van Zeijts, H. The integrated modeling system STONE for calculating nutrient emissions from agriculture in the Netherlands. Environ. Model. Softw. 2003, 18, 597–617. [Google Scholar] [CrossRef]
- Dupas, R.; Curie, F.; Gascuel-Odoux, C.; Moatar, F.; Delmas, M.; Parnaudeau, V.; Durand, P. Assessing N emissions in surface water at the national level: Comparison of country-wide vs. regionalized models. Sci. Total Environ. 2013, 443, 152–162. [Google Scholar] [CrossRef]
- Hankin, B.; Strömqvist, J.; Burgess, C.; Pers, C.; Bielby, S.; Revilla-Romero, B.; Pope, L. A New National Water Quality Model to Evaluate the Effectiveness of Catchment Management Measures in England. Water 2019, 11, 1612. [Google Scholar] [CrossRef] [Green Version]
- Gebel, M.; Halbfaß, S.; Bürger, S.; Friese, H.; Naumann, S. Modelling of nitrogen turnover and leaching in Saxony. Adv. Geosci. 2010, 27, 139–144. [Google Scholar] [CrossRef] [Green Version]
- Venohr, M.; Hirt, U.; Hofmann, J.; Opitz, D.; Gericke, A.; Wetzig, A.; Natho, S.; Neumann, F.; Hürdler, J.; Matranga, M.; et al. Modelling of Nutrient Emissions in River Systems—MONERIS—Methods and Background. Int. Rev. Hydrobiol. 2011, 96, 435–483. [Google Scholar] [CrossRef]
- Kuhr, P.; Kunkel, R.; Tetzlaff, B.; Wendland, F. Räumlich differenzierte Quantifizierung der Nährstoffeinträge in Grundwasser und Oberflächengewässer in Sachsen-Anhalt unter Anwendung der Modellkombination GROWA-WEKU-MEPhos; Project Report Forschungszentrum Jülich; Forschungszentrum Jülich: Jülich, Germany, 2014; p. 218. [Google Scholar]
- Kunkel, R.; Herrmann, F.; Kape, H.-E.; Keller, L.; Koch, F.; Tetzlaff, B.; Wendland, F. Simulation of terrestrial nitrogen fluxes in Mecklenburg-Vorpommern and scenario analyses how to reach N-quality targets for groundwater and the coastal waters. Environ. Earth Sci. 2017, 76, 146. [Google Scholar] [CrossRef]
- Tetzlaff, B.; Schreiner, H.; Vereecken, H.; Wendland, F. Modellgestützte Analyse signifikanter Phosphorbelastungen in hessischen Oberflächengewässern aus diffusen und punktuellen Quellen. Schriften des Forschungszentrums Jülich. Reihe Energ. Umw. 2009, 29, 157. [Google Scholar]
- Tetzlaff, B.; Kreins, P.; Kuhr, P.; Kunkel, R.; Wendland, F. Quantifizierung der Stickstoff- und Phosphoreinträge ins Grundwasser und Die Oberflächengewässer Thüringens mit Eintragspfadbezogener und Regionaler Differenzierung; Project Report Forschungszentrum Jülich; Forschungszentrum Jülich: Jülich, Germany, 2016; p. 189. [Google Scholar]
- Tetzlaff, B.; Keller, L.; Kuhr, P.; Kreins, P.; Kunkel, R.; Wendland, F. Nährstoffeinträge ins Grundwasser und Die Oberflächengewässer Schleswig-Holsteins unter Anwendung der Modellkombination RAUMIS-GROWA-WEKU-MEPhos; Project Report Forschungszentrum Jülich; Forschungszentrum Jülich: Jülich, Germany, 2017; p. 237. [Google Scholar]
- Tetzlaff, B.; Kunkel, R.; Ta, P.; Wendland, F.; Wolters, T. Fortführung der Nährstoffmodellierung Mecklenburg-Vorpommern; Project Report Forschungszentrum Jülich; Forschungszentrum Jülich: Jülich, Germany, 2021; p. 184. [Google Scholar]
- Wendland, F.; Keller, L.; Kuhr, P.; Tetzlaff, B.; Heidecke, C.; Kreins, P.; Wagner, A.; Trepel, M. Räumlich differenzierte Quantifizierung der Stickstoffeinträge ins Grundwasser und die Oberflächengewässer Schleswig-Holsteins. Korresp. Wasserwirtsch. 2014, 7, 327–332. [Google Scholar] [CrossRef]
- Wendland, F.; Keller, L.; Kuhr, P.; Tetzlaff, B. Regional Differenzierte Quantifizierung der Nährstoffeinträge in das Grundwasser und in Die Oberflächengewässer Mecklenburg-Vorpommerns unter Anwendung der Modellkombination GROWA-DENUZ-WEKU-MEPhos; Project Report Forschungszentrum Jülich; Forschungszentrum Jülich: Jülich, Germany, 2015; p. 233. [Google Scholar]
- Wendland, F.; Herrmann, F.; Kunkel, R.; Ta, P.; Tetzlaff, B.; Wolters, T. Quantifizierung der Stickstoff- und Phosphoreinträge ins Grundwasser und in Die Oberflächengewässer in Rheinland-Pfalz mit eintragspfadbezogener und Regionaler Differenzierung; Project Report Forschungszentrum Jülich; Forschungszentrum Jülich: Jülich, Germany, 2021; p. 228. [Google Scholar]
- Wolters, T.; Ta, P.; Tetzlaff, B.; Wendland, F. Fortführung und Weiterentwicklung der Nährstoffmodellierung Sachsen-Anhalt; Project Report Forschungszentrum Jülich; Forschungszentrum Jülich: Jülich, Germany, 2022; p. 231. [Google Scholar]
- Tetzlaff, B.; Kunkel, R.; Ta, P.; Wolters, T.; Wendland, F. Modellierung der Nährstoffeinträge ins Grundwasser und Die Oberflächengewässer Hessens mit Regionaler und Eintragspfadbezogener Differenzierung; Project Report Forschungszentrum Jülich; Forschungszentrum Jülich: Jülich, Germany, 2023; p. 217. [Google Scholar]
- Tetzlaff, B.; Haider, J.; Kreins, P.; Kuhr, P.; Kunkel, R.; Wendland, F. Grid-based modelling of nutrient inputs from diffuse and point sources for the state of North Rhine-Westphalia (Germany) as a tool for river basin management according to EU-WFD. River Syst. 2013, 20, 213–229. [Google Scholar] [CrossRef] [PubMed]
- Wolters, T.; Cremer, N.; Eisele, M.; Herrmann, F.; Kreins, P.; Kunkel, R.; Wendland, F. Checking the Plausibility of Modelled Nitrate Concentrations in the Leachate on Federal State Scale in Germany. Water 2021, 13, 226. [Google Scholar] [CrossRef]
- Wolters, T.; Bach, T.; Eisele, M.; Eschenbach, W.; Kunkel, R.; McNamara, I.; Well, R.; Wendland, F. The derivation of denitrification conditions in groundwater: Combined method approach and application for Germany. Ecol. Indic. 2022, 144, 109564. [Google Scholar] [CrossRef]
- Herrmann, F.; Chen, S.; Heidt, L.; Elbracht, J.; Engel, N.; Kunkel, R.; Müller, U.; Röhm, H.; Vereecken, H.; Wendland, F. Zeitlich und räumlich hochaufgelöste flächendifferenzierte Simulation des Landschaftswasserhaushalts in Niedersachsen mit dem Model mGROWA. HyWa 2013, 57, 206–224. [Google Scholar] [CrossRef]
- Herrmann, F.; Keller, L.; Kunkel, R.; Vereecken, H.; Wendland, F. Determination of spatially differentiated water balance components including groundwater recharge on the Federal State level—A case study using the mGROWA model in North Rhine-Westphalia (Germany). J. Hydrol. Reg. Stud. 2015, 4, 294–312. [Google Scholar] [CrossRef] [Green Version]
- Wendland, F.; Behrendt, H.; Gömann, H.; Hirt, U.; Kreins, P.; Kühn, U.; Kunkel, R.; Tetzlaff, B. Determination of nitrogen reduction levels necessary to reach groundwater quality targets in large river basins: The Weser basin case study, Germany. Nutr. Cycl. Agroecosyst. 2009, 85, 63–78. [Google Scholar] [CrossRef]
- Kunkel, R.; Bach, M.; Behrendt, H.; Wendland, F. Groundwater-borne nitrate intakes into surface waters in Germany. Water Sci. Technol. 2004, 49, 11–19. [Google Scholar] [CrossRef] [PubMed]
- Zinnbauer, M.; Eysholdt, M.; Henseler, M.; Kreins, P.; Hermann, F.; Kunkel, R.; Nguyen, H.; Wendland, F. Quantifizierung aktueller und zukünftiger Nährstoffeinträge und Handlungsbedarfe für ein deutschlandweites Nährstoffmanagement–AGRUM-DE; Thünen-Report; Johann Heinrich von Thuenen-Institut (vTI), Federal Research Institute for Rural Areas, Forestry and Fisheries: Braunschweig, Germany, 2023. [Google Scholar]
- Tetzlaff, B.; Kuhr, P.; Wendland, F. A new method for creating maps of artificially drained areas in large river basins based on aerial photographs and geodata. Irrig. Drain. 2009, 58, 569–585. [Google Scholar] [CrossRef]
- Herrmann, F.; Berthold, G.; Fritsche, J.-G.; Kunkel, R.; Voigt, H.-J.; Wendland, F. Development of a conceptual hydrogeological model for the evaluation of residence times of water in soil and groundwater: The state of Hesse case study, Germany. Environ. Earth Sci. 2012, 67, 2239–2250. [Google Scholar] [CrossRef]
- Hergesell, M. GIS-based modelling of regional groundwater recharge in Hesse, Germany. Hydrol. Hess. 2003, 1, 102. [Google Scholar]
- Pecoroni, D. Auswertungen zu Phosphorgehalten aus Bodenbestandsdaten in Hessen und Vergleich Methodischer Ansätze zur Modellierung des P-Eintrags in Fließgewässer über Bodenerosion. Diploma Thesis, University of Giessen, Gießen, Germany, 2013. [Google Scholar]
- US Soil Conservation Service: National Engineering Handbook: Chapter 4: Hydrology; U.S. Department of Agriculture: Washington, DC, USA, 1972; p. 762.
- Friesland, H.; Löpmeier, F.J. The performance of the model AMBAV for evapotranspiration and soil moisture on Müncheberg data. In Proceedings of the Workshop on “Modelling Water and Nutrient Dynamics in Soil–Crop Systems”, Müncheberg, Germany, 14–16 June 2004; Kersebaum, K.C., Hecker, J.-M., Mirschel, W., Wegehenkel, M., Eds.; Springer: Dordrecht, The Netherlands, 2007; pp. 19–26. [Google Scholar] [CrossRef]
- Löpmeier, F.-J. Berechnung der Bodenfeuchte und Verdunstung mittels agrarmeteorologischer Modelle. Z. Bewäss. 1994, 29, 157–167. [Google Scholar]
- Kunkel, R.; Wendland, F. The GROWA98 model for water balance analysis in large river basins—The river Elbe case study. J. Hydrol. 2002, 259, 152–162. [Google Scholar] [CrossRef]
- Disse, M. Modellierung der Verdunstung und der Grundwasserneubildung in Ebenen Einzugsgebieten. Ph.D. Thesis, Fakultät für Bauingenieur-und Vermessungswesen der Universität Fridericiana zu Karlsruhe (TH), Karlsruhe, Germany, 1995. [Google Scholar]
- Engel, N.; Müller, U.; Schäfer, W. BOWAB—Ein Mehrschicht-Bodenwasserhaushaltsmodell. GeoBerichte 2012, 20, 85–98. [Google Scholar]
- Wessolek, G.; Facklam, M. Standorteigenschaften und Wasserhaushalt von versiegelten Flächen. J. Plant Nutr. Soil Sci. 1997, 160, 41–46. [Google Scholar] [CrossRef]
- Bogena, H.; Kunkel, R.; Schöbel, T.; Schrey, H.; Wendland, F. Distributed modeling of groundwater recharge at the macroscale. Ecol. Model. 2005, 187, 15–26. [Google Scholar] [CrossRef]
- Bloomfield, J.; Allen, D.; Griffiths, K. Examining geological controls on baseflow index (BFI) using regression analysis: An illustration from the Thames Basin, UK. J. Hydrol. 2009, 373, 164–176. [Google Scholar] [CrossRef] [Green Version]
- Haberlandt, U.; Klöcking, B.; Krysanova, V.; Becker, A. Regionalisation of the base flow index from dynamically simulated flow components—A case study in the Elbe River Basin. J. Hydrol. 2001, 248, 35–53. [Google Scholar] [CrossRef]
- Ehlers, L.; Herrmann, F.; Blaschek, M.; Duttmann, R.; Wendland, F. Sensitivity of mGROWA-simulated groundwater recharge to changes in soil and land use parameters in a Mediterranean environment and conclusions in view of ensemble-based climate impact simulations. Sci. Total Environ. 2016, 543, 937–951. [Google Scholar] [CrossRef]
- Panagopoulos, A.; Arampatzis, G.; Tziritis, E.; Pisinaras, V.; Herrmann, F.; Kunkel, R.; Wendland, F. Assessment of climate change impact in the hydrological regime of River Pinios Basin, central Greece. Desalin. Water Treat. 2016, 57, 2256–2267. [Google Scholar] [CrossRef]
- Pisinaras, V.; Herrmann, F.; Panagopoulos, A.; Tziritis, E.; McNamara, I.; Wendland, F. Fully Distributed Water Balance Modelling in Large Agricultural Areas—The Pinios River Basin (Greece) Case Study. Sustainability 2023, 15, 4343. [Google Scholar] [CrossRef]
- Tetzlaff, B.; Andjelov, M.; Kuhr, P.; Uhan, J.; Wendland, F. Model-based assessment of groundwater recharge in Slovenia. Environ. Earth Sci. 2015, 74, 6177–6192. [Google Scholar] [CrossRef]
- Nagel, J.; von Gadow, K. ForestTools3—Forstliche Software-Sammlung; J. Nagel Unpublished Software Documentation; Selbstverlag J. Nagel: Göttingen, Germany, 2014. [Google Scholar]
- Wendland, F.; Herrmann, F.; Kunkel, R.; Tetzlaff, B.; Wolters, T. AGRUM-DE–Stickstoff- und Phosphoreinträge ins Grundwasser und Die Oberflächengewässer Deutschlands mit Eintragspfadbezogener und Regionaler Differenzierung; Project Report Forschungszentrum Jülich; Forschungszentrum Jülich: Jülich, Germany, 2022; 186p. [Google Scholar]
- Andreae, H.; Eickenscheidt, N.; Evers, J.; Grüneberg, E.; Ziche, D.; Ahrends, B.; Höhle, J.; Nagel, H.-D.; Wellbrock, N. Stickstoffstatus und dessen zeitliche Veränderungen in Waldböden. In Dynamik und räumliche Muster forstlicher Standorte in Deutschland -Ergebnisse der Bodenzustandserhebung im Wald 2006 bis 2008; Thünen Report; Welbrock, N., Bolte, A., Flesa, H., Eds.; Thünen Institut: Braunschweig, Germany, 2013; Volume 43, pp. 135–180. [Google Scholar]
- Raspe, S.; Dietrich, H.-P.; Köhler, D.; Schubert, A.; Stiegler, J. Stickstoff im Überfluss. LWF Aktuell 2018, 2, 21–24. [Google Scholar]
- Ågren, G.I.; Bosatta, E. Nitrogen saturation of terrestrial ecosystems. Environ. Pollut. 1988, 54, 185–197. [Google Scholar] [CrossRef]
- Köhne, C.; Wendland, F. Modellgestützte Berechnung des mikrobiellen Nitratabbaus im Boden; Programmgruppe STE Systemforschung und Technologische Entwicklung, Interner Bericht KFA-STE-IB-1/92; Forschungszentrum Juelich GmbH: Juelich, Germany, 1992; p. 77. [Google Scholar]
- Mosier, A.R.; Doran, J.W.; Freney, J.R. Managing soil denitrification. J. Soil Water Conserv. 2002, 57, 505–513. [Google Scholar]
- Wienhaus, S.; Höper, H.; Eisele, M.; Meesenburg, H.; Schäfer, W. Nutzung Bodenkundlich-Hydrogeologischer Informationen zur Ausweisung von Zielgebieten für den Grundwasserschutz-Ergebnisse Eines Modellprojektes (NOLIMP) zur Umsetzung der EG—Wasserrahmenrichtlinie. GeoBerichte 2008, 9, 56. [Google Scholar]
- Green, C.T.; Jurgens, B.C.; Zhang, Y.; Starn, J.J.; Singleton, M.J.; Esser, B.K. Regional oxygen reduction and denitrification rates in groundwater from multi-model residence time distributions, San Joaquin Valley, USA. J. Hydrol. 2016, 543, 155–166. [Google Scholar] [CrossRef] [Green Version]
- Groenendijk, P.; Heinen, M.; Klammler, G.; Fank, J.; Kupfersberger, H.; Pisinaras, V.; Gemitzi, A.; Peña-Haro, S.; García-Prats, A.; Pulido-Velazquez, M.; et al. Performance assessment of nitrate leaching models for highly vulnerable soils used in low-input farming based on lysimeter data. Sci. Total Environ. 2014, 499, 463–480. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seitzinger, S.; Harrison, J.A.; Böhlke, J.K.; Bouwman, A.F.; Lowrance, R.; Peterson, B.; Tobias, C.; Van Drecht, G. Denitrification across landscapes and waterscapes: A synthesis. Ecol. Appl. 2006, 16, 2064–2090. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DIN 19732 DIN (2011); Bodenbeschaffenheit-Bestimmung des Standörtlichen Verlagerungspotentials von Nichtsorbierbaren Stoffen.-12S. Beuth-Verlag: Berling, Germany, 2011.
- Kunkel, R.; Wendland, F. WEKU—A GIS-Supported stochastic model of groundwater residence times in upper aquifers for the supraregional groundwater management. Environ. Geol. 1997, 30, 1–9. [Google Scholar] [CrossRef]
- Wendland, F.; Kunkel, R.; Voigt, H.-J. Assessment of groundwater residence times in the pore aquifers of the River Elbe Basin. Environ. Geol. 2004, 46, 1–9. [Google Scholar] [CrossRef]
- Böttcher, J.; Strebel, O.; Duynisveld, W.H.M. Vertikale Stoffkonzentrationsprofile im Grundwasser eines Lockergesteinsaquifers und deren Interpretation (Beispiel Fuhrberger Feld). Z. Dtsch. Geol. Ges. 1985, 136, 543–552. [Google Scholar] [CrossRef]
- Böttcher, J.; Strebel, O.; Duynisveld, W.H.M. Kinetik und Modellierung gekoppelter Stoffumsetzungen im Grundwasser eines Lockergesteinsaquifers. Geol. Jahrb. Reihe C 1989, 51, 3–40. [Google Scholar]
- Kunkel, R.; Voigt, H.-J.; Wendland, F.; Hannappel, S. Die natürliche, ubiquitär über-prägte Grundwasserbeschaffenheit in Deutschland.-Schriften des Forschungszentrums Jülich. Reihe Energ. Umw. 2004, 47, 222 S. [Google Scholar]
- Kunkel, R.; Wendland, F.; Albert, H. Zum Nitratabbau in den grundwasserführenden Gesteinsschichten des Elbeeinzugsgebietes. Wasser Und Boden 1999, 51, 16–19. [Google Scholar]
- Zhou, W.; Ma, Y.; Well, R.; Wang, H.; Yan, X. Denitrification in Shallow Groundwater Below Different Arable Land Systems in a High Nitrogen-Loading Region. J. Geophys. Res. Biogeosci. 2018, 123, 991–1004. [Google Scholar] [CrossRef]
- van Beek, C.G.E.M. Landbouw en Drinkwatervoorziening, Orientierend Onderzoek Naar de Beinvloeding Can de Grondwaterkwaliteit Door Bemesting en Het Gebruik van Bestrijdingsmiddelen; Keuringsinstituut voor Waterleidingsartikelen KIWA N.V.: Nieuwegein, The Netherlands, 1987. [Google Scholar]
- Ahuja, L.R.; Cassel, D.K.; Bruce, R.R.; Barnes, B.B. Evaluation of spatial distribution of hydraulic conductivity using effective porosity data. Soil Sci. 1989, 148, 404–411. [Google Scholar] [CrossRef]
- Walther, W.; Reinstorf, F.; Pätsch, M.; Weller, D. Management tools to minimize nitrogen emissions into groundwater in agricultural used catchment areas, northern low plain of Germany. In Proceedings of the IAHR Congress “Water Engineering and Research in a Learning Society”, Thessaloniki, Greece, 24–29 August 2003; Part B. pp. 747–754. [Google Scholar]
- Pätsch, M.; Walther, W.; Reinstorf, F.; Weller, D. Research program and developement of a suitable toll to minimize nitrogen emissions into groundwater of a pleistocene aquifer, northern low plain of Germany. In Diffuse Input of Chemicals into Soil and Groundwater-Assesement and Management, Proceedings; Institute of Groundwater Management; TU Dresden: Dresden, Germany, 2003; Volume 3, pp. 217–225. [Google Scholar]
- Uhlig, M.; Gebel, M.; Halbfaß, S.; Liedl, R. Mesoskalige Modellierung der grundwasserbürtigen Nitratbelastung von Fließgewässern. Grundwasser 2010, 15, 163–176. [Google Scholar] [CrossRef]
- Merz, C.; Steidl, J.; Dannowski, R. Parameterization and regionalization of redox based denitrification for GIS-embedded nitrate transport modeling in Pleistocene aquifer systems. Environ. Geol. 2009, 58, 1587–1599. [Google Scholar] [CrossRef]
- Heidecke, C.; Hirt, U.; Kreins, P.; Kuhr, P.; Kunkel, R.; Mahnkopf, J.; Schott, M.; Tetzlaff, B.; Venohr, M.; Wagner, A.; et al. Endbericht zum Forschungsprojekt “Entwicklung eines Instrumentes für ein flussgebietsweites Nährstoffmanagement in der Flussgebietseinheit Weser” AGRUM+-Weser; Thünen Reports 21; Johann Heinrich von Thünen Institute: Braunschweig, Germany, 2015; 380p. [Google Scholar] [CrossRef]
- Ackermann, A.; Heidecke, C.; Hirt, U.; Kreins, P.; Kuhr, P.; Kunkel, R.; Mahnkopf, J.; Schott, M.; Tetzlaff, B.; Venohr, M.; et al. Der Modellverbund AGRUM als Instrument zum landesweiten Nährstoffmanagement in Niedersachsen; Thünen Reports 37; Johann Heinrich von Thünen Institute: Braunschweig, Germany, 2015; 314p. [Google Scholar] [CrossRef]
- Wendland, F. Die Nitratbelastung in den Grundwasserlandschaften “alten” Bundesländer (BRD). Forschungszentrum Jülich. Ber. Aus Der Okol. Forsch. 1992, 8, 150. Available online: http://hdl.handle.net/2128/28380 (accessed on 6 June 2023).
- Nash, J.E.; Sutcliffe, J.V. River flow forecasting through conceptual models part I—A discussion of principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Gupta, H.V.; Sorooshian, S.; Yapo, P.O. Status of Automatic Calibration for Hydrologic Models: Comparison with Multilevel Expert Calibration. J. Hydrol. Eng. 1999, 4, 135–143. [Google Scholar] [CrossRef]
- Ertl, G.; Herrmann, F.; Elbracht, J. Bestimmung der Grundwasserneubildungshöhen für Festgesteinsgebiete in Niedersachsen. Grundwasser 2022, 27, 43–56. [Google Scholar] [CrossRef]
- Wundt, W. Die Kleinstwasserführung der Flüsse als Maß für die verfügbaren Grundwassermengen. In: Grahmann, R. (Hrsg.) Die Grundwässer in der Bundesrepublik Deutschland und ihre Nutzung. Forsch. Dt. Landeskd. 1958, 104, 47–54. [Google Scholar]
- Demuth, S. Untersuchungen zum Niedrigwasser in West-Europa. Freibg. Schr. Zur Hydrol. 1993, 1, 202. [Google Scholar]
- Pütz, T.; Fank, J.; Flury, M. Lysimeters in Vadose Zone Research. Vadose Zone J. 2018, 17, 1–4. [Google Scholar] [CrossRef] [Green Version]
- BGR Mittlerer Jährlicher Oberflächenabfluss auf Ackerflächen in Deutschland. 2015. Available online: https://services.bgr.de/boden/oaacker1000 (accessed on 6 June 2023).
- Budnick, R.; Fischer, M.; Koch, F.; Kreins, P.; Krüger, A.; Kuhn, U.; Leujak, W.; Osterburg, B.; Schmidt, M.; Trepel, M.; et al. Prognose der Auswirkungen einer nach Gewässerschutzaspekten Novellierten Düngeverordnung auf die Qualität der Oberflächengewässer in Deutschland; Bund/Länderarbeitsgemeinschaft Wasser (LAWA): Husum, Germany, 2015; pp. 1–30. [Google Scholar]
- Gömann, H.; Julius, C.; Kreins, P. Quantifying impacts of different agri-environmental policies on the environment using the regional agri-environmental information system RAUMIS. In Environmental Communication in the Information Society, Proceedings of the 16th Conference "Informatics for Environmental Protection", Vienna, Austria, 25–27 September 2002; Pillmann, W., Ed.; 2002; pp. 209–216. Available online: http://enviroinfo.eu/sites/default/files/pdfs/vol105/0209.pdf (accessed on 6 June 2023).
- Henrichsmeyer, W.; Cypris, C.; Löhe, W.; Meudt, M.; Sander, R.; Von Sothen, F. Entwicklung des Gesamtdeutschen Agrarsektormodells RAUMIS96. Project Report, Bonn und Braunschweig-Völkenrode. 1996. Available online: https://dl.icdst.org/pdfs/files1/b0c4f65f0c8f06bd3e8fe6e93103c3ed.pdf (accessed on 6 June 2023).
- Kreins, P.; Gömann, H.; Herrmann, S.; Kunkel, R.; Wendland, F. Integrated Agricultural and Hydrological Modeling within an Intensive Livestock Region. Adv. Econ. Environ. Resour. 2007, 7, 113–142. [Google Scholar] [CrossRef]
- Wendland, F.; Behrendt, H.; Hirt, U.; Kreins, P.; Kuhn, U.; Kuhr, P.; Kunkel, R.; Tetzlaff, B. Analyse von Agrar- und Umweltmaßnahmen zur Reduktion der Stickstoffbelastung von Grundwasser und Oberflächengewässer in der Flussgebietseinheit Weser. HyWa 2010, 54, 231–244. [Google Scholar]
- Vogel, J.; Talma, A.; Heaton, T. Gaseous nitrogen as evidence for denitrification in groundwater. J. Hydrol. 1981, 50, 191–200. [Google Scholar] [CrossRef]
- Böhlke, J.-K. Groundwater recharge and agricultural contamination. Hydrogeol. J. 2002, 10, 153–179. [Google Scholar] [CrossRef]
- Schreiber, L.; Wolke, P.; Hannappel, S. N2/Ar-Untersuchungen im Grundwasser in Sachsen-Anhalt; Project Report HYDOR Consult; HYDOR Consult GmbH: Berlin, Germany, 2020; p. 68. Available online: http://www.hydor.de/downloads/PDF/veroeffentlichungen2019/2019_N2AR%20ST.pdf (accessed on 6 June 2023).
- Weymann, D.; Well, R.; Flessa, H.; von der Heide, C.; Deurer, M.; Meyer, K.; Konrad, C.; Walther, W. Groundwater N2O emission factors of nitrate-contaminated aquifers as derived from denitrification progress and N2O accumulation. Biogeosciences 2008, 5, 1215–1226. [Google Scholar] [CrossRef] [Green Version]
- Ortmeyer, F.; Begerow, D.; Guerreiro, M.A.; Wohnlich, S.; Banning, A. Comparison of Denitrification Induced by Various Organic Substances—Reaction Rates, Microbiology, and Temperature Effect. Water Resour. Res. 2021, 57, e2021WR029793. [Google Scholar] [CrossRef]
- Eschenbach, W.; Budziak, D.; Elbracht, J.; Höper, H.; Krienen, L.; Kunkel, R.; Meyer, K.; Well, R.; Wendland, F. Möglichkeiten und Grenzen der Validierung flächenhaft modellierter Nitrateinträge ins Grundwasser mit der N2/Ar-Methode. Grundwasser 2018, 23, 125–139. [Google Scholar] [CrossRef]
- Behrendt, H.; Opitz, D. Retention of nutrients in river systems: Dependence on specific runoff and hydraulic load. Hydrobiologia 1999, 410, 111–122. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wolters, T.; Berthold, G.; Kunkel, R.; Tetzlaff, B.; Thomas, A.; Zacharias, M.; Wendland, F. Multi-Tier Validation of a Macroscale Nitrogen Model for Groundwater Management in Watersheds Using Data from Different Monitoring Networks. Water 2023, 15, 2277. https://doi.org/10.3390/w15122277
Wolters T, Berthold G, Kunkel R, Tetzlaff B, Thomas A, Zacharias M, Wendland F. Multi-Tier Validation of a Macroscale Nitrogen Model for Groundwater Management in Watersheds Using Data from Different Monitoring Networks. Water. 2023; 15(12):2277. https://doi.org/10.3390/w15122277
Chicago/Turabian StyleWolters, Tim, Georg Berthold, Ralf Kunkel, Björn Tetzlaff, Axel Thomas, Michael Zacharias, and Frank Wendland. 2023. "Multi-Tier Validation of a Macroscale Nitrogen Model for Groundwater Management in Watersheds Using Data from Different Monitoring Networks" Water 15, no. 12: 2277. https://doi.org/10.3390/w15122277
APA StyleWolters, T., Berthold, G., Kunkel, R., Tetzlaff, B., Thomas, A., Zacharias, M., & Wendland, F. (2023). Multi-Tier Validation of a Macroscale Nitrogen Model for Groundwater Management in Watersheds Using Data from Different Monitoring Networks. Water, 15(12), 2277. https://doi.org/10.3390/w15122277