Environmental Role of Snowmelt in Headwaters Affected by Atmospheric Acid Deposition
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Catchment Monitoring
2.3. Data Processing
3. Results and Discussion
3.1. Climate Characteristics
3.2. Forest Cover
3.3. Atmospheric Acid Deposition
3.4. Water Yield and Runoff Timing
3.5. Runoff Extremes
3.6. Seasonal Acidification
3.7. Environmental Health
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bruland, O. Snow Processes, Modeling, and Impact. In Precipitation: Earth Surface Responses and Processes; Rodrigo-Comino, J., Ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2021; pp. 107–143. [Google Scholar]
- WMO. Guide to Hydrological Practices (Data Acquisition and Processing, Analysis, Forecasting and Other Applications). WMO-No. 168, 15th ed.; World Meteorological Organization: Genéva, Switzerland, 1994; 735p. [Google Scholar]
- DeBeer, C.M.; Pomeroy, J.W. Influence of snowpack and melt energy heterogeneity on snow cover depletion and snowmelt runoff simulation in a cold mountain environment. J. Hydrol. 2017, 553, 199–213. [Google Scholar] [CrossRef]
- Viviroli, D.; Dürr, H.H.; Messerli, B.; Meybeck, M. Mountains of the world, water towers for humanity: Typology, mapping, and global significance. Water Resour. Res. 2007, 43, W07447. [Google Scholar] [CrossRef] [Green Version]
- Berghuijs, W.; Woods, R.; Hrachowitz, M. A precipitation shift from snow towards rain leads to a decrease in streamflow. Nat. Clim. Change 2014, 4, 583–586. [Google Scholar] [CrossRef] [Green Version]
- Varhola, A.; Coops, N.C.; Weiler, M. Forest canopy effects on snow accumulation and ablation: An integrative review of empirical results. J. Hydrol. 2010, 392, 219–233. [Google Scholar] [CrossRef]
- Berris, S.N.; Harr, R.D. Comparative snow accumulation and melt during rainfall in forested and clear-cut plots in the western Cascades of Oregon. Water Resour. Res. 1987, 23, 135–142. [Google Scholar] [CrossRef]
- Barnhart, T.B.; Molotch, N.P.; Livneh, B.; Harpold, A.A.; Knowles, J.F. Snowmelt rate dictates streamflow. Geophys. Res. Lett. 2016, 43, 8006–8016. [Google Scholar] [CrossRef]
- Pomeroy, J.; Gray, D.; Hedstrom, N. Prediction of seasonal snow accumulation in cold climate forests. Hydrol. Process. 2002, 16, 3543–3558. [Google Scholar] [CrossRef]
- Brooks, K.H.; Folliott, P.F.; Magner, J.A. Hydrology and the Management of Watersheds, 4th ed.; John Wiley & Sons: New York, NY, USA, 2013; 533p. [Google Scholar]
- Neary, D.G.; Ice, G.G.; Jackson, C.R. Linkages between forest soils and water quality and quantity. For. Ecol. Manag. 2009, 258, 2269–2281. [Google Scholar] [CrossRef]
- FAO. The New Generation of Watershed Management Programmes and Projects; FAO Forestry Paper 150; Food and Agriculture Organization of the United Nations: Rome, Italy, 2006; 128p. [Google Scholar]
- Biswas, A.K.; Tortajada, C.; Izquierdo, R. Water Quality Management: Present Situations, Challenges and Future Perspectives; Routledge: London, UK, 2014. [Google Scholar]
- McDonald, R.I.; Weber, K.F.; Padowski, J.; Shemie, D. Estimating watershed degradation over the last century and its impact on water-treatment costs for the world’s large cities. Biol. Sci. 2016, 113, 9117–9122. [Google Scholar] [CrossRef]
- Schöpp, W.; Posch, M.; Mylona, S.; Johansson, M. Long-term development of acid deposition (1880–2030) in sensitive freshwater regions in Europe. Hydrol. Earth Syst. Sci. 2003, 7, 436–446. [Google Scholar] [CrossRef] [Green Version]
- Fuss, C.B.; Driscoll, C.T.; Campbell, J.L. Recovery from chronic and snowmelt acidification: Long-term trends in stream and soil water chemistry at the Hubbard Brook Experimental Forest, New Hampshire, USA. J. Geophys. Res. Biogeosciences 2015, 120, 2360–2374. [Google Scholar] [CrossRef]
- Křeček, J.; Nováková, J.; Palán, L.; Pažourková, E.; Stuchlík, E. Role of forests in headwater control with changing environment and society. Int. Soil Water Conserv. Res. 2021, 9, 143–157. [Google Scholar] [CrossRef]
- Nawrot, A.P.; Migała, K.; Pakszys, P.; Głowacki, P. Chemistry of snow cover and acidic snowfall during a season with a high level of air pollution on the Hans Glacier, Spitsbergen. Polar Sci. 2016, 10, 249–261. [Google Scholar] [CrossRef]
- Tian, X.; Cui, K.; Sheu, H.L.; Hsieh, Y.K.; Yu, F. Effects of rain and snow on the air quality index, PM2.5 levels, and dry deposition flux of PCDD/Fs. Aerosol Air Qual. Res. 2021, 21, 210158. [Google Scholar] [CrossRef]
- Křeček, J.; Palán, L.; Pažourková, E.; Stuchlík, E. Water-quality genesis in a mountain catchment affected by acidification and forestry practices. Freshw. Sci. 2019, 38, 257–269. [Google Scholar] [CrossRef]
- United Nations Environmental (UNEP). Global Environmental Outlook GEO—4: Environment for Development; Programme, Progress Press Ltd.: Valetta, Malta, 2007; 540p. [Google Scholar]
- Křeček, J.; Hořická, Z. Forests, air pollution and water quality: Influencing health in the headwaters of Central Europe’s “Black Triangle”. Unasylva 2006, 57, 46–49. [Google Scholar]
- Bolstad, P.V.; Swank, W.T. Cumulative impacts of landuse on water quality in a southern Appalachian watershed. J. Am. Water Resour. Assoc. 1997, 33, 519–553. [Google Scholar] [CrossRef]
- Brown, R.D.; Mote, P.W. The response of Northern Hemisphere snow cover to a changing climate. J. Clim. 2009, 22, 2124–2145. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2022: Impacts, Adaptation and Vulnerability. In Sixth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Genéva, Switzerland, 2022; 35p. [Google Scholar]
- IPCC. Climate Change 2014: Synthesis Report. In Fifth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Genéva, Switzerland, 2014; 151p. [Google Scholar]
- Tolasz, R. Climate Atlas of the Czech Republic; Czech Hydrometeorological Institute: Prague, Czech Republic, 2007; 255p. [Google Scholar]
- Chaloupský, J. Geology of the Giant Mts and Jizera Mts; Academia: Prague, Czech Republic, 1989; 288p. (In Czech) [Google Scholar]
- Thai, S.; Pavlů, L.; Tejnecký, V.; Chovancová, S.; Hin, L.; Thet, B.; Němeček, K.; Drábek, O. Temporal changes in soil chemical compositions in acidified mountain forest soils of Czech Republic. Eur. J. For. Res. 2023, 142. [Google Scholar] [CrossRef]
- Tureček, K. The Water Act; SONDY: Prague, Czech Republic, 2002; 349p. (In Czech) [Google Scholar]
- Kopáček, J.; Hejzlar, J.; Krám, P.; Oulehle, F.; Posch, M. Effect of industrial dust on precipitation chemistry in the Czech Republic (Central Europe) from 1850 to 2013. Water Res. 2016, 103, 30–37. [Google Scholar] [CrossRef]
- Holen, S.; Wright, R.F.; Seifert, I. Effects of Long Range Transported Air Pollution (LRTAP) on Freshwater Ecosystem Services; ICP-Waters Report 115/2013; Norwegian Institute for Water Research: Oslo, Norway, 2013; 43p. [Google Scholar]
- Zlatník, A. Forest Phytocenology; SZN: Prague, Czech Republic, 1976; 495p. (In Czech) [Google Scholar]
- Špulák, O.; Kacálek, D.; Balcar, V. Seven spruce species on a mountain site—Performance, foliar nutrients, and forest floor properties in stands 20 years old. iForest 2019, 12, 106–113. [Google Scholar] [CrossRef]
- Kelly, T. The ecology of environmental health. Environ. Health Insights 2008, 21, 25–36. [Google Scholar] [CrossRef] [PubMed]
- Shaw, E.M.; Beven, K.J.; Chappell, N.A.; Lamb, R. Hydrology in Practice, 4th ed.; Spon Press: New York, NY, USA, 2010; 542p. [Google Scholar]
- Křeček, J.; Palán, L.; Stuchlík, E. Acid atmospheric deposition in a forested mountain catchment. iForest 2017, 10, 680–686. [Google Scholar] [CrossRef] [Green Version]
- Krečmer, V.; Páv, B. Methodology to estimate the number of rain gauges under the forest canopy. J. Hydrol. Hydromech. (Vodohospodársky Časopis) 1982, 30, 479–490. (In Czech) [Google Scholar]
- Lovett, G.M.; Reiners, W.A. Canopy structure and cloud water deposition in subalpine coniferous forests. Tellus 1986, 38, 319–327. [Google Scholar] [CrossRef] [Green Version]
- Stuchlík, E.; Kopáček, J.; Fott, J.; Hořická, Z. Chemical composition of the Tatra Mountain lakes: Response to acidification. Biologia 2006, 18, S11–S20. [Google Scholar] [CrossRef]
- Palán, L.; Křeček, J.; Sato, Y. Leaf area index in a forested mountain catchment. Hung. Geogr. Bull. 2018, 67, 3–11. [Google Scholar] [CrossRef] [Green Version]
- Watts, S.B.; Tolland, L. Forestry Handbook for British Columbia, 5th ed.; UBC Faculty of Forestry: Vancouver, BC, Canada, 2005; 464p. [Google Scholar]
- Sasaki, N.; Putz, F.E. Critical need for new definitions of “forest” and “forest degradation” in global climate change agreements. Conserv. Lett. 2009, 2, 226–232. [Google Scholar] [CrossRef]
- Haith, D.A.; Shoemaker, L.L. Generalized watershed loading functions for stream flow nutrients. Water Resour. Bull. 1987, 23, 471478. [Google Scholar] [CrossRef]
- Motulski, H.J.; Searle, P. InStat Guide to Choosing and Interpreting Statistical Tests; GraphPad Software, Inc.: San Diego, CA, USA, 1998; 154p. [Google Scholar]
- WMO. Technology for detecting trends and changes in time series of hydrological and meteorological variables. In Hydrological Operational Multipurpose System; World Meteorological Organization: Geneva, Switzerland, 2001; 28p. [Google Scholar]
- EPA. Climate Change Indicators: Snow Cover; U.S. Environmental Protection Agency: Washington, DC, USA, 2022. Available online: https://www.epa.gov/climate-indicators/climate-change-indicators-snow-cover (accessed on 16 May 2023).
- Vandenberghe, C.; Freléchoux, F.; Gadallah, F.; Buttler, A. Competitive effects of herbaceous vegetation on tree seedling emergence, growth and survival: Does gap size matter? J. Veg. Sci. 2006, 17, 481–488. [Google Scholar] [CrossRef]
- Prein, A.F.; Gobiet, A. Impacts of uncertainties in European gridded precipitation observations on regional climate analysis. Int. J. Climatol. 2017, 37, 305–327. [Google Scholar] [CrossRef]
- Davis, D.W. Is the current approach to managing flood threats in the United States sustainable? In Water Resources Engineering (EWRI Conference Proceedings); Environment and Water Resources Institute: Tampa, FL, USA, 2007; 638p. [Google Scholar]
- Křeček, J.; Nováková, J.; Palán, L.; Pažourková, E. Soil conservation in a forested mountain catchment. EQA Environ. Qual. 2019, 33, 27–36. [Google Scholar]
- Kinnard, C.; Bzeouich, G.; Assani, A. Impacts of summer and winter conditions on summer river low flows in low elevation, snow-affected catchments. J. Hydrol. 2022, 605, 127393. [Google Scholar] [CrossRef]
- Prechtel, A.; Alewell, C.; Armbruster, M.; Bittersohl, J.; Cullen, J.M.; Evans, C.D.; Helliwell, R.; Kopácek, J.; Marchetto, A.; Matzner, E.; et al. Response of sulphur dynamics in European catchments to decreasing sulphate deposition. Hydrol. Earth Syst. Sci. 2001, 5, 311–325. [Google Scholar] [CrossRef]
- WHO. Guidelines for Drinking Water Quality, 3rd ed.; World Health Organization: Geneva, Switzerland, 2004; 515p. [Google Scholar]
- Skjelkvĺle, B.L.; Evans, C.; Larssen, T.; Hindar, A.; Raddum, G. Recovery from acidification in European surface waters: A view to the future. AMBIO A J. Hum. Environ. 2003, 32, 170–175. [Google Scholar] [CrossRef] [PubMed]
- Horecký, J.; Rucki, J.; Krám, P.; Křeček, J.; Bitušík, J.; Stuchlík, E. Benthic macroinvertebrates of headwater streams with extreme hydrochemistry. Biologia 2013, 68, 1–11. [Google Scholar] [CrossRef]
- Veselý, J.; Majer, V. The effect of pH and atmospheric deposition on concentrations of trace elements in acidified freshwaters: A statistical approach. Water Air Soil Pollut. 1996, 88, 227–246. [Google Scholar] [CrossRef]
- Nilsson, J. Critical loads for sulphur and nitrogen. In Air Pollution and Ecosystems; Mathy, P., Ed.; Springer: Dordrecht, The Netherlands, 1988; pp. 85–91. [Google Scholar]
- Schwarz, O. Maps of Critical Atmodpheric Loads of Sulphur and Nitrogen in Forest Ecosystems of the Giant Mountains National Park and the Jizera Mountains; Lesnická práce: Kostelec nad Černými lesy, Czech Republic, 2009; published on CD-ROM. (In Czech) [Google Scholar]
Parameter | Unit | Value |
---|---|---|
Area | (km2) | 1.03 |
Elevation | (m) | 927 (862–994) |
Slope | (%) | 7.52 (0.02–24.33) |
Shape index | (-) | 0.69 |
Length of streams | (m) | 1490 |
Drainage density | (km/km2) | 1.45 |
Length of the mainstream | (m) | 657 |
Slope of the mainstream | (%) | 5.98 |
Strahler stream order | (-) | 2 |
Substances | b | b0 | Months |
---|---|---|---|
Water | 9.045 | −6.186 × 103 | V–X |
SO4− S− | 0.077 | −56.107 | V–X |
NO3− N | 0.027 | −19.886 | V–X |
NH4− N | 0.075 | −55.567 | V–X |
Water | 10.268 | −6.762 × 103 | XI–IV |
SO4− S− | 0.113 | −81.772 | XI–IV |
NO3− N | 0.036 | −26.290 | XI–IV |
NH4− N | 0.094 | −68.664 | XI–IV |
Year | Qmax (m3 s−1) | Month (-) | Frequency (-) |
---|---|---|---|
1982 | 0.47 | V | 1 |
1983 | 0.38 | VI | <1 |
1984 | 0.37 | III | <1 |
1985 | 0.41 | IV | <1 |
1986 | 0.51 | IV | 1–2 |
1987 | 0.72 | VIII | 4 |
1988 | 0.47 | VII | 1 |
1989 | 0.26 | VII | <1 |
1990 | 0.67 | III | 3 |
1991 | 0.62 | IV | 2 |
1992 | 0.75 | VI | 4 |
1993 | 0.74 | IV | 4 |
1994 | 1.12 | IV | 7 |
1995 | 0.91 | VIII | 4 |
1996 | 0.87 | IV | 3–4 |
1997 | 0.58 | VII | 1–2 |
1998 | 075 | IX | 3 |
1999 | 0.41 | VII | <1 |
2000 | 0.53 | IV | 1–2 |
2001 | 0.76 | VII | 3 |
2002 | 1.14 | VIII | 6 |
2003 | 0.24 | III | <1 |
2004 | 0.50 | II | 1–2 |
2005 | 0.62 | III | 2 |
2006 | 1.72 | VIII | 25 |
2007 | 0.25 | II | <1 |
2008 | 0.48 | III | 1 |
2009 | 0.75 | VII | 3 |
2010 | 2.03 | VIII | 50 |
2011 | 1.66 | VII | 20 |
2012 | 0.58 | IV | <2 |
2013 | 1.46 | IX | 15 |
2014 | 1.18 | III | 8 |
2015 | 1.08 | III | 7 |
2016 | 1.38 | VII | 15 |
2017 | 0.49 | IV | 1 |
2018 | 0.33 | IV | <1 |
2019 | 0.96 | VI | 5 |
2020 | 0.91 | VI | 4 |
2021 | 1.07 | VII | 7 |
SP-D | SWEmax | Rsm | Qmax | pH | |
---|---|---|---|---|---|
SP-D | 1 | 0.55 | 0.46 | 0.57 | −0.19 |
SWEmax | 0.55 | 1 | 0.40 | 0.56 | −0.26 |
Rsm | 0.46 | 0.40 | 1 | 0.31 | 0.17 |
Qmax | 0.57 | 0.56 | 0.31 | 1 | −0.21 |
pH | −0.19 | −0.26 | 0.17 | −0.21 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Křeček, J.; Šedivá, L.; Palán, L.; Stuchlík, E. Environmental Role of Snowmelt in Headwaters Affected by Atmospheric Acid Deposition. Water 2023, 15, 2458. https://doi.org/10.3390/w15132458
Křeček J, Šedivá L, Palán L, Stuchlík E. Environmental Role of Snowmelt in Headwaters Affected by Atmospheric Acid Deposition. Water. 2023; 15(13):2458. https://doi.org/10.3390/w15132458
Chicago/Turabian StyleKřeček, Josef, Lada Šedivá, Ladislav Palán, and Evžen Stuchlík. 2023. "Environmental Role of Snowmelt in Headwaters Affected by Atmospheric Acid Deposition" Water 15, no. 13: 2458. https://doi.org/10.3390/w15132458
APA StyleKřeček, J., Šedivá, L., Palán, L., & Stuchlík, E. (2023). Environmental Role of Snowmelt in Headwaters Affected by Atmospheric Acid Deposition. Water, 15(13), 2458. https://doi.org/10.3390/w15132458