Changes in Runoff in the Source Region of the Yellow River Basin Based on CMIP6 Data under the Goal of Carbon Neutrality
Abstract
:1. Introduction
2. Materials and Methodologies
2.1. Study Region
2.2. Dataset
2.3. Hydrological Model
2.4. Reproducibility Assessment of Climate Dataset
2.5. Runoff Projection
3. Results
3.1. Calibration and Validation of the SWAT Model
3.2. Reproducibility Assessment of Climate Dataset
3.3. Changes in Climatic Variables
3.4. Variation of Annual Runoff
3.5. Variation in Monthly Runoff
3.6. Variation in Extreme Runoff
4. Discussion
4.1. Hydrological Responses to Climate Change
4.2. Uncertainties of Projections
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yang, C.H.; Wang, Y.J.; Su, B.D.; Pu, Y.; Wang, Y.; Jiang, T. Runoff variation trend of Ganjiang River basin under the goal of “Double Carbon” in China. Clim. Chang. Res. 2022, 18, 177–218. (In Chinese) [Google Scholar]
- Chen, Y. A re–analysis of the concept of carbon neutrality. China Popul. Resour. Environ. 2022, 32, 1–12. [Google Scholar]
- Jing, T.; Guo, S.; Deng, L.; Yin, J.; Pan, Z.; He, S.; Li, Q. Adaptive optimal allocation of water resources response to future water availability and water demand in the Han River basin, China. Sci. Rep. 2021, 11, 7879. [Google Scholar]
- Liu, Y.H.; Li, H.M.; Li, L.; Wang, Q.C.; Xu, X.H. Comparative analysis of three models to the study on risk precipitation threshold value in Datong river basin. Hubei Agric. Sci. 2021, 60, 27–31. (In Chinese) [Google Scholar]
- Jiang, T.; Lü, Y.R.; Huang, J.L.; Wang, Y.J.; Su, B.D.; Tao, H. New scenarios of CMIP6 model (SSP–RCP) and its application in the Huaihe River Basin. Adv. Meteorol. Sci. Technol. 2020, 10, 102–109. (In Chinese) [Google Scholar]
- Liu, L.; Xiao, C.; Liu, Y. Projected Water Scarcity and Hydrological Extremes in the Yellow River Basin in the 21st Century under SSP–RCP Scenarios. Water 2023, 15, 446. [Google Scholar] [CrossRef]
- Li, L.; Shen, H.Y.; Dai, S.; Xiao, J.S.; Shi, X.H. Response to Climate Change and Prediction of Runoff in the Source Region of Yellow River. Acta Geogr. Sin. 2011, 66, 1261–1269. (In Chinese) [Google Scholar]
- Zhang, X.; Liu, L. Study on the change characteristics of water resources in the Yellow River Basin from 1998 to 2018. Ground Water 2020, 42, 187–291. (In Chinese) [Google Scholar]
- Haichao, Y.; Zhang, Y.; Jingzhu, M.; Jiabing, G.; Peiyuan, C. Variation of observed and natural runoff of Yellow River from 1969 to 2018. Bull. Soil Water Conserv. 2020, 40, 1–7. [Google Scholar]
- Liu, X.; Liu, Y.; Zhao, J.; Zhao, Y.; Li, J. Analysis of the variable characteristics of water resources in the Main Stream of Yellow river since 1998. Yellow River 2019, 41, 70–75. (In Chinese) [Google Scholar]
- Wang, H.; Li, D. Research progress on variations and effector of the runoff in the source region of the Yellow River. Plateau Mt. Meteorol. Res. 2013, 33, 93–97. (In Chinese) [Google Scholar]
- Hou, B.; Jiang, C.; Sun, O.J. Differential changes in precipitation and runoff discharge during 1958–2017 in the headwater region of Yellow River of China. J. Geogr. Sci. 2020, 30, 1401–1418. [Google Scholar] [CrossRef]
- Zhang, L.X.; Chen, X.L.; Xin, X.G. Short commentary on CMIP6 Scenario Model Intercomparison Project (Scenario MIP). Clim. Chang. Res. 2019, 15, 519–525. (In Chinese) [Google Scholar]
- Hu, J.; Wu, Y.; Sun, P.; Zhao, F.; Jin, Z. Predicting long–term hydrological change caused by climate shifting in the 21st century in the headwater area of the Yellow River Basin. Stoch. Environ. Res. Risk Assess. 2022, 36, 1651–1668. [Google Scholar] [CrossRef]
- Xin, X.; Wu, T.; Zhang, J.; Yao, J.; Fang, Y. Comparison of CMIP6 and CMIP5 simulations of precipitation in China and the East Asian summer monsoon. Int. J. Climatol. 2020, 40, 6423–6440. [Google Scholar] [CrossRef] [Green Version]
- Hu, Y.Y.; Xu, Y.; Li, J.J.; Han, Z.Y. Evaluation on the performance of CMIP6 global climate models with different horizontal resolution in simulating the precipitation over China. Clim. Chang. Res. 2021, 17, 1–19. (In Chinese) [Google Scholar]
- Sun, Z.; Liu, Y.; Zhang, J.; Chen, H.; Shu, Z.; Chen, X.; Jin, J.; Guan, T.; Liu, G.; He, R.; et al. Projecting future precipitation in the Yellow River basin based on CMIP6 models. J. Appl. Meteorol. Climatol. 2022, 61, 1399–1417. [Google Scholar] [CrossRef]
- Jia, H.J.; Li, X.H.; Wen, J.; Chen, Y.L. Runoff change simulation and future trend projection in the source area of the Yellow River. Resour. Sci. 2022, 44, 1292–1304. [Google Scholar] [CrossRef]
- Xu, Y.; Gao, X.J.; Shen, Y.; Xu, C.H.; Shi, Y.; Giorgi, F. A daily temperature dataset over China and its application in validating a RCM simulation. Adv. Atmos. Sci. 2009, 26, 763–772. [Google Scholar] [CrossRef]
- Wu, J.; Gao, X. A grid daily observation data set over China region and comparison with the other datasets. Chin. J. Geophys. 2013, 56, 1102–1111. (In Chinese) [Google Scholar]
- Wei, L.; Liu, L.; Jiang, C.; Wu, Y.; Xin, X.; Yang, B.; Tang, H.; Li, Y.; Wang, Y.; Zhang, T.; et al. Simulation and Projection of Climate Extremes in China by a Set of Statistical Downscaled Data. Int. Environ. Res. Public Health 2022, 19, 6398. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Wei, L.; Xu, Y.; Xin, X.; Xiao, C. Projection of climate change impacts on ecological flow in the Yellow River basin. Adv. Water Sci. 2021, 32, 824–833. (In Chinese) [Google Scholar]
- Bai, S.; Wang, L.; Shi, J.; Li, W. Runoff simulation for Kaidu river basin based on SWAT model. J. Arid. Land Resour. Environ. 2013, 27, 79–84. (In Chinese) [Google Scholar] [CrossRef]
- Si, J.; Li, J.; Yang, Y.; Qi, X.; Li, J.; Liu, Z.; Li, M.; Lu, S.; Qi, Y.; Jin, C. Evaluation and Prediction of Groundwater Quality in the Source Region of the Yellow River. Water 2022, 14, 3946. [Google Scholar] [CrossRef]
- Ji, G.; Lai, Z.; Xia, H.; Liu, H.; Wang, Z. Future runoff variation and flood disaster prediction of the Yellow River Basin based on CA–Markov and SWAT. Land 2021, 10, 421. [Google Scholar] [CrossRef]
- Arnold, J.G.; Srinivasan, R.; Muttiah, R.S. Large area hydrologic modeling and assessment part Ι: Model development. J. Am. Water Resour. Assoc. 1998, 34, 73–89. [Google Scholar] [CrossRef]
- Wu, J.; Zheng, H.; Xi, Y. Swat–based runoff simulation and runoff responses to climate change in the Headwaters of the Yellow River, China. Atmosphere 2019, 10, 509. [Google Scholar] [CrossRef] [Green Version]
- Moriasi, D.N.; Gitau, M.W.; Pai, N.; Daggupati, P. Hydrologic and water quality models: Performance measure and evaluation criteria. Trans. Am. Soc. Agric. Biol. Eng. 2015, 58, 1763–1785. [Google Scholar]
- Beven, K.L. Rainfall–Runoff Modeling: The Primer; John Wiley & Sons: New York, NY, USA, 2000. [Google Scholar]
- Wang, S.; Hongmei, X.; Lyuliu, L.; Yong, W.; Awei, S. Projection of the impacts of Global warming of 1.5℃and 2℃on runoff in the upper–Middle reaches of Huaihe river basin, Journal of natural resources. J. Nat. Resour. 2018, 33, 1966–1978. (In Chinese) [Google Scholar]
- Pandi, D.; Kothandaraman, S.; Kuppusamy, M. Simulation of water balance components using SWAT model at sub catchment level. Sustainability 2023, 15, 1438. [Google Scholar] [CrossRef]
- Qin, P.; Liu, M.; Du, L.; Xu, H.; Liu, K.; Xiao, C. Climate change impacts on runoff in the upper Yangtze River basin. Clim. Chang. Res. 2019, 15, 405–415. (In Chinese) [Google Scholar]
- Wang, Y.; Xu, H.M.; Li, Y.H.; Liu, L.L.; Hu, Z.H.; Xiao, C.; Yang, T.T. Climate change impacts on runoff in the Fujiang River Basin based on CMIP6 and SWAT Model. Water 2022, 14, 3614. [Google Scholar] [CrossRef]
- Wei, J.; Chang, J.; Chen, L. Runoff change in upper reach of Yellow River under future climate change based on VIC model. J. Hydroelectr. Eng. 2016, 35, 65–74. (In Chinese) [Google Scholar]
- Hamlet, A.F.; Byun, K.; Robeson, S.M.; Widhalm, M.; Baldwin, M. Impacts of climate change on the state of Indiana: Ensemble future projections based on statistical downscaling. Clim. Chang. 2020, 163, 1881–1895. [Google Scholar] [CrossRef] [Green Version]
- Ding, Y.; Zhang, S.; Wu, J.; Zhao, Q.; Li, X.; Qin, J. Recent progress on studies on cryospheric hydrological processes changes in China. Adv. Water Sci. 2020, 31, 690–702. [Google Scholar]
- Zhang, F.; Liu, J.; Gong, T. Winter runoff in a typical Alpine permafrost region, Tibet–Himalayas. Adv. Earth Sci. 2006, 21, 1334–1338. [Google Scholar]
- Zhang, T.; Li, D.; Lu, X. Response of runoff components to climate change in the source region of the Yellow River on the Tibetan plateau. Hydrol. Process. 2022, 36, e14633. [Google Scholar] [CrossRef]
- Qin, Y.; Yang, D.; Gao, B.; Wang, T.; Chen, J.; Chen, Y.; Zheng, G. Impacts of climate warming on the frozen ground and eco-hydrology in the Yellow River source region. China Sci. Total Environ. 2017, 605–606, 830–841. [Google Scholar] [CrossRef] [Green Version]
- Shao, Y.; Dong, Z.; Meng, J.; Wu, S.; Li, Y.; Zhu, S.; Zhang, Q.; Zheng, Z. Analysis of Runoff Variation and Future Trends in a Changing Environment: Case Study for Shiyanghe River Basin, Northwest China. Sustainability 2023, 15, 2173. [Google Scholar] [CrossRef]
- Zhang, L.; Zheng, W.; Yang, X.; Wang, Y.; Zhang, M.; Yu, X. Temporal–spatial characteristics of drought in source region of Yellow River based on CMIP5 multi–mode ensemble and PDSI. Water Resour. Prot. 2019, 35, 95–99. (In Chinese) [Google Scholar]
- Liu, L.; Fischer, T.; Jiang, T.; Luo, Y. Comparison of uncertainties in projected flood frequency of the Zhujiang River, South China. Quat. Int. 2013, 304, 51–61. [Google Scholar] [CrossRef]
- Kundzewicz, Z.W.; Krysanova, V.; Dankers, R.; Hirabayashi, Y.; Kanae, S.; Hattermann FF Huang, S.; Milly PC, D.; Stoffel, M.; Driessen, P.P.J.; Matczak, P.; et al. Differences in flood hazard projections in Europe–their causes and consequences for decision making. Hydrol. Sci. J. 2020, 62, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Huang, S.; Shah, H.; Zaz, B.S.; Shrestha Narayan Mishra, V.; Daggupati, P.; Ghimire, U.; Vetter, T. Impacts of hydrological model calibration on projected hydrological changes under climate change–a multi–model assessment in three large river basins. Clim. Chang. 2020, 163, 143–1164. [Google Scholar] [CrossRef]
- Hattermann, F.F.; Vetter, T.; Breuer, L.; Su BDaggupati, P.; Donnelly, C.; Fekete, B.; Flörke, F.; Gosling, S.N.; Hoffmann, P.; Liersch, S.; et al. Sources of uncertainty in hydrological climate impact assessment: A cross–scale study. Environ. Res. Lett. 2018, 13, 015006. [Google Scholar] [CrossRef]
- Huang, S.; Kumar, R.; Flörke, M.; Yang, T.; Hundecha, Y.; Kraft, P.; Gao, C.; Gelfan, A.; Liersch, S.; Lobanova, A.; et al. Evaluation of an ensemble of regional hydrological models in 12 large–scale river basins worldwide. Clim. Chang. 2017, 141, 381–397. [Google Scholar] [CrossRef]
- Liu, C.; Li, D.; Tian, Y.; Hao, F.; Yang, G. An application study of DEM based distributed hydrological model on macroscale watershed. Prog. Geogr. 2003, 22, 437–445. (In Chinese) [Google Scholar]
- Chen, L.; Liu, C. Influence of climate and land–cover change on runoff of the source regions of the Yellow River. China Environ. Sci. 2007, 27, 559–565. (In Chinese) [Google Scholar]
ID | Name | Affiliated Country and Research Unit | Atmos. Lat/Lon Grid (°) |
---|---|---|---|
1 | ACCESS–ESM–1–5 (ACESS) | Commonwealth Scientific and Industrial Research Organisation (Australia) | 1.2° × 1.8° |
2 | BCC–CSM2–MR (BCC) | Beijing Climate Center, China Meteorological Administration (China) | 1.1° × 1.1° |
3 | CCCma–CanESM5 (CCCma) | Canadian Centre for Climate Modelling and Analysis (Canada) | 2.8° × 2.8° |
4 | CNRM–ESM2–1 (CNRM) | Centre National de Recherches Météorologiques, Centre Européen de Recherche et de Formation Avancée en Calcul Scientifique (France) | 1.4° × 1.4° |
5 | HadGEM3–GC31–LL (HadGEM) | Met Office Hadley Centre (United Kingdom) | 1.3° × 1.9° |
6 | IPSL–CM6A–LR (IPSL) | Institut Pierre Simon Laplace (France) | 1.3° × 2.5° |
7 | MIROC6 (MIROC) | Japan Agency for Marine–Earth Science and Technology, Atmosphere and Ocean Research Institute (The University of Tokyo), National Institute for Environmental Studies, and RIKEN Center for Computational Science (Japan) | 1.4° × 1.4° |
8 | MPI–ESM1–2–HR (MPI–ESM) | Max Planck Institute for Meteorology (Germany) | 0.9° × 0.9° |
Station | Period | R2 | Ens | PBIAS (%) |
---|---|---|---|---|
Tangnaihai | Calibration (1961–1989) | 0.86 | 0.76 | 6.2 |
Verification (1990–2015) | 0.86 | 0.76 | 6.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Liu, L.; Li, L.; Li, H.; Xu, H.; Yang, J.; Tao, S.; Zhu, B. Changes in Runoff in the Source Region of the Yellow River Basin Based on CMIP6 Data under the Goal of Carbon Neutrality. Water 2023, 15, 2457. https://doi.org/10.3390/w15132457
Liu Y, Liu L, Li L, Li H, Xu H, Yang J, Tao S, Zhu B. Changes in Runoff in the Source Region of the Yellow River Basin Based on CMIP6 Data under the Goal of Carbon Neutrality. Water. 2023; 15(13):2457. https://doi.org/10.3390/w15132457
Chicago/Turabian StyleLiu, Yihua, Lyuliu Liu, Lin Li, Hongmei Li, Hongmei Xu, Jing Yang, Shiyin Tao, and Baowen Zhu. 2023. "Changes in Runoff in the Source Region of the Yellow River Basin Based on CMIP6 Data under the Goal of Carbon Neutrality" Water 15, no. 13: 2457. https://doi.org/10.3390/w15132457
APA StyleLiu, Y., Liu, L., Li, L., Li, H., Xu, H., Yang, J., Tao, S., & Zhu, B. (2023). Changes in Runoff in the Source Region of the Yellow River Basin Based on CMIP6 Data under the Goal of Carbon Neutrality. Water, 15(13), 2457. https://doi.org/10.3390/w15132457