Exploring the Viability of Utilizing Treated Wastewater as a Sustainable Water Resource for Green Hydrogen Generation Using Solid Oxide Electrolysis Cells (SOECs)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Treated Wastewater Stream Description
2.2. Balance of the Plant for H2 Production through Electrolysis
2.3. SOEC
2.3.1. System Description
2.3.2. Modeling Approach
3. Results and Discussions
SOEC Simulation
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- European Commission. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of The Regions—A European Strategy for Data; European Commission: Brussels, Belgium, 2020. [Google Scholar]
- Nagpal, D.; Abou Ali, A.; Feng, J.; Bianco, E.; Akande, D.; Escamilla, G.; Reiner, M.; Guinto, H.; Meattle, C.; Naran, B. Global Landscape of Renewable Energy Finance 2023. 2023. Available online: www.irena.org/publications (accessed on 2 May 2023).
- Korberg, A.D.; Skov, I.R.; Mathiesen, B.V. The role of biogas and biogas-derived fuels in a 100% renewable energy system in Denmark. Energy 2020, 199, 117426. [Google Scholar] [CrossRef]
- Mancò, G.; Guelpa, E.; Colangelo, A.; Virtuani, A.; Morbiato, T.; Verda, V. Innovative Renewable Technology Integration for Nearly Zero-Energy Buildings within the Re-cognition Project. Sustainability 2021, 13, 1938. [Google Scholar] [CrossRef]
- Mohammadi, F.; Saif, M. A comprehensive overview of electric vehicle batteries market. E-Prime-Adv. Electr. Eng. Electron. Energy 2023, 3, 100127. [Google Scholar] [CrossRef]
- Santos, G.; Smith, O. Electric vehicles and the energy generation mix in the UK: 2020–2050. Energy Rep. 2023, 9, 5612–5627. [Google Scholar] [CrossRef]
- Pearre, N.S.; Kempton, W.; Guensler, R.L.; Elango, V.V. Electric vehicles: How much range is required for a day’s driving? Transp. Res. Part C Emerg. Technol. 2011, 19, 1171–1184. [Google Scholar] [CrossRef]
- Wassiliadis, N.; Steinsträter, M.; Schreiber, M.; Rosner, P.; Nicoletti, L.; Schmid, F.; Ank, M.; Teichert, O.; Wildfeuer, L.; Schneider, J.; et al. Quantifying the state of the art of electric powertrains in battery electric vehicles: Range, efficiency, and lifetime from component to system level of the Volkswagen ID.3. Etransportation 2022, 12, 100167. [Google Scholar] [CrossRef]
- Brynolf, S.; Hansson, J.; E Anderson, J.; Skov, I.R.; Wallington, T.J.; Grahn, M.; Korberg, A.D.; Malmgren, E.; Taljegård, M. Review of electrofuel feasibility—prospects for road, ocean, and air transport. Prog. Energy 2022, 4, 042007. [Google Scholar] [CrossRef]
- Song, Z.; Liu, C. Energy efficient design and implementation of electric machines in air transport propulsion system. Appl. Energy 2022, 322, 119472. [Google Scholar] [CrossRef]
- Pandit, K.; Jeffrey, C.; Keogh, J.; Tiwari, M.S.; Artioli, N.; Manyar, H.G. Techno-Economic Assessment and Sensitivity Analysis of Glycerol Valorization to Biofuel Additives via Esterification. Ind. Eng. Chem. Res. 2023, 62, 9201–9210. [Google Scholar] [CrossRef]
- Salisu, J.; Gao, N.; Quan, C.; Yanik, J.; Artioli, N. Co-gasification of rice husk and plastic in the presence of CaO using a novel ANN model-incorporated Aspen plus simulation. J. Energy Inst. 2023, 108, 101239. [Google Scholar] [CrossRef]
- Byrne, E.L.; O’donnell, R.; Gilmore, M.; Artioli, N.; Holbrey, J.D.; Swadźba-Kwaśny, M. Hydrophobic functional liquids based on trioctylphosphine oxide (TOPO) and carboxylic acids. Phys. Chem. Chem. Phys. 2020, 22, 24744–24763. [Google Scholar] [CrossRef] [PubMed]
- O’donnell, R.; Ralphs, K.; Grolleau, M.; Manyar, H.; Artioli, N. Doping Manganese Oxides with Ceria and Ceria Zirconia Using a One-Pot Sol–Gel Method for Low Temperature Diesel Oxidation Catalysts. Top. Catal. 2020, 63, 351–362. [Google Scholar] [CrossRef] [Green Version]
- Coney, C.; Hardacre, C.; Morgan, K.; Artioli, N.; York, A.P.; Millington, P.; Kolpin, A.; Goguet, A. Investigation of the oxygen storage capacity behaviour of three way catalysts using spatio-temporal analysis. Appl. Catal. B Environ. 2019, 258, 117918. [Google Scholar] [CrossRef]
- Castoldi, L.; Matarrese, R.; Kubiak, L.; Daturi, M.; Artioli, N.; Pompa, S.; Lietti, L. In-depth insights into N2O formation over Rh- and Pt-based LNT catalysts. Catal. Today 2019, 320, 141–151. [Google Scholar] [CrossRef]
- Leonzio, G.; Zondervan, E.; Foscolo, P.U. Methanol production by CO2 hydrogenation: Analysis and simulation of reactor performance. Int. J. Hydrog. Energy 2019, 44, 7915–7933. [Google Scholar] [CrossRef]
- Kirsten, K.; Hadler, J.; Schmidt, P.; Weindorf, W. Alternative Fuels in the Well-to-Wheel Debate. ATZextra Worldw. 2016, 21, 38–43. [Google Scholar] [CrossRef]
- Ullah, A.; Hashim, N.A.; Rabuni, M.F.; Junaidi, M.U.M. A Review on Methanol as a Clean Energy Carrier: Roles of Zeolite in Improving Production Efficiency. Energies 2023, 16, 1482. [Google Scholar] [CrossRef]
- Ulucan, T.H.; A Akhade, S.; Ambalakatte, A.; Autrey, T.; Cairns, A.; Chen, P.; Cho, Y.W.; Gallucci, F.; Gao, W.; Grinderslev, J.B.; et al. Hydrogen storage in liquid hydrogen carriers: Recent activities and new trends. Prog. Energy 2023, 5, 12004. [Google Scholar] [CrossRef]
- Xie, S.; Li, Z.; Li, H.; Fang, Y. Integration of carbon capture with heterogeneous catalysis toward methanol production: Chemistry, challenges, and opportunities. Catal. Rev. 2023, 5, 1–40. [Google Scholar] [CrossRef]
- Chen, C.; Yang, A. Power-to-methanol: The role of process flexibility in the integration of variable renewable energy into chemical production. Energy Convers. Manag. 2021, 228, 113673. [Google Scholar] [CrossRef]
- Bos, M.J.; Kersten, S.R.A.; Brilman, D.W.F. Wind power to methanol: Renewable methanol production using electricity, electrolysis of water and CO2 air capture. Appl. Energy 2020, 264, 114672. [Google Scholar] [CrossRef]
- Shi, X.; Liao, X.; Li, Y. Quantification of fresh water consumption and scarcity footprints of hydrogen from water electrolysis: A methodology framework. Renew. Energy 2020, 154, 786–796. [Google Scholar] [CrossRef]
- Vermeiren, P.; Adriansens, W.; Moreels, J.; Leysen, R. Evaluation of the Zirfon® separator for use in alkaline water electrolysis and Ni-H2 batteries. Int. J. Hydrog. Energy 1998, 23, 321–324. [Google Scholar] [CrossRef]
- Palmas, S.; Rodriguez, J.; Mais, L.; Mascia, M.; Herrando, M.C.; Vacca, A. Anion exchange membrane: A valuable perspective in emerging technologies of low temperature water electrolysis. Curr. Opin. Electrochem. 2023, 37, 101178. [Google Scholar] [CrossRef]
- Kumar, S.S.; Himabindu, V. Hydrogen production by PEM water electrolysis—A review. Mater. Sci. Energy Technol. 2019, 2, 442–454. [Google Scholar] [CrossRef]
- Rotraut, M. High-Temperature Electrolysis; IOP Publishing: Bristol, UK, 2023. [Google Scholar] [CrossRef]
- Hauch, A.; Küngas, R.; Blennow, P.; Hansen, A.B.; Mathiesen, B.V.; Mogensen, M.B. Recent advances in solid oxide cell technology for electrolysis. Science 2020, 370, 6513. [Google Scholar] [CrossRef] [PubMed]
- Gómez, S.Y.; Hotza, D. Current developments in reversible solid oxide fuel cells. Renew. Sustain. Energy Rev. 2016, 61, 155–174. [Google Scholar] [CrossRef]
- Zhang, L.; Hu, S.; Zhu, X.; Yang, W. Electrochemical reduction of CO2 in solid oxide electrolysis cells. J. Energy Chem. 2017, 26, 593–601. [Google Scholar] [CrossRef] [Green Version]
- Laguna-Bercero, M.A. Recent advances in high temperature electrolysis using solid oxide fuel cells: A review. J. Power Sources 2012, 203, 4–16. [Google Scholar] [CrossRef] [Green Version]
- Peng, J.; Huang, J.; Wu, X.-L.; Xu, Y.-W.; Chen, H.; Li, X. Solid oxide fuel cell (SOFC) performance evaluation, fault diagnosis and health control: A review. J. Power Sources 2021, 505, 230058. [Google Scholar] [CrossRef]
- IPCC. Global Warming of 1.5 °C; Cambridge University Press: Cambridge, UK, 2022. [Google Scholar] [CrossRef]
- Simoes, S.G.; Catarino, J.; Picado, A.; Lopes, T.F.; di Berardino, S.; Amorim, F.; Gírio, F.; Rangel, C.; de Leão, T.P. Water availability and water usage solutions for electrolysis in hydrogen production. J. Clean. Prod. 2021, 315, 128124. [Google Scholar] [CrossRef]
- Xu, W.; Scott, K. The effects of ionomer content on PEM water electrolyser membrane electrode assembly performance. Int. J. Hydrog. Energy 2010, 35, 12029–12037. [Google Scholar] [CrossRef]
- Lim, C.K.; Liu, Q.; Zhou, J.; Sun, Q.; Chan, S.H. High-temperature electrolysis of synthetic seawater using solid oxide electrolyzer cells. J. Power Sources 2017, 342, 79–87. [Google Scholar] [CrossRef]
- Liu, Z.; Han, B.; Lu, Z.; Guan, W.; Li, Y.; Song, C.; Chen, L.; Singhal, S.C. Efficiency and stability of hydrogen production from seawater using solid oxide electrolysis cells. Appl. Energy 2021, 300, 117439. [Google Scholar] [CrossRef]
- Meier, K. Hydrogen production with sea water electrolysis using Norwegian offshore wind energy potentials: Techno-economic assessment for an offshore-based hydrogen production approach with state-of-the-art technology. Int. J. Energy Environ. Eng. 2014, 5, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.A.; Al-Attas, T.; Roy, S.; Rahman, M.M.; Ghaffour, N.; Thangadurai, V.; Larter, S.; Hu, J.; Ajayan, P.M.; Kibria, G. Seawater electrolysis for hydrogen production: A solution looking for a problem? Energy Environ. Sci. 2021, 14, 4831–4839. [Google Scholar] [CrossRef]
- Quan, C.; Zhang, G.; Gao, N.; Su, S.; Artioli, N.; Feng, D. Behavior Study of Migration and Transformation of Heavy Metals during Oily Sludge Pyrolysis. Energy Fuels 2022, 36, 8311–8322. [Google Scholar] [CrossRef]
- Sikosana, M.L.; Sikhwivhilu, K.; Moutloali, R.; Madyira, D.M. Municipal wastewater treatment technologies: A review. Procedia Manuf. 2019, 35, 1018–1024. [Google Scholar] [CrossRef]
- Chan, Y.J.; Chong, M.F.; Law, C.L.; Hassell, D. A review on anaerobic–aerobic treatment of industrial and municipal wastewater. Chem. Eng. J. 2009, 155, 1–18. [Google Scholar] [CrossRef]
- Al-Malah, K.I. Aspen Plus—Chemical Engineering Applications; Aspen Plus®, John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2016; pp. i–xxxi. [Google Scholar] [CrossRef]
- Ni, M.; Leung, M.K.H.; Leung, D.Y.C. An Electrochemical Model of a Solid Oxide Steam Electrolyzer for Hydrogen Production. Chem. Eng. Technol. 2006, 29, 636–642. [Google Scholar] [CrossRef]
- Ni, M.; Leung, M.K.; Leung, D.Y. Parametric study of solid oxide fuel cell performance. Energy Convers. Manag. 2007, 48, 1525–1535. [Google Scholar] [CrossRef]
- Ni, M.; Leung, M.K.; Leung, D.Y. Parametric study of solid oxide steam electrolyzer for hydrogen production. Int. J. Hydrog. Energy 2007, 32, 2305–2313. [Google Scholar] [CrossRef]
- Noren, D.; Hoffman, M. Clarifying the Butler–Volmer equation and related approximations for calculating activation losses in solid oxide fuel cell models. J. Power Sources 2005, 152, 175–181. [Google Scholar] [CrossRef]
- EG&G Technical Services Inc. Fuel Cell Handbook, 7th ed.; U.S. Department of Energy Office of Fossil Energy: Morgantown, West Virginia, 2004. [Google Scholar]
- Lonis, F.; Tola, V.; Cau, G. Renewable methanol production and use through reversible solid oxide cells and recycled CO2 hydrogenation. Fuel 2019, 246, 500–515. [Google Scholar] [CrossRef]
- Gazzetta Ufficiale Della Repubblica Italiana, Government of Italy Legislative Decree 3 April 2006, n. 152. Environmental Regulations. Available online: https://www.gazzettaufficiale.it/dettaglio/codici/materiaAmbientale (accessed on 2 May 2023). (In Italian).
- Regione Lombardia, Lombardy Regional Regulation 29 March 2019, n. 6. Regulation and Administrative Regimes for Domestic Wastewater and Urban Wastewater Discharges, Regulation of Discharge Controls and Methods for Approving Projects for Urban Wastewater Treatment Plants, in, 2019. Available online: https://normelombardia.consiglio.regione.lombardia.it/NormeLombardia/Accessibile/main.aspx?view=showdoc&iddoc=rr002019032900006&exp_coll=rr002019032900006&selnode=rr002019032900006 (accessed on 5 July 2023). (In Italian).
- Momma, A.; Kato, T.; Kaga, Y.; Nagata, S. Polarization Behavior of High Temperature Solid Oxide Electrolysis Cells (SOEC). J. Ceram. Soc. Jpn. 1997, 105, 369–373. [Google Scholar] [CrossRef] [Green Version]
- Petipas, F.; Brisse, A.; Bouallou, C. Thermal management of solid oxide electrolysis cell systems through air flow regulation. Chem. Eng. Trans. 2017, 61, 1069–1074. [Google Scholar] [CrossRef]
- Di, D.F.; Setti, L. Study on Green Hydrogen Economic Sustainability for an Italian Hydrogen Backbone. 2022, pp. 1–40. Available online: https://www.qualenergia.it/wp-content/uploads/2022/07/Studio-idrogeno-ReCommon.pdf (accessed on 5 July 2023). (In Italian).
- Arnal, J.; Tecnalia, M.I. H2aeolus-Environmental Performance Analysis, 7 March 2023. Available online: https://www.haeolus.eu/?p=1177 (accessed on 5 July 2023).
- Politecnico di Milano, Renewable Energy Report 2023-Italian. 2023. Available online: https://www.energystrategy.it/es-download/ (accessed on 5 July 2023). (In Italian).
- Ministero Dello Sviluppo Economico, Strategia Nazionale Idrogeno–Linee Guida Preliminari, (2020) 21. Available online: https://www.mise.gov.it/images/stories/documenti/Strategia_Nazionale_Idrogeno_Linee_guida_preliminari_nov20.pdf (accessed on 5 July 2023).
- European Commission. Recomendations on Energy Storage. 2023. Available online: https://energy.ec.europa.eu/topics/research-and-technology/energy-storage/recommendations-energy-storage_en (accessed on 5 July 2023).
WWTP A | WWTP B | WWTP C | WWTP D | |
---|---|---|---|---|
Capacity [P.E.] | 620,600 | 160,000 | 120,500 | 52,000 |
Average flow rate [m3/d] | 155,300 | 50,400 | 27,500 | 23,300 |
Industrial load [%] | 15 | 19 | 11 | 25 |
WWTP scheme | Activated sludge with pre- and post- denitrification; tertiary filtration | Membrane bioreactor (MBR) with pre-denitrification | Activated sludge with alternating oxic/anoxic cycles; tertiary filtration | Activated sludge; tertiary filtration |
Composition | STREAM A (n = 54) | STREAM B (n = 75) | STREAM C (n = 54) | STREAM D (n = 61) | |||||
---|---|---|---|---|---|---|---|---|---|
Average | 95th Percentile | Average | 95th Percentile | Average | 95th Percentile | Average | 95th Percentile | ||
pH | [-] | 7.6 | 7.7 | 7.7 | 8.0 | 7.6 | 7.8 | 7.6 | 7.9 |
E.C. | [μS/cm] | 780 | 889 | 637 | 788.8 | 606 | 741 | 672.1 | 874.2 |
COD | [mg/L] | 19 | 22 | 15.2 | 15 | 15.3 | 16.8 | 15.5 | 18 |
BOD5 | [mg/L] | 5.4 | 7 | 5.4 | 9.3 | 5.7 | 9.0 | 5.5 | 8.0 |
TSS | [mg/L] | 6.6 | 5.0 | 6.4 | 9.3 | 5.7 | 8.8 | 5.7 | 11 |
TN | [mg/L] | 7.3 | 9.6 | 6.4 | 10.3 | 3.9 | 6.8 | 9.0 | 19 |
TP | [mg/L] | 0.7 | 1.0 | 0.9 | 1.5 | 0.7 | 1.0 | 0.5 | 0.8 |
Al | [mg/L] | 0.20 | 0.25 | 0.11 | 0.20 | 0.1 | 0.1 | 0.1 | 0.1 |
As | [mg/L] | 0.03 | 0.03 | 0.014 | 0.030 | 0.02 | 0.03 | 0.018 | 0.030 |
Ba | [mg/L] | n.a. | n.a. | 0.1 | 0.1 | n.a. | n.a. | 0.1 | 0.1 |
Bo | [mg/L] | n.a. | n.a. | 0.11 | 0.17 | n.a. | n.a. | 0.22 | 0.63 |
Cd | [mg/L] | 0.01 | 0.01 | 0.003 | 0.010 | 0.005 | 0.01 | 0.005 | 0.01 |
Cr TOT | [mg/L] | 0.1 | 0.1 | 0.033 | 0.1 | 0.05 | 0.1 | 0.045 | 0.100 |
Cr(VI) | [mg/L] | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. |
Fe | [mg/L] | 0.12 | 0.25 | 0.2 | 0.4 | 0.1 | 0.1 | 0.098 | 0.100 |
Mn | [mg/L] | 0.17 | 0.20 | 0.20 | 0.10 | 0.06 | 0.10 | 0.063 | 0.100 |
Hg | [mg/L] | n.a. | n.a. | 0.0005 | 0.0005 | n.a. | n.a. | 0.005 | 0.005 |
Ni | [mg/L] | 0.1 | 0.1 | 0.036 | 0.10 | 0.05 | 0.1 | 0.046 | 0.100 |
Pb | [mg/L] | 0.1 | 0.1 | 0.051 | 0.100 | 0.07 | 0.1 | 0.058 | 0.100 |
Cu | [mg/L] | 0.013 | 0.025 | 0.011 | 0.020 | 0.013 | 0.026 | 0.010 | 0.010 |
Zn | [mg/L] | 0.08 | 0.24 | 0.11 | 0.28 | 0.09 | 0.11 | 0.08 | 0.13 |
Chloride (Cl−) | [mg/L] | 100.7 | 121.1 | 59.0 | 89.2 | 48.4 | 76.2 | 60.2 | 102.4 |
Sulphate (SO42−) | [mg/L] | 51 | 54 | 38.4 | 52.1 | 27 | 38 | 37.4 | 43.0 |
Sulphite (SO3−) | [mg/L] | n.a. | n.a. | 0.2 | 0.2 | n.a. | n.a. | 0.5 | 0.5 |
Sulphide (S2−) | [mg/L] | n.a. | n.a. | 0.1 | 0.1 | n.a. | n.a. | 0.1 | 0.1 |
Cyanide (CN−) | [mg/L] | n.a. | n.a. | 0.01 | 0.01 | n.a. | n.a. | 0.01 | 0.01 |
Fluoride (F−) | [mg/L] | n.a. | n.a. | 0.25 | 0.25 | n.a. | n.a. | 0.25 | 0.25 |
Phenols | [mg/L] | n.a. | n.a. | 0.1 | 0.1 | n.a. | n.a. | 0.1 | 0.1 |
Total HCs | [mg/L] | n.a. | n.a. | 0.05 | 0.05 | n.a. | n.a. | 0.5 | 0.5 |
Vegetable oils and fats | [mg/L] | n.a. | n.a. | 10 | 10 | n.a. | n.a. | 10 | 10 |
Anionic surfactants | [mg/L] | 0.22 | 0.28 | 0.22 | 0.30 | 0.2 | 0.2 | 0.25 | 0.44 |
Non-ionic surfactants | [mg/L] | 0.218 | 0.283 | 0.20 | 0.20 | 0.25 | 0.43 | 0.2 | 0.3 |
Total surfactants | [mg/L] | 0.27 | 0.45 | 0.25 | 0.46 | 0.28 | 0.48 | 0.35 | 0.74 |
E. coli | [CFU/100 mL] | n.a. | n.a. | 19.5 | 75.1 | 1 | 1 | 6.6 | 22.4 |
Salmonella | [CFU/100 mL] | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. |
Original Liquid Stream (mg/L) | Scenario 1 | Scenario 2 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
A | B | C | D | V (%) | Limits SW (mg/L) | V (%) | Limits PS (mg/L) | |||||||
ASW | Bsw | Csw | Dsw | APS | BPS | CPS | DPS | |||||||
COD | 22 | 15 | 16.8 | 18 | 63.3 | 75 | 72 | 70 | 60 | 95.8 | 97 | 96.6 | 96.4 | 500 |
BOD5 | 7 | 9.3 | 9 | 8 | 30 | 7 | 10 | 20 | 10 | 97.2 | 96.3 | 96.4 | 96.8 | 250 |
TSS | 5 | 9.3 | 8.8 | 11 | 66.7 | 38 | 41.3 | 26.7 | 15 | 97.5 | 95.4 | 95.6 | 94.5 | 200 |
TN | 7.3 | 6.4 | 3.9 | 9 | 27 | 36 | 61 | 10 | 10 | 86.5 | 88.1 | 92.8 | 83.3 | 53.9 |
TP | 0.7 | 0.9 | 0.7 | 0.5 | 30 | 10 | 30 | 50 | 1 | 93 | 91 | 93 | 95 | 10 |
Al | 0.245 | 0.2 | 0.1 | 0.1 | 75.5 | 80 | 90 | 90 | 1 | 87.8 | 90 | 95 | 95 | 2 |
As | 0.03 | 0.003 | 0.03 | 0.03 | 94 | 94 | 94 | 94 | 0.5 | 94 | 94 | 94 | 94 | 0.5 |
Ba | n.a. | 0.1 | n.a. | 0.1 | - | 99.5 | - | 99.5 | 20 | - | - | - | - | 1000 |
Bo | n.a. | 0.17 | n.a. | 0.63 | - | 91.5 | - | 68.5 | 2 | - | 95.8 | - | 84.3 | 4 |
Cd | 0.01 | 0.01 | 0.01 | 0.01 | 50 | 50 | 50 | 50 | 0.02 | 50 | 50 | 50 | 50 | 0.02 |
Fe | 0.25 | 0.4 | 0.1 | 0.1 | 87.5 | 80 | 95 | 95 | 2 | 93.8 | 90 | 97.5 | 97.5 | 4 |
Mn | 0.2 | 0.1 | 0.1 | 0.1 | 90 | 95 | 95 | 95 | 2 | 95 | 97.5 | 97.5 | 97.5 | 4 |
Ni | 0.1 | 0.1 | 0.1 | 0.1 | 95 | 95 | 95 | 95 | 2 | 97.5 | 97.5 | 97.5 | 97.5 | 4 |
Pb | 0.1 | 0.1 | 0.1 | 0.1 | 50 | 50 | 50 | 50 | 0.2 | 66.7 | 66.7 | 66.7 | 66.7 | 0.3 |
Cu | 0.025 | 0.02 | 0.025 | 0.01 | 75 | 80 | 75 | 90 | 0.1 | 93.8 | 95 | 93.8 | 97.5 | 0.4 |
Zn | 0.24 | 0.28 | 0.11 | 0.13 | 52 | 44 | 78 | 74 | 0.5 | 76 | 72 | 89 | 87 | 1 |
Hg | n.a. | 0.0005 | n.a. | 0.005 | - | 90 | - | 0 | 0.005 | - | 90 | - | 0 | 0.005 |
Node | STREAM A | STREAM C | ||||||
---|---|---|---|---|---|---|---|---|
Temperature [°C] | MFR | Phase | Quality | Temperature [°C] | MFR | Phase | Quality | |
Wastewater | ||||||||
1 | 25 | 1.000 | L | SC | 25 | 1.000 | L | SC |
2 | 25 | 1.000 | L | SC | 25 | 1.000 | L | SC |
3 | 25 | 0.800 | L | SC | 25 | 0.800 | L | SC |
3′ | 25 | 0.200 | L | SC | 25 | 0.200 | L | SC |
4 | 72 | 0.800 | L | SC | 72 | 0.800 | L | SC |
4′ | 100 | 0.200 | TP | 0.27 | 100 | 0.200 | TP | 0.10 |
5 | 100 | 0.800 | TP | 0.27 | 100 | 0.800 | TP | 0.10 |
6 L | 100 | 0.730 | L | 0 | 100 | 0.900 | L | 0 |
6 amb | 35 | 0.730 | L | SC | 35 | 0.900 | L | SC |
Water | ||||||||
6 V | 100 | 0.270 | G | 1 | 100 | 0.100 | G | 1 |
7 | 673 | 0.270 | G | SH | 673 | 0.100 | G | SH |
8 | 839 | 0.270 | G | SH | 839 | 0.100 | G | SH |
9 | 25 | 0.040 | L | SC | 25 | 0.013 | L | SC |
Water/Hydrogen | ||||||||
10 | 839 | 0.276 | G | SH | 839 | 0.103 | G | SH |
11 | 839 | 0.070 | G | SH | 839 | 0.026 | G | SH |
12 | 839 | 0.005 | G | SH | 839 | 0.003 | G | SH |
13 | 839 | 0.065 | G | SH | 839 | 0.023 | G | SH |
14 | 150 | 0.065 | G | SH | 150 | 0.023 | G | SH |
15 | 25 | 0.065 | M | SC/SH | 25 | 0.023 | M | SC/SH |
Hydrogen | ||||||||
16 | 25 | 0.026 | G | SH | 25 | 0.010 | G | SH |
Air | ||||||||
17 | 25 | 0.292 | G | SH | 25 | 0.109 | G | SH |
18 | 25 | 0.292 | G | SH | 25 | 0.109 | G | SH |
19 | 789 | 0.292 | G | SH | 789 | 0.109 | G | SH |
20 | 839 | 0.292 | G | SH | 839 | 0.109 | G | SH |
Air/Oxygen | ||||||||
21 | 839 | 0.503 | G | SH | 839 | 0.186 | G | SH |
22 | 400 | 0.503 | G | SH | 400 | 0.186 | G | SH |
23 | 79 | 0.503 | G | SH | 79 | 0.186 | G | SH |
24 | 25 | 0.503 | G | SH | 25 | 0.186 | G | SH |
Unit | Value | |
---|---|---|
Electricity | [kWh/kgH2] | 34.5 |
Heat duty | [kWh/kgH2] | 14.6 |
Heat recovered | [kWh/ kgH2] | 8.2 |
Heat from external sources | [kWh/ kgH2] | 6.4 |
Heat share recovered | [%] | 56 |
SOEC efficiency | [%] | 85 |
Unit | STREAM A | STREAM C | |
---|---|---|---|
Heat duty | [MWh/m3] | 0.38 | 0.22 |
Heat recovered | [MWh/m3] | 0.21 | 0.14 |
Heat from external sources | [MWh/m3] | 0.17 | 0.08 |
Heat share recovered | [%] | 56 | 64 |
Electricity consumption | [MWh/m3] | 0.90 | 0.33 |
Wastewater vaporization | [%] | 27 | 10 |
Clean water production | [L/m3] | 36.2 | 13.4 |
Hydrogen production | [kg/m3] | 26.2 | 9.7 |
Unit | STREAM A | STREAM C | |
---|---|---|---|
Wastewater flow rate | [m3/d] | 155,347 | 27,500 |
SOEC load factor | [%] | 50 | 50 |
SOEC power capacity | [GW] | 12.1 | 0.8 |
Clean water production | [m3/d] | 5626 | 368 |
Hydrogen production | [t/d] | 4067 | 268 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maddaloni, M.; Marchionni, M.; Abbá, A.; Mascia, M.; Tola, V.; Carpanese, M.P.; Bertanza, G.; Artioli, N. Exploring the Viability of Utilizing Treated Wastewater as a Sustainable Water Resource for Green Hydrogen Generation Using Solid Oxide Electrolysis Cells (SOECs). Water 2023, 15, 2569. https://doi.org/10.3390/w15142569
Maddaloni M, Marchionni M, Abbá A, Mascia M, Tola V, Carpanese MP, Bertanza G, Artioli N. Exploring the Viability of Utilizing Treated Wastewater as a Sustainable Water Resource for Green Hydrogen Generation Using Solid Oxide Electrolysis Cells (SOECs). Water. 2023; 15(14):2569. https://doi.org/10.3390/w15142569
Chicago/Turabian StyleMaddaloni, Marina, Matteo Marchionni, Alessandro Abbá, Michele Mascia, Vittorio Tola, Maria Paola Carpanese, Giorgio Bertanza, and Nancy Artioli. 2023. "Exploring the Viability of Utilizing Treated Wastewater as a Sustainable Water Resource for Green Hydrogen Generation Using Solid Oxide Electrolysis Cells (SOECs)" Water 15, no. 14: 2569. https://doi.org/10.3390/w15142569
APA StyleMaddaloni, M., Marchionni, M., Abbá, A., Mascia, M., Tola, V., Carpanese, M. P., Bertanza, G., & Artioli, N. (2023). Exploring the Viability of Utilizing Treated Wastewater as a Sustainable Water Resource for Green Hydrogen Generation Using Solid Oxide Electrolysis Cells (SOECs). Water, 15(14), 2569. https://doi.org/10.3390/w15142569