Evaluation of Spatiotemporal Patterns and Water Quality Conditions Using Multivariate Statistical Analysis in the Yangtze River, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Region
2.2. Datasets
2.3. Methods
2.3.1. Water Quality Index (WQI)
2.3.2. Hierarchical Cluster Analysis (HCA)
2.3.3. Principal Component Analysis (PCA)
3. Results
3.1. Water Quality Assessment of the Yangtze River
3.1.1. Water Quality Temporal Conditions Based on Physicochemical Properties
3.1.2. Water Quality Patterns Based on Spatial Variation
3.1.3. Water Quality Conditions Based on WQI
3.2. Analysis of Water Quality Patterns of the Yangtze River Using the PCA Method
3.2.1. Hierarchical Cluster Analysis (HCA) of Yangtze River Water Quality
3.2.2. Water Quality Conditions Patterns Based on the PCA
4. Discussion
4.1. Causes Affecting the Spatiotemporal Distributions of Individual Water Quality Parameters
4.2. Assesses the Overall Water Quality Condition and Patterns
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Vörösmarty, C.J.; McIntyre, P.B.; Gessner, M.O.; Dudgeon, D.; Prusevich, A.; Green, P.; Glidden, S.; Bunn, S.E.; Sullivan, C.A.; Liermann, C.R.; et al. Global threats to human water security and river biodiversity. Nature 2010, 467, 555–561. [Google Scholar] [CrossRef]
- Dudgeon, D.; Arthington, A.H.; Gessner, M.O.; Kawabata, Z.; Knowler, D.J.; Leveque, C.; Naiman, R.J.; Prieur-Richard, A.H.; Soto, D.; Stiassny, M.L.; et al. Freshwater biodiversity: Importance, threats, status and conservation challenges. Biol. Rev. Camb. Philos. Soc. 2006, 81, 163–182. [Google Scholar] [CrossRef] [PubMed]
- Chang, D.; Lai, Z.; Li, S.; Li, D.; Zhou, J. Critical source areas’ identification for non-point source pollution related to nitrogen and phosphorus in an agricultural watershed based on SWAT model. Environ. Sci. Pollut. Res. Int. 2021, 28, 47162–47181. [Google Scholar] [CrossRef] [PubMed]
- Hayward, E.E.; Gillis, P.L.; Bennett, C.J.; Prosser, R.S.; Salerno, J.; Liang, T.; Robertson, S.; Metcalfe, C.D. Freshwater mussels in an impacted watershed: Influences of pollution from point and non-point sources. Chemosphere 2022, 307, 135966. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Zhang, Y.; Chen, M.; Wang, L.; Zhao, S.; Pu, X.; Chen, X. Estimation of monthly 1 km resolution PM2.5 concentrations using a random forest model over “2 + 26” cities, China. Urban Clim. 2021, 35, 100734. [Google Scholar] [CrossRef]
- Rodell, M.; Famiglietti, J.S.; Wiese, D.N.; Reager, J.T.; Beaudoing, H.K.; Landerer, F.W.; Lo, M.H. Emerging trends in global freshwater availability. Nature 2018, 557, 651–659. [Google Scholar] [CrossRef]
- Zou, Z.; Xiao, X.; Dong, J.; Qin, Y.; Doughty, R.B.; Menarguez, M.A.; Zhang, G.; Wang, J. Divergent trends of open-surface water body area in the contiguous United States from 1984 to 2016. Proc. Natl. Acad. Sci. USA 2018, 115, 3810–3815. [Google Scholar] [CrossRef]
- Pekel, J.F.; Cottam, A.; Gorelick, N.; Belward, A.S. High-resolution mapping of global surface water and its long-term changes. Nature 2016, 540, 418–422. [Google Scholar] [CrossRef]
- Loi, J.X.; Chua, A.S.M.; Rabuni, M.F.; Tan, C.K.; Lai, S.H.; Takemura, Y.; Syutsubo, K. Water quality assessment and pollution threat to safe water supply for three river basins in Malaysia. Sci. Total Environ. 2022, 832, 155067. [Google Scholar] [CrossRef]
- Bashir, I.; Lone, F.A.; Bhat, R.A.; Mir, S.A.; Dar, Z.A.; Dar, S.A. Concerns and Threats of Contamination on Aquatic Ecosystems. In Bioremediation and Biotechnology: Sustainable Approaches to Pollution Degradation; Hakeem, K.R., Bhat, R.A., Qadri, H., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 1–26. [Google Scholar] [CrossRef]
- Kumar, P.; Gacem, A.; Ahmad, M.T.; Yadav, V.K.; Singh, S.; Yadav, K.K.; Alam, M.M.; Dawane, V.; Piplode, S.; Maurya, P.; et al. Environmental and human health implications of metal(loid)s: Source identification, contamination, toxicity, and sustainable clean-up technologies. Front. Environ. Sci. 2022, 10, 1–23. [Google Scholar] [CrossRef]
- Zamparas, M.; Zacharias, I. Restoration of eutrophic freshwater by managing internal nutrient loads. A review. Sci. Total Environ. 2014, 496, 551–562. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Wang, Y.; Wang, S. Improved water pollution index for determining spatiotemporal water quality dynamics: Case study in the Erdao Songhua River Basin, China. Ecol. Indic. 2021, 129, 107931. [Google Scholar] [CrossRef]
- Zhang, J.; Li, S.; Dong, R.; Jiang, C.; Ni, M. Influences of land use metrics at multi-spatial scales on seasonal water quality: A case study of river systems in the Three Gorges Reservoir Area, China. J. Clean. Prod. 2019, 206, 76–85. [Google Scholar] [CrossRef]
- Jhariya, D.C.; Kumar, T.; Pandey, H.K.; Kumar, S.; Kumar, D.; Gautam, A.K.; Baghel, V.S.; Kishore, N. Assessment of groundwater vulnerability to pollution by modified DRASTIC model and analytic hierarchy process. Environ. Earth Sci. 2019, 78, 610. [Google Scholar] [CrossRef]
- Su, K.; Wang, Q.; Li, L.; Cao, R.; Xi, Y.; Li, G. Water quality assessment based on Nemerow pollution index method: A case study of Heilongtan reservoir in central Sichuan province, China. PLoS ONE 2022, 17, e0273305. [Google Scholar] [CrossRef] [PubMed]
- Zhong, C.; Yang, Q.; Liang, J.; Ma, H. Fuzzy comprehensive evaluation with AHP and entropy methods and health risk assessment of groundwater in Yinchuan Basin, northwest China. Environ. Res. 2022, 204, 111956. [Google Scholar] [CrossRef]
- Kuo, Y.M.; Liu, C.W.; Lin, K.H. Evaluation of the ability of an artificial neural network model to assess the variation of groundwater quality in an area of blackfoot disease in Taiwan. Water Res. 2004, 38, 148–158. [Google Scholar] [CrossRef]
- Feng, L.; Zhu, X.; Sun, X. Assessing coastal reclamation suitability based on a fuzzy-AHP comprehensive evaluation framework: A case study of Lianyungang, China. Mar. Pollut. Bull. 2014, 89, 102–111. [Google Scholar] [CrossRef]
- Singh, Y.; Singh, G.; Khattar, J.S.; Barinova, S.; Kaur, J.; Kumar, S.; Singh, D.P. Assessment of water quality condition and spatiotemporal patterns in selected wetlands of Punjab, India. Environ. Sci. Pollut. Res. Int. 2022, 29, 2493–2509. [Google Scholar] [CrossRef]
- Wallace, J.; Champagne, P.; Hall, G. Multivariate statistical analysis of water chemistry conditions in three wastewater stabilization ponds with algae blooms and pH fluctuations. Water Res. 2016, 96, 155–165. [Google Scholar] [CrossRef]
- Xue, Y.; Ma, Y.; Long, G.; He, H.; Li, Z.; Yan, Z.; Wan, J.; Zhang, S.; Zhu, B. Evaluation of water quality pollution and analysis of vertical distribution characteristics of typical Rivers in the Pearl River Delta, South China. J. Sea Res. 2023, 193, 102380. [Google Scholar] [CrossRef]
- Naskar, M.; Das Sarkar, S.; Raman, R.K.; Gogoi, P.; Sahu, S.K.; Chandra, G.; Bhor, M. Quantifying plankto-environmental interactions in a tropical river Narmada, India: An alternative model-based approach. Ecohydrol. Hydrobiol. 2020, 20, 265–275. [Google Scholar] [CrossRef]
- Zhang, Y.; Sun, M.; Yang, R.; Li, X.; Zhang, L.; Li, M. Decoupling water environment pressures from economic growth in the Yangtze River Economic Belt, China. Ecol. Indic. 2021, 122, 107314. [Google Scholar] [CrossRef]
- Xu, Y.; Wu, Y.; Zhang, X.; Yin, G.; Fu, Y.; Wang, X.; Hu, Q.; Hao, F. Contributions of climate change to eco-compensation identification in the Yangtze River economic Belt, China. Ecol. Indic. 2021, 133, 108425. [Google Scholar] [CrossRef]
- Qiu, Q.; Dai, L.; Van Rijswick, H.F.M.W.; Tu, G. Improving the Water Quality Monitoring System in the Yangtze River Basin—Legal Suggestions to the Implementation of the Yangtze River Protection Law. Laws 2021, 10, 25. [Google Scholar] [CrossRef]
- Chen, D.; Hou, L.-J.; Liao, Y.-D. Strengthening efficient usage, protection, and restoration of Yangtze River shoreline. Water Sci. Eng. 2021, 14, 257–259. [Google Scholar] [CrossRef]
- Liu, S.; Fu, R.; Liu, Y.; Suo, C. Spatiotemporal variations of water quality and their driving forces in the Yangtze River Basin, China, from 2008 to 2020 based on multi-statistical analyses. Environ. Sci. Pollut. Res. Int. 2022, 29, 69388–69401. [Google Scholar] [CrossRef]
- Wu, Y.; Fang, H.; Huang, L.; Cui, Z. Particulate organic carbon dynamics with sediment transport in the upper Yangtze River. Water Res. 2020, 184, 116193. [Google Scholar] [CrossRef]
- Liu, Y.; Li, L. Multiple Evaluations of the Spatial and Temporal Characteristics of Surface Water Quality in the Typical Area of the Yangtze River Delta of China Using the Water Quality Index and Multivariate Statistical Analysis: A Case Study in Shengzhou City. Int. J. Environ. Res. Public Health 2023, 20, 2883. [Google Scholar] [CrossRef]
- Di, Z.; Chang, M.; Guo, P. Water Quality Evaluation of the Yangtze River in China Using Machine Learning Techniques and Data Monitoring on Different Time Scales. Water 2019, 11, 339. [Google Scholar] [CrossRef]
- Li, X.; Zhao, Q.; Li, A.; Jia, S.; Wang, Z.; Zhang, Y.; Wang, W.; Zhou, Q.; Pan, Y.; Shi, P. Spatiotemporal distribution and fates of neonicotinoid insecticides during the urban water cycle in the lower reaches of the Yangtze River, China. Water Res. 2022, 226, 119232. [Google Scholar] [CrossRef] [PubMed]
- Yao, R.; Wang, L.; Gui, X.; Zheng, Y.; Zhang, H.; Huang, X. Urbanization Effects on Vegetation and Surface Urban Heat Islands in China’s Yangtze River Basin. Remote Sens. 2017, 9, 540. [Google Scholar] [CrossRef]
- Yang, X.; Meng, F.; Fu, P.; Zhang, Y.; Liu, Y. Spatiotemporal change and driving factors of the Eco-Environment quality in the Yangtze River Basin from 2001 to 2019. Ecol. Indic. 2021, 131, 108214. [Google Scholar] [CrossRef]
- Yang, P.; Xia, J.; Luo, X.; Meng, L.; Zhang, S.; Cai, W.; Wang, W. Impacts of climate change-related flood events in the Yangtze River Basin based on multi-source data. Atmos. Res. 2021, 263, 105819. [Google Scholar] [CrossRef]
- Li, Y.; Yan, D.; Peng, H.; Xiao, S. Evaluation of precipitation in CMIP6 over the Yangtze River Basin. Atmos. Res. 2021, 253, 105406. [Google Scholar] [CrossRef]
- Qu, S.; Wang, L.; Lin, A.; Yu, D.; Yuan, M.; Li, C.a. Distinguishing the impacts of climate change and anthropogenic factors on vegetation dynamics in the Yangtze River Basin, China. Ecol. Indic. 2020, 108, 105724. [Google Scholar] [CrossRef]
- Ministry of Environmental Protection of China. Water Quality Sampling-Technical Regulation of the Preservation and Hanling of Samples, China; China Environmental Science Press: Beijing, China, 2009.
- Ministry of Environmental Protection of China. Standard Methods for the Examination of Water and Wastewater (Version 4); China Environmental Science Press: Beijing, China, 2002.
- Pesce, S.F.; Wunderlin, D.A. Use of water quality indices to verify the impact of Córdoba City (Argentina) on Suquía River. Water Res. 2000, 34, 2915–2926. [Google Scholar] [CrossRef]
- Kannel, P.R.; Lee, S.; Lee, Y.S.; Kanel, S.R.; Khan, S.P. Application of water quality indices and dissolved oxygen as indicators for river water classification and urban impact assessment. Environ. Monit. Assess. 2007, 132, 93–110. [Google Scholar] [CrossRef]
- Zhao, P.; Tang, X.; Tang, J.; Wang, C. Assessing Water Quality of Three Gorges Reservoir, China, Over a Five-Year Period From 2006 to 2011. Water Resour. Manag. 2013, 27, 4545–4558. [Google Scholar] [CrossRef]
- Nong, X.; Shao, D.; Zhong, H.; Liang, J. Evaluation of water quality in the South-to-North Water Diversion Project of China using the water quality index (WQI) method. Water Res. 2020, 178, 115781. [Google Scholar] [CrossRef]
- Cude, C.G. Oregon water quality index a tool for evaluating water quality management Effectiveness1. JAWRA J. Am. Water Resour. Assoc. 2001, 37, 125–137. [Google Scholar] [CrossRef]
- Li, M.; Liu, Z.; Zhang, M.; Chen, Y. A workflow for spatio-seasonal hydro-chemical analysis using multivariate statistical techniques. Water Res. 2021, 188, 116550. [Google Scholar] [CrossRef] [PubMed]
- Mora, A.; Torres-Martinez, J.A.; Moreau, C.; Bertrand, G.; Mahlknecht, J. Mapping salinization and trace element abundance (including As and other metalloids) in the groundwater of north-central Mexico using a double-clustering approach. Water Res. 2021, 205, 117709. [Google Scholar] [CrossRef] [PubMed]
- Mandel, P.; Maurel, M.; Chenu, D. Better understanding of water quality evolution in water distribution networks using data clustering. Water Res. 2015, 87, 69–78. [Google Scholar] [CrossRef]
- Bengraine, K.; Marhaba, T.F. Using principal component analysis to monitor spatial and temporal changes in water quality. J. Hazard. Mater. 2003, 100, 179–195. [Google Scholar] [CrossRef]
- Olsen, R.L.; Chappell, R.W.; Loftis, J.C. Water quality sample collection, data treatment and results presentation for principal components analysis--literature review and Illinois River Watershed case study. Water Res. 2012, 46, 3110–3122. [Google Scholar] [CrossRef]
- Kurunc, A.; Yurekli, K.; Okman, C. Effects of Kilickaya Dam on concentration and load values of water quality constituents in Kelkit Stream in Turkey. J. Hydrol. 2006, 317, 17–30. [Google Scholar] [CrossRef]
- Ministry of Environmental Protection of China. Environmental Quality Standards for Surface Water; Ministry of Environmental Protection of China: Beijing, China, 2002.
- Yang, J.; Yu, X.; Liu, L.; Zhang, W.; Guo, P. Algae community and trophic state of subtropical reservoirs in southeast Fujian, China. Environ. Sci. Pollut. Res. Int. 2012, 19, 1432–1442. [Google Scholar] [CrossRef]
- Pu, W.; Quan, W.; Ma, Z.; Shi, X.; Zhao, X.; Zhang, L.; Wang, Z.; Wang, W. Long-term trend of chemical composition of atmospheric precipitation at a regional background station in Northern China. Sci. Total Environ. 2017, 580, 1340–1350. [Google Scholar] [CrossRef]
- Warsito, B.; Sumiyati, S.; Yasin, H.; Faridah, H. Evaluation of river water quality by using hierarchical clustering analysis. IOP Conf. Ser. Earth Environ. Sci. 2021, 896, 012072. [Google Scholar] [CrossRef]
- Wei, H.; Yu, H.; Zhang, G.; Pan, H.; Lv, C.; Meng, F. Revealing the correlations between heavy metals and water quality, with insight into the potential factors and variations through canonical correlation analysis in an upstream tributary. Ecol. Indic. 2018, 90, 485–493. [Google Scholar] [CrossRef]
- Benson, B.B.; Krause, D., Jr. The concentration and isotopic fractionation of oxygen dissolved in freshwater and seawater in equilibrium with the atmosphere1. Limnol. Oceanogr. 1984, 29, 620–632. [Google Scholar] [CrossRef]
- Bai, H.; Chen, Y.; Wang, Y.; Song, Z.; Tong, H.; Wei, Y.; Yu, Q.; Xu, Z.; Yang, S. Contribution rates analysis for sources apportionment to special river sections in Yangtze River Basin. J. Hydrol. 2021, 600, 126519. [Google Scholar] [CrossRef]
- Qu, X.; Chen, Y.; Liu, H.; Xia, W.; Lu, Y.; Gang, D.D.; Lin, L.S. A holistic assessment of water quality condition and spatiotemporal patterns in impounded lakes along the eastern route of China’s South-to-North water diversion project. Water Res. 2020, 185, 116275. [Google Scholar] [CrossRef] [PubMed]
- Sener, S.; Sener, E.; Davraz, A. Evaluation of water quality using water quality index (WQI) method and GIS in Aksu River (SW-Turkey). Sci. Total Environ. 2017, 584–585, 131–144. [Google Scholar] [CrossRef]
- Jingsheng, C.; Feiyue, W.; Xinghui, X. Geochemistry of water quality of the Yangtze River basin. Earth Sci. Front. 2006, 1, 74–85. [Google Scholar]
- Yan, R.; Li, L.; Gao, J. Framework for quantifying rural NPS pollution of a humid lowland catchment in Taihu Basin, Eastern China. Sci. Total Environ. 2019, 688, 983–993. [Google Scholar] [CrossRef]
- Lee, C.S.; Lee, Y.C.; Chiang, H.M. Abrupt state change of river water quality (turbidity): Effect of extreme rainfalls and typhoons. Sci. Total Environ. 2016, 557–558, 91–101. [Google Scholar] [CrossRef]
- Yao, M.; Hu, M.; Chen, D. Dynamic of net anthropogenic nitrogen inputs and riverine nitrogen export in the Yangtze River Basin in 1980–2015. Environ. Sci. 2021, 42, 5777–5785. [Google Scholar] [CrossRef]
- Duan, W.; He, B.; Chen, Y.; Zou, S.; Wang, Y.; Nover, D.; Chen, W.; Yang, G. Identification of long-term trends and seasonality in high-frequency water quality data from the Yangtze River basin, China. PLoS ONE 2018, 13, e0188889. [Google Scholar] [CrossRef]
- Shi, R.; Wang, T.; Yang, D.; Yang, Y. Streamflow decline threatens water security in the upper Yangtze river. J. Hydrol. 2022, 606, 127448. [Google Scholar] [CrossRef]
- Yu, Z.; An, Q.; Liu, W.; Wang, Y. Analysis and evaluation of surface water changes in the lower reaches of the Yangtze River using Sentinel-1 imagery. J. Hydrol. Reg. Stud. 2022, 41, 101074. [Google Scholar] [CrossRef]
- Qi, W.; Wang, X.; Kang, J.; Bai, Y.; Bian, R.; Xue, H.; Chen, L.; Guan, A.; Pan, Y.-R.; Liu, H.; et al. Improvement of the Yangtze River’s Water Quality with Substantial Implementation of Wastewater Services Infrastructure Since 2013. Engineering 2023, 21, 135–142. [Google Scholar] [CrossRef]
- Chen, D.; Shen, H.; Hu, M.; Wang, J.; Zhang, Y.; Dahlgren, R.A. Legacy Nutrient Dynamics at the Watershed Scale: Principles, Modeling, and Implications. Adv. Agron. 2018, 149, 237–313. [Google Scholar] [CrossRef]
- Zhao, Z.; Zhang, L.; Deng, C. Changes in net anthropogenic nitrogen and phosphorus inputs in the Yangtze River Economic Belt, China (1999–2018). Ecol. Indic. 2022, 145, 109674. [Google Scholar] [CrossRef]
- Wang, J.; Da, L.; Song, K.; Li, B.L. Temporal variations of surface water quality in urban, suburban and rural areas during rapid urbanization in Shanghai, China. Environ. Pollut. 2008, 152, 387–393. [Google Scholar] [CrossRef]
- She, Y.; Liu, Y.; Jiang, L.; Yuan, H. Is China’s River Chief Policy effective? Evidence from a quasi-natural experiment in the Yangtze River Economic Belt, China. J. Clean. Prod. 2019, 220, 919–930. [Google Scholar] [CrossRef]
River Subdivision | Station | Abbreviation | Latitude (°) | Longitude (°) | Elevation (m) |
---|---|---|---|---|---|
The upstream stations | Guagongshan | GG | 28.78 | 104.68 | 327 |
Naxidadukou | NX | 28.74 | 105.23 | 272 | |
Shoupayan | SP | 28.90 | 105.55 | 221 | |
Jiangjindaqiao | JJ | 29.26 | 106.26 | 181 | |
Fengshouba | FS | 29.41 | 106.51 | 167 | |
Heshangshan | HS | 29.12 | 106.64 | 437 | |
Cuntan | CT | 29.62 | 106.60 | 163 | |
Sujia | SJ | 29.75 | 106.72 | 368 | |
Lidu | LD | 29.75 | 107.27 | 314 | |
Shaiwangba | SW | 30.83 | 108.45 | 149 | |
Qingxichang | QX | 28.41 | 108.92 | 395 | |
Jingjiangkou | JJK | 27.87 | 110.39 | 145 | |
Baidicheng | BD | 31.04 | 109.57 | 115 | |
Nanjinguan | NJ | 30.76 | 111.27 | 57 | |
The middle stream stations | Yunchi | YC | 30.48 | 111.46 | 67 |
Diaoguan | DG | 29.69 | 112.64 | 29 | |
Liukou | LK | 29.74 | 112.76 | 36 | |
Chenglingji | CL | 29.45 | 113.15 | 18 | |
Zhuanwachang | ZW | 31.09 | 113.03 | 108 | |
Guanyinsi | GY | 30.39 | 113.43 | 29 | |
Yangsigang | YS | 30.51 | 114.26 | 26 | |
Huanglashi | HP | 29.86 | 114.20 | 30 | |
Zhongguanpu | ZG | 29.84 | 115.48 | 25 | |
Hukou | HK | 29.74 | 116.26 | 31 | |
The downstream stations | Yaoguang | YG | 29.73 | 115.98 | 30 |
Sanxingcun | SX | 31.97 | 117.42 | 40 | |
Xiangkou | XK | 31.86 | 117.28 | 18 | |
Chenjiadun | CJ | 31.59 | 117.27 | 7 | |
Wubugou | WB | 30.77 | 117.68 | 12 | |
Weicun | WC | 34.00 | 118.42 | 20 | |
Qianjiangkou | QJ | 31.02 | 118.95 | 19 | |
Xiaohekou | XH | 31.78 | 120.55 | 2 | |
Xiaowan | XW | 31.49 | 120.99 | 3 |
Variables a | Weight (Pi) | Normalization Factor (Ci) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 | ||
pH | 1 | 7 | [7, 8) | [8, 8.5) | [8.5, 9) | [6.5, 7) | 6–6.5, 9, 9.5 | 5, 6, 9.5, 10 | 4–5, 10–11 | 3–4, 11–12 | 2–3, 12–13 | 1–2, 13–14 |
DO | 4 | >7.5 | [7, 7.5) | [6.5, 7) | [6, 6.5) | [5, 6) | [4, 5) | [3.5, 4) | [3, 3.5) | [2, 3) | [1, 2) | <1 |
CODMn | 3 | <1 | [1, 2) | [2, 3) | [3, 4) | [4, 6) | [6, 8) | [8, 10) | [10, 12) | [12, 14) | [14, 15) | >15 |
NH3-N | 3 | <0.01 | [0.01, 0.05) | [0.05, 0.10) | [0.10, 0.20) | [0.20, 0.30) | [0.30, 0.40) | [0.40, 0.50) | [0.50, 0.75) | [0.75, 1.00) | [1.00, 1.25) | >1.25 |
T | 1 | 16–21 | 15–16, 21–22 | 14–15, 22–24 | 12–14, 24–26 | 10–12, 26–28 | 5–10, 28–30 | 0–5, 30–32 | −2–0, 32–36 | −4–2, 36–40 | −6–4, 40–45 | >45, <−6 |
EC | 1 | <750 | [750, 1000) | [1000, 1250) | [1250, 1500) | [1500, 2000) | [2000, 2500) | [2500, 3000) | [3000, 5000) | [5000, 8000) | [8000, 12,000) | >12,000 |
TUR | 2 | <5 | [5, 10) | [10, 15) | [10, 20) | [20, 25) | [25, 30) | [30, 40) | [40, 60) | [60, 80) | [80, 100) | >100 |
TP | 1 | <0.01 | [0.01, 0.02) | [0.02, 0.05) | [0.05, 0.1) | [0.1, 0.15) | [0.15, 0.2) | [0.2, 0.25) | [0.25, 0.3) | [0.3, 0.35) | [0.35, 0.4) | >0.4 |
TN | 2 | <0.1 | [0.1, 0.2) | [0.2, 0.35) | [0.35, 0.5) | [0.5, 0.75) | [0.75, 1) | [1, 1.25) | [1.25, 1.5) | [1.5, 1.75) | [1.75, 2) | >2 |
Parameters a | pH | DO | CODMn | NH3-N | T | EC | TUR | TP | TN | |
---|---|---|---|---|---|---|---|---|---|---|
Thresholds of the Class I Standards b | 6.00~9.00 | ≥7.50 mg/L | ≤2.00 mg/L | ≤0.15 mg/L | N/A | N/A | N/A | ≤0.02 mg/L | ≤0.20 mg/L | |
Spring | Avg. ± S.D. | 7.82 ± 0.26 | 8.54 ± 1.01 | 1.43 ± 0.39 | 0.058 ± 0.039 | 17.30 ± 2.76 | 373.35 ± 59.73 | 27.19 ± 20.17 | 0.064 ± 0.019 | 1.893 ± 0.339 |
Max | 8.31 | 9.71 | 2.33 | 0.15 | 19.50 | 469.43 | 69.90 | 0.13 | 2.75 | |
Min | 7.25 | 6.19 | 0.76 | 0.02 | 14.12 | 249.56 | 3.75 | 0.03 | 1.14 | |
H | 29.14 | 234.14 | 111.17 | 27.89 | 354.02 | 52.22 | 169.41 | 51.58 | 48.31 | |
P | 0.004 | <0.001 | <0.001 | 0.006 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | |
Summer | Avg. ± S.D. | 7.72 ± 0.29 | 7.00 ± 1.23 | 1.99 ± 0.74 | 0.055 ± 0.078 | 25.32 ± 2.46 | 342.17 ± 47.16 | 86.91 ± 73.68 | 0.075 ± 0.027 | 1.799 ± 0.432 |
Max | 8.27 | 8.95 | 3.50 | 0.37 | 28.14 | 420.66 | 262.57 | 0.13 | 2.43 | |
Min | 7.16 | 2.89 | 1.07 | 0.02 | 18.19 | 267.70 | 9.40 | 0.04 | 0.91 | |
H | 31.94 | 239.84 | 117.34 | 24.6 | 354.103 | 54.89 | 189.06 | 56.27 | 44.92 | |
P | 0.001 | <0.001 | <0.001 | 0.017 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | |
Autumn | Avg. ± S.D. | 7.78 ± 0.25 | 7.95 ± 1.14 | 1.93 ± 0.62 | 0.055 ± 0.065 | 21.50 ± 3.71 | 347.03 ± 37.98 | 55.07 ± 42.57 | 0.065 ± 0.022 | 1.656 ± 0.389 |
Max | 8.19 | 9.56 | 3.31 | 0.31 | 23.61 | 421.19 | 160.58 | 0.12 | 2.49 | |
Min | 7.29 | 4.91 | 0.97 | 0.02 | 14.62 | 288.05 | 13.94 | 0.02 | 1.00 | |
H | 29.62 | 229.63 | 117.38 | 24.38 | 351.64 | 54.22 | 179.44 | 51.65 | 48.31 | |
P | 0.003 | <0.001 | <0.001 | 0.018 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | |
Winter | Avg. ± S.D. | 7.89 ± 0.25 | 9.62 ± 1.13 | 1.48 ± 0.60 | 0.057 ± 0.049 | 13.74 ± 2.75 | 381.72 ± 47.70 | 23.71 ± 20.90 | 0.061 ± 0.023 | 1.727 ± 0.337 |
Max | 8.26 | 11.14 | 3.13 | 0.23 | 20.19 | 462.23 | 70.27 | 0.13 | 2.25 | |
Min | 7.46 | 7.62 | 0.85 | 0.02 | 10.56 | 296.15 | 3.31 | 0.023 | 1.00 | |
H | 33.35 | 247.03 | 109.30 | 26.27 | 352.24 | 58.34 | 171.43 | 52.30 | 45.77 | |
P | 0.001 | <0.001 | <0.001 | 0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
Variables | A a | A1 a | A2 a | A3 a | ||||
---|---|---|---|---|---|---|---|---|
PC1 | PC2 | PC1 | PC2 | PC1 | PC2 | PC1 | PC2 | |
pH | −0.241 | 0.557 | −0.177 | 0.609 | 0.435 | −0.337 | 0.272 | −0.054 |
DO | −0.366 | 0.224 | −0.403 | −0.084 | 0.291 | −0.278 | 0.483 | 0.360 |
CODMn | 0.422 | 0.312 | 0.459 | 0.111 | 0.446 | 0.126 | −0.286 | 0.250 |
NH3-N | 0.010 | 0.117 | −0.152 | 0.479 | 0.169 | 0.270 | 0.288 | −0.317 |
T | 0.460 | 0.008 | 0.470 | 0.086 | 0.144 | 0.482 | −0.512 | −0.250 |
EC | −0.373 | 0.291 | −0.277 | 0.137 | 0.166 | −0.462 | 0.366 | 0.289 |
TUR | 0.401 | 0.436 | 0.441 | 0.237 | 0.480 | 0.251 | −0.319 | 0.419 |
TP | 0.331 | 0.167 | 0.283 | −0.076 | 0.370 | 0.303 | −0.173 | 0.568 |
TN | 0.088 | −0.475 | −0.019 | −0.541 | −0.287 | 0.346 | 0.003 | 0.247 |
Eigenvalue (%) | 34.239 | 18.525 | 42.995 | 17.256 | 35.719 | 31.725 | 31.987 | 18.437 |
Cumulative (%) | 34.239 | 52.764 | 42.995 | 60.251 | 35.719 | 67.444 | 31.987 | 50.424 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, J.; Gu, J.; Han, J.; Xu, J.; Liu, Y.; Jiang, G.; Zhang, Y. Evaluation of Spatiotemporal Patterns and Water Quality Conditions Using Multivariate Statistical Analysis in the Yangtze River, China. Water 2023, 15, 3242. https://doi.org/10.3390/w15183242
Lu J, Gu J, Han J, Xu J, Liu Y, Jiang G, Zhang Y. Evaluation of Spatiotemporal Patterns and Water Quality Conditions Using Multivariate Statistical Analysis in the Yangtze River, China. Water. 2023; 15(18):3242. https://doi.org/10.3390/w15183242
Chicago/Turabian StyleLu, Jing, Jiarong Gu, Jinyang Han, Jun Xu, Yi Liu, Gengmin Jiang, and Yifeng Zhang. 2023. "Evaluation of Spatiotemporal Patterns and Water Quality Conditions Using Multivariate Statistical Analysis in the Yangtze River, China" Water 15, no. 18: 3242. https://doi.org/10.3390/w15183242
APA StyleLu, J., Gu, J., Han, J., Xu, J., Liu, Y., Jiang, G., & Zhang, Y. (2023). Evaluation of Spatiotemporal Patterns and Water Quality Conditions Using Multivariate Statistical Analysis in the Yangtze River, China. Water, 15(18), 3242. https://doi.org/10.3390/w15183242