Enhanced Soil Moisture Retrieval through Integrating Satellite Data with Pedotransfer Functions in a Complex Landscape of Ethiopia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.2.1. In Situ Soil Moisture Data Collection
2.2.2. Remote Sensing Data for Soil Moisture
2.2.3. Spatial Soil Property Data
2.3. Methods
2.3.1. Computing the Pedotransfer Functions
2.3.2. Mapping FC, PWP and Available Water Content
2.3.3. Merging Satellite Data with PTF
2.3.4. Performance Evaluation
3. Results
3.1. Performance Evaluation Results
3.1.1. SMAP Soil Moisture Data 9 km (SPL3SMP_E)
3.1.2. ASCAT SWI 12.5 km and ASCAT_PTF_SM
3.2. Derived Maps of Water Content at PWP, FC, and AWC
3.3. Time Series Soil Moisture Data
4. Discussion
4.1. Analysis of Performance of SMAP Product
4.2. Analysis of Performance of ASCAT SWI 12.5 km and ASCAT_PTF SM
5. Summary and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Seneviratne, S.I.; Corti, T.; Davin, E.L.; Hirschi, M.; Jaeger, E.B.; Lehner, I.; Orlowsky, B.; Teuling, A.J. Investigating soil moisture–climate interactions in a changing climate: A review. Earth-Sci. Rev. 2010, 99, 125–161. [Google Scholar] [CrossRef]
- Mahmood, R.; Littell, A.; Hubbard, K.G.; You, J. Observed data-based assessment of relationships among soil moisture at various depths, precipitation, and temperature. Appl. Geogr. 2012, 34, 255–264. [Google Scholar] [CrossRef]
- Wang, X.; Yang, H.; Li, X.; Chen, L.; Tang, C.; Liu, T.; Tong, X. Responses of sensible and latent heat fluxes to soil moisture changes: Temporal stability analysis across different land surface types on the Tibetan Plateau. Atmosphere 2020, 11, 945. [Google Scholar]
- Mezentsev, V.S.; Abrakhimova, Z.F.; Ollesch, G. Influence of Soil Moisture Content on the Rainfall Redistribution into Surface Runoff and Infiltration. Water 2021, 13, 2737. [Google Scholar]
- Dorigo, W.A.; Wagner, W.; Hohensinn, R.; Hahn, S.; Paulik, C.; Xaver, A.; Gruber, A.; Drusch, M.; Mecklenburg, S.; van Oevelen, P.; et al. The International Soil Moisture Network: A data hosting facility for global in situ soil moisture measurements. Hydrol. Earth Syst. Sci. 2011, 15, 1675–1698. [Google Scholar] [CrossRef]
- Liu, H.; Yang, H.; Wang, Y.; Jia, Z.; Li, S.; Zhang, J. Improved modeling of the responses of ecosystem productivity to soil moisture in a temperate grassland. Sci. Total Environ. 2022, 815, 152932. [Google Scholar]
- Joshi, C.; Mohanty, B.P. Physical controls of near-surface soil moisture across varying spatial scales in an agricultural landscape during SMEX02. Water Resour. Res. 2010, 46, W12503. [Google Scholar] [CrossRef]
- Ulaby, F.T.; Dubois, P.C.; van Zyl, J. Radar mapping of surface soil moisture. J. Hydrol. 1996, 184, 57–84. [Google Scholar] [CrossRef]
- Njoku, E.G.; Jackson, T.J.; Lakshmi, V.; Chan, T.K.; Nghiem, S.V. Soil moisture retrieval from AMSR-E. IEEE Trans. Geosci. Remote Sens. 2003, 41, 215–229. [Google Scholar] [CrossRef]
- Kerr, Y.H.; Waldteufel, P.; Wigneron, J.P.; Delwart, S.; Cabot, F.; Boutin, J.; Escorihuela, M.J.; Font, J.; Reul, N.; Gruhier, C.; et al. The SMOS mission: New tool for monitoring key elements ofthe global water cycle. Proc. IEEE 2010, 98, 666–687. [Google Scholar] [CrossRef]
- Kim, S.; Zhang, R.; Pham, H.; Sharma, A. A review of satellite-derived soil moisture and its usage for flood estimation. Remote Sens. Earth Syst. Sci. 2019, 2, 225–246. [Google Scholar] [CrossRef]
- Lawston, P.M.; Santanello, J.A.; Kumar, S.V. Irrigation signals detected from SMAP soil moisture retrievals. Geophys. Res. Lett. 2017, 44, 11860–11867. [Google Scholar] [CrossRef]
- Peng, J.; Albergel, C.; Balenzano, A.; Brocca, L.; Cartus, O.; Cosh, M.H.; Crow, W.T.; Dabrowska-Zielinska, K.; Dadson, S.; Davidson, M.W.; et al. A roadmap for high-resolution satellite soil moisture applications–confronting product characteristics with user requirements. Remote Sens. Environ. 2021, 252, 112162. [Google Scholar] [CrossRef]
- Peng, J.; Loew, A.; Merlin, O.; Verhoest, N.E.C. A review of spatial downscaling of satellite remotely sensed soil moisture. Rev. Geophys. 2017, 55, 341–366. [Google Scholar] [CrossRef]
- Sabaghy, S.; Walker, J.P.; Renzullo, L.J.; Akbar, R.; Chan, S.; Chaubell, J.; Das, N.; Dunbar, R.S.; Entekhabi, D.; Gevaert, A.; et al. Comprehensive analysis of alternative downscaled soil moisture products. Remote Sens. Environ. 2020, 239, 1115856. [Google Scholar] [CrossRef]
- Fang, B.; Lakshmi, V.; Cosh, M.H.; Hain, C. Very high spatial resolution downscaled SMAP radiometer soil moisture in the CONUS using VIIRS/MODIS data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 4946–4965. [Google Scholar] [CrossRef]
- Xu, L.; Abbaszadeh, P.; Moradkhani, H.; Chen, N.; Zhang, X. Continental drought monitoring using satellite soil moisture, data assimilation and an integrated drought index. Remote Sens. Environ. 2020, 250, 112028. [Google Scholar] [CrossRef]
- Leng, P.; Li, Z.-L.; Liao, Q.-Y.; Geng, Y.-J.; Yan, Q.-Y.; Zhang, X.; Shang, G.-F. Enhanced Surface Soil Moisture Retrieval at High Spatial Resolution from the Integration of Satellite Observations and Soil Pedotransfer Functions. IEEE Trans. Geosci. Remote Sens. 2022, 60, 4513711. [Google Scholar] [CrossRef]
- Montzka, C.; Rötzer, K.; Bogena, H.R.; Sanchez, N.; Vereecken, H. A New Soil Moisture Downscaling Approach for SMAP, SMOS, and ASCAT by Predicting Sub-Grid Variability. Remote Sens. 2018, 10, 427. [Google Scholar] [CrossRef]
- Elsenbeer, H. Pedotransfer Functions in Hydrology. J. Hydrol. 2001, 251, 121–122. [Google Scholar] [CrossRef]
- Van Looy, K.; Bouma, J.; Herbst, M.; Koestel, J.; Minasny, B.; Mishra, U.; Montzka, C.; Nemes, A.; Pachepsky, Y.A.; Pa-darian, J.; et al. Pedotransfer Functions in Earth System Science: Challenges and Perspectives. Rev. Geophys. 2017, 55, 1199–1256. [Google Scholar] [CrossRef]
- Hodnett, M.G.; Tomasella, J. Marked Differences between van Genuchten Soil Water-Retention Parameters for Temperate and Tropical Soils: A New Water-Retention Pedo-Transfer Functions Developed for Tropical Soils. Geoderma 2002, 108, 155–180. [Google Scholar] [CrossRef]
- Tomasella, J.; Hodnett, M. Pedotransfer functions for tropical soils. Dev. Soil Sci. 2004, 30, 415–429. [Google Scholar] [CrossRef]
- Minasny, B.; Hartemink, A.E. Predicting soil properties in the tropics. Earth Sci. Rev. 2011, 106, 52–62. [Google Scholar] [CrossRef]
- Teferi, E. Soil Hydrological Impacts and Climatic Controls of Land Use and Land Cover Changes in the Upper Blue Nile (Abay) Basin. Ph.D. Thesis, Delft University of Technology and UNESCO-IHE, Delft, The Netherlands, 2015; pp. 142–166. [Google Scholar]
- Belete, B.; Melesse, A.M.; Seleshi, Y. GIS-based hydrological zones and soil geo-database of Ethiopia. Catena 2013, 104, 21–31. [Google Scholar]
- Colliander, A.; Jackson, T.J.; Bindlish, R.; Chan, S.; Das, N.; Kim, S.B.; Cosh, M.H.; Dunbar, R.S.; Dang, L.; Pashaian, L.; et al. Validation of SMAP surface soil moisture products with core validation sites. Remote Sens. Environ. 2017, 191, 215–231. [Google Scholar] [CrossRef]
- Xu, Y.; Liu, C.; Wang, L.; Zou, L. Exploring the Spatial Autocorrelation in Soil Moisture Networks: Analysis of the Bias from Upscaling the Texas Soil Observation Network (TxSON). Water 2023, 15, 87. [Google Scholar] [CrossRef]
- Wagner, W.; Lemoine, G.; Rott, H. A method for estimating soil moisture from ERS scatterometer and soil data. Remote Sens. Environ. 1999, 70, 191–207. [Google Scholar] [CrossRef]
- O’Neill, P.E.; Chan, S.; Njoku, E.G.; Jackson, T.; Bindlish, R.; Chaubell, J. SMAP Enhanced L3 Radiometer Global Daily 9 km EASE-Grid Soil Moisture; Version 4; Indicate subset used; NASA National Snow and Ice Data Center Distributed Active Archive Center: Boulder, CO, USA, 2020. [Google Scholar] [CrossRef]
- Xu, X. Evaluation of SMAP Level 2, 3, and 4 Soil Moisture Datasets over the Great Lakes Region. Remote Sens. 2020, 12, 3785. [Google Scholar] [CrossRef]
- Hengl, T.; Heuvelink, G.B.; Kempen, B.; Leenaars, J.G.; Walsh, M.G.; Shepherd, K.D.; Sila, A.; MacMillan, R.A.; Mendes de Jesus, J.; Tamene, L.; et al. Mapping soil properties of Africa at 250 m resolution: Random forests significantly improve current predictions. PLoS ONE 2015, 10, e0125814. [Google Scholar] [CrossRef]
- Van Genuchten, M.T. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 1980, 44, 892–898. [Google Scholar] [CrossRef]
- Van Genuchten, M.V.; Leij, F.J.; Yates, S.R. The RETC Code for Quantifying the Hydraulic Functions of Unsatu-Rated Soils; U.S. Environmental Protection Agency: Ada, OK, USA, 1991.
- Albergel, C.; Rüdiger, C.; Pellarin, T.; Calvet, J.C.; Fritz, N.; Froissard, F.; Suquia, D.; Petitpa, A.; Piguet, B.; Martin, E. From near-surface to root-zone soil moisture using an exponential filter: An assessment of the method based on in-situ observations and model simulations. Hydrol. Earth Syst. Sci. 2008, 12, 1323–1337. [Google Scholar] [CrossRef]
- Thapliyal, P.K.; Pal, P.K.; Narayanan, M.S.; Srinivasan, J. Development of a time series–based methodology for estimation of large-area soil wetness over India using IRS-P4 microwave radiometer data. J. Appl. Meteorol. 2005, 44, 127–143. [Google Scholar] [CrossRef]
- Chaurasia, S.; Thapliyal, P.K.; Pal, P.K. Application of a time-series-based methodology for soil moisture estimation from AMSR-E observations over India. IEEE Geosci. Remote Sens. Lett. 2012, 9, 818–821. [Google Scholar] [CrossRef]
- Stoffelen, A. Toward the true near-surface wind speed: Error modeling and calibration using triple collocation. J. Geophys. Res. Ocean. 1998, 103, 7755–7766. [Google Scholar] [CrossRef]
- Miralles, D.G.; Crow, W.T.; Cosh, M.H. Estimating Spatial Sampling Errors in Coarse-Scale Soil Moisture Estimates Derived from Point-Scale Observations. J. Hydrometeorol. 2010, 11, 1423–1429. [Google Scholar] [CrossRef]
- Draper, C.; Reichle, R.; de Jeu, R.; Naeimi, V.; Parinussa, R.; Wagner, W. Estimating Root Mean Square Errors in Remotely Sensed Soil Moisture over Continental Scale Domains. Remote Sens. Environ. 2013, 137, 288–298. [Google Scholar] [CrossRef]
- Xu, L.; Chen, N.; Zhang, X.; Moradkhani, H.; Zhang, C.; Hu, C. In-Situ and Triple-Collocation Based Evaluations of Eight Global Root Zone Soil Moisture Products. Remote Sens. Environ. 2021, 254, 112248. [Google Scholar] [CrossRef]
- McColl, K.A.; Vogelzang, J.; Konings, A.G.; Entekhabi, D.; Piles, M.; Stoffelen, A. Extended triple collocation: Estimating errors and correlation coefficients with respect to an unknown target. Geophys. Res. Lett. 2014, 41, 6229–6236. [Google Scholar] [CrossRef]
- Scipal, K.; Dorigo, W.; de Jeu, R. Triple Collocation—A New Tool to Determine the Error Structure of Global Soil Moisture Products. In Proceedings of the 2010 IEEE International Geoscience and Remote Sensing Symposium, Honolulu, HI, USA, 25–30 July 2010; pp. 4426–4429. [Google Scholar] [CrossRef]
- Zwieback, S.; Scipal, K.; Dorigo, W.; Wagner, W. Structural and statistical properties of the collocation technique for error characterization. Nonlinear Process. Geophys. 2012, 19, 69–80. [Google Scholar] [CrossRef]
- Arnold, J.G.; Fohrer, N. SWAT2000: Current capabilities and research opportunities in applied watershed modelling. Hydrol. Process. 2005, 19, 563–572. [Google Scholar] [CrossRef]
- Nadeem, A.A.; Zha, Y.; Shi, L.; Ran, G.; Ali, S.; Jahangir, Z.; Afzal, M.M.; Awais, M. Multi-Scale Assessment of SMAP Level 3 and Level 4 Soil Moisture Products over the Soil Moisture Network within the ShanDian River (SMN-SDR) Basin, China. Remote Sens. 2022, 14, 982. [Google Scholar] [CrossRef]
- Ray, R.L.; Fares, A.; He, Y.; Temimi, M. Evaluation and Inter-Comparison of Satellite Soil Moisture Products Using In Situ Observations over Texas, U.S. Water 2017, 9, 372. [Google Scholar] [CrossRef]
- Zheng, X.; Feng, Z.; Xu, H.; Sun, Y.; Bai, Y.; Li, B.; Li, L.; Zhao, X.; Zhang, R.; Jiang, T.; et al. Performance of Four Passive Microwave Soil Moisture Products in Maize Cultivation Areas of Northeast China. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 2451–2460. [Google Scholar] [CrossRef]
- O’Neill, P.E.; Chan, S.; Njoku, E.G.; Jackson, T.; Bindlish, R. SMAP Enhanced L3 Radiometer Global Daily 9 km EASE-Grid Soil Moisture; Version 3; NASA National Snow and Ice Data Center Distributed Active Archive Center: Boulder, CO, USA, 2019. [Google Scholar]
- Paloscia, S.; Pettinato, S.; Santi, E.; Notarnicola, C.; Pasolli, L.; Reppucci, A. Soil moisture mapping using Sentinel-1 images: Algorithm and preliminary validation. Remote Sens. Environ. 2013, 134, 234–248. [Google Scholar] [CrossRef]
- Gruhier, C.; Rosnay, P.D.; Hasenauer, S.; Holmes, T.; Jeu, R.D.; Kerr, Y.; Mougin, E.; Njoku, E.; Timouk, F.; Wagner, W.; et al. Soil moisture active and passive microwave products: Intercomparison and evaluation over a Sahelian site. Hydrol. Earth Syst. Sci. 2010, 14, 141–156. [Google Scholar] [CrossRef]
- Ulaby, F.T.; Long, D.F. Microwave Radar and Radiometric Remote Sensing; University of Michigan Press: Ann Arbor, MI, USA, 2014; pp. 1–1116. [Google Scholar]
- Mishra, A.; Vu, T.; Veettil, A.V.; Entekhabi, D. Drought monitoring with soil moisture active passive (SMAP) measurements. J. Hydrol. 2017, 552, 620–632. [Google Scholar] [CrossRef]
- Cui, C.; Xu, J.; Zeng, J.; Chen, K.S.; Bai, X.; Lu, H.; Chen, Q.; Zhao, T. Soil Moisture Mapping from Satellites: An Intercomparison of SMAP, SMOS, FY3B, AMSR2, and ESA CCI over Two Dense Network Regions at Different Spatial Scales. Remote Sens. 2018, 10, 33. [Google Scholar] [CrossRef]
- Mira, M.; Valor, E.; Boluda, R.; Caselles, V.; Coll, C. Influence of soil water content on the thermal infrared emissivity of bare soils: Implication for land surface temperature determination. J. Geophys. Res. Earth Surf. 2007, 112, F04003. [Google Scholar] [CrossRef]
- Bartalis, Z.; Wagner, W.; Naeimi, V.; Hasenauer, S.; Scipal, K.; Bonekamp, H.; Figa, J.; Anderson, C. Initial Soil Moisture Retrievals from the METOP-A Advanced Scatterometer (ASCAT). Geophys. Res. Lett. 2007, 34, L20401. [Google Scholar] [CrossRef]
- Albergel, C.; de Rosnay, P.; Gruhier, C.; Muñoz-Sabater, J.; Hasenauer, S.; Isaksen, L.; Kerr, Y.; Wagner, W. Evaluation of Remotely Sensed and Modelled Soil Moisture Products Using Global Ground-Based In Situ Observations. Remote Sens. Environ. 2012, 118, 215–226. [Google Scholar] [CrossRef]
- Rötzer, K.; Montzka, C.; Bogena, H.; Wagner, W.; Kerr, Y.H.; Kidd, R.; Vereecken, H. Catchment Scale Validation of SMOS and ASCAT Soil Moisture Products Using Hydrological Modeling and Temporal Stability Analysis. J. Hydrol. 2014, 519, 934–946. [Google Scholar] [CrossRef]
- Mousa, B.G.; Shu, H. Spatial Evaluation and Assimilation of SMAP, SMOS, and ASCAT Satellite Soil Moisture Products Over Africa Using Statistical Techniques. Earth Space Sci. 2020, 7, e2019EA000841. [Google Scholar] [CrossRef]
Sites | Land Use | Slope (%) | Elevation (m) | Soil Texture |
---|---|---|---|---|
Site # 1 | Degraded hillslope | 17% | 2032 | Sandy loam |
Site # 2 | Degraded hillslope | 17% | 2025 | Loam |
Site # 3 | Cultivated land | 5 | 2002 | Clay loam |
Site # 4 | Cultivated land | 10 | 2013 | Clay loam |
Site # 5 | Cultivated land | 15 | 2001 | Loam |
Site # 6 | Cultivated land | 5 | 1978 | Clay |
Site # 7 | Cultivated land | 10 | 2013 | Clay |
Site # 8 | Cultivated land | 15 | 1965 | Sandy clay loam |
Parameters | PTFs |
---|---|
θs (cm3 cm−3) | 0.976 − 0.497 × BD − 0.0043 × OC−1 + 3.04 × Cl−1 + 0.00059 × CEC × BD + 0.001 × Cl × BD − 0.135 × CEC−1 |
α* (cm−1) | −3.29 − 0.727 × Ln (Sa) − 0.227 × pH × BD – 0.0153 × CEC × BD + 0.003 × Sa × Cl + 0.0008 × Si × Cl |
n* | −1.46 + 0.011 × CEC – 0.019 × Sa × BD + 5.56 × 10−4 Sa × Si – 3.02 × 10−4 × Si × Cl |
Soil Moisture Retrievals | ubRMSE (m3/m3) | RMSE (m3/m3) | Bias (m3/m3) | r | n |
---|---|---|---|---|---|
SPL3SMP_E AM (12 months) | 0.1064 | 0.2348 | 0.2094 | 0.91 | 193 |
SPL3SMP_E PM (12 months) | 0.1064 | 0.2005 | 0.1700 | 0.90 | 156 |
SPL3SMP_E AM (Oct–May) | 0.0626 | 0.1508 | 0.137 | 0.82 | 116 |
SPL3SMP_E PM (Oct–May) | 0.0519 | 0.1101 | 0.0971 | 0.88 | 90 |
ASCAT SWI 12.5 km (12 months) | 0.0771 | 0.1315 | 0.1065 | 0.87 | 40 |
ASCAT_PTF_SM (12 months) | 0.0398 | 0.0455 | 0.0222 | 0.75 | 40 |
No | Soil Hydraulic Attribute | Symbol | Unit | File Name |
---|---|---|---|---|
1 | Saturated water content of MvG | cm3 cm−3 | WC_SAT | |
2 | Water content at −20 kPa | cm3 cm−3 | WC_FC1 | |
3 | Water content at −33 kPa | cm3 cm−3 | WC_FC2 | |
4 | Water content at −1500 kPa | cm3 cm−3 | WC_PWP | |
5 | The inverse of the air-entry value of MvG | α | cm−1 | ALPHA |
6 | The shape parameter of MvG | n | - | N |
7 | Available Water Content 1 | AWC1 | cm3 cm−3 | AWC1 |
8 | Available Water Content 2 | AWC2 | cm3 cm−3 | AWC1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Teferi, E.; O’Donnell, G.; Kassawmar, T.; Mersha, B.D.; Ayele, G.T. Enhanced Soil Moisture Retrieval through Integrating Satellite Data with Pedotransfer Functions in a Complex Landscape of Ethiopia. Water 2023, 15, 3396. https://doi.org/10.3390/w15193396
Teferi E, O’Donnell G, Kassawmar T, Mersha BD, Ayele GT. Enhanced Soil Moisture Retrieval through Integrating Satellite Data with Pedotransfer Functions in a Complex Landscape of Ethiopia. Water. 2023; 15(19):3396. https://doi.org/10.3390/w15193396
Chicago/Turabian StyleTeferi, Ermias, Greg O’Donnell, Tibebu Kassawmar, Berihun D. Mersha, and Gebiaw T. Ayele. 2023. "Enhanced Soil Moisture Retrieval through Integrating Satellite Data with Pedotransfer Functions in a Complex Landscape of Ethiopia" Water 15, no. 19: 3396. https://doi.org/10.3390/w15193396
APA StyleTeferi, E., O’Donnell, G., Kassawmar, T., Mersha, B. D., & Ayele, G. T. (2023). Enhanced Soil Moisture Retrieval through Integrating Satellite Data with Pedotransfer Functions in a Complex Landscape of Ethiopia. Water, 15(19), 3396. https://doi.org/10.3390/w15193396